RRST-Mathematics

Operator Duals of Vector Sequence Spaces

K. B. Gupta ${ }^{1 *}$ and Ashfaque A. Ansari ${ }^{2}$

${ }^{1}$ Department of Mathematics, St. Andrew's College, Gorakhpur-273001 (INDIA)
${ }^{2}$ Department of Mathematics and Statistics, D.D.U. Gorakhpur University, Gorakhpur - 273009 (INDIA)

Introduction

The idea of dual sequence spaces was introduced by Köthe and Toeplitz [6]. In fact, the basic problems in the theory of complex sequence space or scalar valued sequence space deal with the transformation of complex sequence by infinite matrices of complex numbers. The basic results in this regard may be seen in the books of Cooke [3] ,Hardy [4] and Maddox [5].

When the infinite matrices of complex numbers operate on a complex sequence, we come across an infinite series whose convergence has given rise to the concept of β-duals also called as Köthe-Toeplitz duals. Thus if E is a set of complex sequences, then β-dual of E is denoted by E^{β} and is defined as

$$
\mathrm{E}^{\beta}=\left\{\mathrm{a}=\left(\mathrm{a}_{\mathrm{k}}\right) \in \omega: \sum_{k=1}^{\infty} a_{k} x_{k} \text { converges for all } \mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right)\right.
$$

$\in E$, where ω is the set of all complex sequences $\}$
The main result of Köthe and Toeplitz [2] is concerned with α-duals. If ω is the set of all complex sequence spaces,
then the α-dual of E, (where $E \subset \omega$) is denoted by E^{α} and is defined as

$$
\mathrm{E}^{\alpha}=\left\{\mathrm{a}=\left(\mathrm{a}_{\mathrm{k}}\right) \in \omega: \sum_{k=1}^{\infty}\left|a_{k} x_{k}\right| \text { converges for all } \mathrm{x}=\right.
$$

$\left.\left(x_{k}\right) \in E\right\}$
An account of the theory of α-duals in the scalar case may be found in G. Köthe [6]. Another dual, the γ-dual of the set $E \subset w$ is denoted by E^{γ} and is defined as

$$
\mathrm{E}^{\gamma}=\left\{\mathrm{a}=\left(\mathrm{a}_{\mathrm{k}}\right) \in \omega: \sup _{\mathrm{n}}\left|\sum_{k=1}^{n} a_{k} x_{k}\right|<\infty \text { for all } \mathrm{x}=\left\langle\mathrm{x}_{\mathrm{k}}\right\rangle\right.
$$

After Robinson's paper in 1995 [7] where in he considered the action of matrices operators on Banach space valued sequence, a decisive break occurred. This gave the concept of generalized Köthe-Toeplitz duals as given below.

Let X and Y be a Banach spaces and $E((X)$ is a set of X valued sequences i.e. $E(x)$ is a non-empty set of sequence $x=$ $\left(x_{k}\right)$ with $x_{k} \in X$. The several generalized Köthe-Toeplitz duals arise when the element complex sequence (a_{k}) of α-duals and β-duals set is replaced by a sequence $\left(A_{k}\right)$ of linear operators, where each A_{k} is a linear operator from X into Y. Thus, we define β-dual of $E(X)$ as

$$
E^{\beta}(x)=\left\{\left(A_{k}\right): \sum_{k=1}^{\infty}\left(A_{k} x_{k}\right) \text { converges in } Y\right. \text {, for each }
$$

$\left.\left(x_{k}\right) \in E(X)\right\} \quad$ and $\quad \alpha$-dual of $E(X)$ as

$$
E^{\alpha}(X)=\left\{\left(A_{k}\right): \sum_{k=1}^{\infty}\left\|A_{k} x_{k}\right\| \text { converges for all }\left(x_{k}\right) \in E\right\}
$$

Furthermore, Maddox [8] has also given the convergence of sequence of operators which are not necessarily bounded.

Notation and Terminology

We denote the set of all natural, real and complex numbers by N, R and C respectively. A sequence $x=\left(x_{k}\right)$ is said to be an entire sequence if $\lim _{k \rightarrow \infty}\left|x_{k}\right|^{\frac{1}{k}}=0$ and a
sequence $x=\left(x_{k}\right)$ is said to be an analytic sequence if $\left\{\left.x_{k}\right|^{\frac{1}{k}}\right\} \quad$ is bounded.

If $(X,\|\mid\|)$ is any Banach space over C, then we define
$\left\lvert\, \overline{{ }_{0}(x, p)}=\left\{\bar{x}=<x_{k}>: \in X, \underset{k \rightarrow \infty}{\text { Limit }}\left\|x_{k}\right\|^{\frac{1}{p_{k}}}=0\right\}\right.$

$$
\begin{aligned}
& \overline{{ }_{c}(x, p)}=\left\{\bar{x}=<x_{k}>: \in X, \underset{k \rightarrow \infty}{\operatorname{Limit}}\left\|x_{k}\right\|^{\frac{1}{p_{k}}}=l\right\} \\
& { }_{\infty}(x, p)=\left\{\bar{x}=<x_{k}>: \in X, \underset{k \rightarrow \infty}{\operatorname{Limit}}\left\|x_{k}\right\|^{\frac{1}{p_{k}}}=\infty\right\}
\end{aligned}
$$

where < $\mathrm{p}_{\mathrm{k}}>$ is a sequence of positive real number such that $p_{k} \geq k$, for each k and $/$ is a non-negative real number.

Let X and Y are Banach spaces and $<A_{k}>$ is a linear operator from X onto Y and E is non-empty set of sequence x $=\left(x_{k}\right)$ with $x_{k} \in X$.

Then, we define -duals, -duals (m,) duals and (m,) duals of E as

$$
E^{\alpha}=\left\{\left\langle A_{k}\right\rangle: \sum_{k=1}^{\infty}\left\|A_{k} x_{k}\right\| \text { converges for all } x=\left\langle x_{k}\right\rangle\right.
$$ $\in E\}$

$$
E^{\beta}=\left\{\left\langle A_{k}\right\rangle: \sum_{k=1}^{\infty} A_{k} x_{k} \text { converges is } Y \text { for all } x=\left\langle x_{k}\right\rangle\right.
$$ $\in \mathrm{E}\}$

$E^{m, \alpha}=\left\{<A_{k}>:<A_{k}>\right.$ is a sequence of linear operator but not necessarily bounded such that for some m; $\sum_{k=m}^{k=\infty}\left\|A_{k} x_{k}\right\|$ converges for all $\left.\left\langle\mathrm{x}_{\mathrm{k}}\right\rangle \in \mathrm{E}\right\}$
$E^{m, \beta}=\left\{<A_{k}\right\rangle\left\langle A_{k}\right\rangle$ is a sequence of linear operator but not necessarily bounded such that for some $\mathrm{m} ; \sum_{k=m}^{k=\infty} A_{k} x_{k}$ converges in Y for all $\left.<x_{k}>\in E\right\}$

Let $B(X, Y)$ denote the Banach spaces of the bounded linear operators from X into Y with the usual operator norm.

From the definition of the spaces, $\left.\right|_{{ }_{0}(X, p)},\left.\right|_{c}(X, p), \overline{\left.\right|_{\infty}(X, p)}$. . It is obvious that

$$
\mid \overline{{ }_{0}(X, p)} \subset \overline{c_{c}(X, p)} \subset \overline{l_{\infty}(X, p)}
$$

Thus, if $T \in B(X, Y)$, the operator norm of T is
$\|T\|=\sup \{\|T(x)\|\}: x \in S\}$, where
$S=\{x \in X:\|x\| \leq 1\}$ is a closed unit sphere in X.
Definitions: Let $<T_{k}>=<T_{1}, T_{2}, T_{3}, \ldots>$ be a sequence in $B(X, Y)$. Then, the group norm of $\left(T_{k}\right)$ is

$$
\left\|\left(T_{k}\right)\right\|=\sup \left\|\sum_{k=1}^{n} T_{k}\left(x_{k}\right)\right\|
$$

where supremum is over all $n \in N$ and all $x_{k} \in S$.

Main Results

Lemma 1. If $\left(T_{k}\right)$ is a sequence in $B(X, Y)$ and we write $R_{n}=$ ($\left.T_{n}, T_{n+1}, ..\right)$, then
(i) $\left\|T_{m}\right\| \leq\left\|R_{n}\right\|$, for all $m \geq n$
(ii) $\left\|R_{n+1}\right\| \leq\left\|R_{n}\right\|$, for all $n \in N$
(iii) $\left\|\sum_{k=n}^{n+p} T_{k} x_{k}\right\| \leq\left\|R_{n}\right\| \cdot \max \left\{\left\|\mathrm{x}_{\mathrm{k}}\right\|: \mathrm{n} \leq \mathrm{k} \leq \mathrm{n}+\mathrm{p}\right\}$
for any x_{k}, for all $\mathrm{n} \in \mathrm{N}$ and all non-negative integer p .
Lemma 2. If $\left(T_{k}\right)$ is a sequence in $B(X, Y)$, then

$$
\Sigma\left\|T_{k}\right\|<\infty \quad \Rightarrow \sup _{k \geq 1} \| T_{k \|}<\infty
$$

Theorem 1. $\left\langle A_{k}>\in{\overline{{ }_{0}(X, p)}}^{m, \beta} \quad\right.$ iff $\exists \mathrm{m} \in \mathrm{N}$ such that
(i) $A_{k} \in B(X, Y)$; for each $k \geq m$.
(ii) $\sup _{k \geq m}\left\|A_{k}\right\|^{\frac{1}{p_{k}}}<\infty$

Proof: Suppose the condition (i) and (ii) holds good.
Let $\left\langle x_{k}\right\rangle \in \overline{I_{0}(X, p)} \Rightarrow \lim _{k \rightarrow \infty}=0$
\Rightarrow To each $\in>0 \exists+\mathrm{ve}$ integer m such that
$\| \mathrm{X}_{\mathrm{k}}{ }^{1 / \mathrm{p}_{\mathrm{k}}}<\in$ for all $\mathrm{k} \geq \mathrm{m}$
Since, $\quad \sup _{k \geq m}\left\|A_{k}\right\|^{1 / p_{k}}<\infty$
$\Rightarrow \quad \exists$ a real number $M>0$ such that $M \in<1$
and $\left\|A_{k}\right\|^{\frac{1}{p_{k}}}<\mathrm{M}$ for all $\mathrm{k} \geq \mathrm{m}$
from (1) and (2), \| $A_{k}\left\|^{1 / p_{k}}\right\| X_{k} \|^{1 / p_{k}}<M \in$
$\Rightarrow \quad\left(\left\|A_{k}\right\|\left\|x_{k}\right\|\right)^{1 / p_{k}}<M \in$
$\Rightarrow\left\|A_{k}\right\| \cdot\left\|x_{k}\right\|<(M \in)^{p_{k}}$
(since $M \in<1$ and $\left.p_{k} \geq k \Rightarrow(M \in)^{p_{k}} \leq(M \in)^{k}\right)$.
$\Rightarrow \quad\left\|A_{k}\right\| \cdot\left\|x_{k}\right\|<(M \in)^{k}$
By result, $\quad\left\|A_{k} \cdot\left(x_{k}\right)\right\|\left\|A_{k}\right\| \cdot\left\|x_{k}\right\|, \quad k \geq m$.

From (3.1.3) and (3.1.4), $\left\|A_{k} \cdot\left(x_{k}\right)\right\|<(M \in)^{k}$ for all $k \geq$ m.

$$
\begin{aligned}
& \left\|\sum_{k=m}^{\infty} A_{k} x_{k}\right\| \leq \sum_{k=m}^{\infty}\left\|A_{k} x_{k}\right\|<\sum_{k=m}^{\infty}(M \in)^{k} \\
& =\quad(M \in)^{m}\left[\frac{1}{1-M \in}\right]=\frac{(M \in)^{m}}{1-M \in}<\infty \\
& \Rightarrow \quad \sum_{k=1}^{\infty} A_{k} x_{k} \text { converges in } Y \text { for all }<x_{k}>\overline{l_{0}(X, p)}
\end{aligned}
$$

consequently,
$<A_{k}>\in{\overline{l_{0}(X, p)}}^{m . \beta}$.
Conversely, Let $<A_{k}>\in{\overline{l_{0}(X, p)}}^{m, \beta}$
But that no m exists for which $A_{k} \in B(X, Y)$ for all $k \geq m$.
$\Rightarrow \exists$ a sequence $<k_{i}>$ of natural no. such that $k_{i} \geq i$ and
$A_{k i} \notin B(x, y)$, for each i
$\Rightarrow \quad\left\|A_{k i}\right\|=\infty \quad$ where $k_{i} \geq i$, for each $k_{i} \geq i$
$\Rightarrow \quad\left\|A_{k i}\right\|=\sup \left\{\left\|A_{\text {ki }}(z)\right\|:\right.$ for each $z \in X$ and $\|z\|$
$\leq 1\}=\infty$
$\Rightarrow \sup _{z \in S}\left\|A_{k i}(z)\right\|=\infty$ where $k_{i} \geq i$, for each $k_{i} \geq i$
$\Rightarrow \quad \exists$ a sequence $<\mathrm{z}_{\mathrm{i}}>$ in S such that

$$
\left\|A_{k i}\left(z_{i}\right)\right\|>i^{2 p_{k i}} \quad \text { where } k_{i} \geq i, \text { for each } k_{i} \geq i
$$

Define $\quad x_{k}=\left\{\begin{array}{cl}0, & k \neq k_{i} \\ \frac{z_{i}}{i^{2 p_{k_{i}}}} & k=k_{i}\end{array}\right.$
For $\mathrm{k} \neq \mathrm{k}_{\mathrm{i}},\left\|\mathrm{x}_{\mathrm{k}}\right\|^{1 / \mathrm{p}_{\mathrm{k}}}=0$
and for $k=k_{i},\left\|x_{k}\right\|^{1 / p_{k}}=\left\|x_{k i}\right\|^{1 / p_{k}}=\left\|z_{i}\right\|^{1 / p_{k}} / i^{2} \leq 1 / i^{2}$ $\rightarrow 0$ as $\mathrm{i} \rightarrow \infty$, i.e. $\mathrm{k}_{\mathrm{i}} \rightarrow \infty$, i.e. $\mathrm{k} \rightarrow \infty$ (since $\left\|\mathrm{z}_{\mathrm{i}}\right\| \leq 1$)
$\Rightarrow\left\|X_{k}\right\|^{1 / p_{k}} \rightarrow 0 \quad$ as $\mathrm{k} \rightarrow \infty$.
Hence, $\left\langle x_{k}\right\rangle \in \overline{l_{0}(X, p)}$
For $k=k_{i},\left\|A_{k} x_{k}\right\|=\left\|A_{k_{i}}\left(x_{k_{i}}\right)\right\|$

$$
=\left\|A_{k i}\left(\frac{z_{i}}{i^{2 p_{k_{i}}}}\right)\right\|=\frac{\left\|A_{k i}\left(z_{i}\right)\right\|}{i^{2 p_{k_{i}}}}>1 \text { for large }
$$

value of k.
Hence, $\sum_{k=m}^{\infty} A_{k}\left(x_{k}\right)$ does not converge, which is contradiction to our assumption. Hence our assumption is wrong.

Therefore, $\exists \mathrm{m} \in \mathrm{N}$ such that $A_{k} \in B(X, Y)$, for $k \geq m$.
Again suppose if possible (ii) fails
\Rightarrow There does not exist any $m \in N$ such that $\sup \left\|A_{k}\right\|^{\frac{1}{p_{k}}}<\infty$
$k \geq m$

$$
\Rightarrow \quad \text { To each } \mathrm{m} \in \mathrm{~N}, \sup _{k \geq m}\left\|A_{k}\right\|^{\frac{1}{p_{k}}}=\infty
$$

$$
\Rightarrow \quad \sup _{k \geq 1}\left\{\left\|A_{k}\right\|\right\}^{\frac{1}{p_{k}}}=\infty
$$

$\Rightarrow \quad \exists$ a sequence $<k_{i}>$ of natural no. such that \| $A_{k i}$ $\|^{1 / p_{k i}>2 i}$ for $i \in N$.

Again since, $\quad\left(1 / 2^{k}\right)\left\|A_{k}\right\| \leq\left\|A_{k}\right\|$ and $\left\|A_{k}\right\|=\sup$ $\left\{\left\|A_{k}(z)\right\|\right.$: for each $\left.z \in S\right\}$

$$
\Rightarrow \quad\left(1 / 2^{k}\right)\left\|A_{k}\right\| \leq \sup \left\{\left\|A_{k}(z)\right\|: \text { for each } z \in S\right\}
$$

$\Rightarrow \exists$ a sequence $<z_{k}>$ in S such that $\left(1 / 2^{k}\right)\left\|A_{k}\right\| \leq$ $\left\|A_{k}\left(z_{k}\right)\right\|$

$$
\Rightarrow \quad\left\|A_{k}\right\| \leq 2^{k}\left\|A_{k} \cdot\left(z_{k}\right)\right\| \text { i.e. }\left\|A_{k}\left(z_{k}\right)\right\| \geq\left\|A_{k}\right\| / 2^{k}
$$

Define $\quad x_{k}=Z_{k} / i p_{k}$ for $k=k_{i}$ and $x_{k}=0$ for $k \neq k_{i}$;

For $k=k_{i}$
$\left\|x_{k}\right\|^{\frac{1}{p_{k}}}=\left\|\frac{z_{k}}{i^{p k}}\right\|^{\frac{1}{p_{k}}}=\frac{1}{i} \cdot\left\|z_{k}\right\|^{\frac{1}{p_{k}}} \rightarrow 0$ as $\mathrm{i} \rightarrow \infty$, i.e. k_{i} $=\mathrm{k} \rightarrow \infty$
and for $\mathrm{k} \neq \mathrm{k}_{\mathrm{j}},\left\|\mathrm{X}_{\mathrm{k}}\right\|^{1 / \mathrm{p}_{\mathrm{k}}=0}$
Then $\left\langle x_{k}\right\rangle \in \overline{l_{0}(X, p)}$
But for $k=k_{j}$,
$\left\|A_{k} \mathrm{X}_{\mathrm{k}}\right\|=\left\|A_{k}\left(\frac{\mathrm{z}_{k}}{i^{p_{k}}}\right)\right\|$
$=\frac{1}{i^{p_{k}}}\left\|A_{k}\left(z_{k}\right)\right\| \geq \frac{\left\|A_{k}\right\|}{2^{k} \cdot i^{p k}} \geq \frac{\left\|A_{k}\right\|}{(2 i)^{p_{k}}}>1$ for large value of k.
$\Rightarrow \quad \Sigma A_{k}\left(x_{k}\right)$ diverges, which is contradiction to our assumption. Hence our assumption is wrong.

Therefore, $\exists \mathrm{m} \in \mathrm{N}$ such that $\sup _{k \geq m}\left\|A_{k}\right\|^{\frac{1}{p_{k}}}<\infty$
Theorem : 2. $\left\langle A_{k}\right\rangle \in \overline{l_{0}(X, p)}(m, \alpha) \quad$ iff $\exists m \in N$
such that (i) $A_{k} \in B(X, Y)$, for $k \geq m$.
and (ii) $\left(\sum_{k=1}^{\infty}\left\|A_{k}\right\|\right)<\infty$
Proof : Suppose the condition (i) and (ii) holds good.
Let $\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right) \in \overline{l_{0}(X, p)} \Rightarrow \operatorname{Limit}_{k \rightarrow \infty}\left\|x_{k}\right\|^{\frac{1}{p_{k}}}=0$
\Rightarrow for given $\in>0 \exists a+$ ve integer m such that $\left\|x_{k}\right\|^{1 / p_{k}}<\in$ for all $k \geq m$.
i.e. $\left\|x_{k}\right\|<\in p_{k}$, for all $k \geq m$
since $\left(\sum_{k=m}^{\infty}\left\|A_{k}\right\|\right)<\infty$
$\Rightarrow \quad \exists$ real number $M>0$ such that $M \in<1$
and $\sum_{k=m}^{\infty}\left\|A_{k}\right\| \leq M$, for all $k \geq m$.
$\Rightarrow \quad\left\|A_{k}\right\|<M \leq\left(M p_{k}\right)$, for all $k \geq m$.
from (3.2.1) and (3.2.2), $\left\|A_{k}\right\| .\left\|x_{k}\right\|<M p_{k} . \in M p_{k}=$
$(\mathrm{M} \in)^{\mathrm{p}_{\mathrm{k}}} \leq(\mathrm{M} \in)^{\mathrm{k}}$
$\sum_{k=m}^{\infty}\left\|A_{k} x_{k}\right\|<\sum_{k=m}^{\infty}(M \in)^{k}=(M \in)^{m}\left[\frac{1}{1-M \in}\right]<\infty$
(since $M \in<1$ and $\left.p_{k} \geq k \quad \Rightarrow \quad(M \in)^{p_{k}} \leq(M \in)^{k}\right)$.
$\Rightarrow \sum_{k=m}^{\infty}\left\|A_{k} x_{k}\right\|$ converges.
consequently, $\left\langle A_{k}\right\rangle \in \overline{l_{0}(X, P)}(m, \alpha)$
conversely, suppose $<A_{k}>\in \overline{\left.\right|_{0}(X, P)}(m, \alpha)$
and there exist no m such that $A_{k} \in B(X, Y)$ for $k \geq m$
$\Rightarrow \quad \exists$ a sequence $<k_{i}>$ of natural numbers such that
$A_{k i} \notin B(X, Y)$, for each i
$\Rightarrow \quad\left\|A_{k i}\right\|=\infty, \quad$ for each i
$\Rightarrow \quad\left\|A_{k i}\right\|=\sup \left\{\left\|A_{k i}(z)\right\|:\right.$ for each $z \in X$ and $\|z\|$
$\leq 1\}=\infty$
$\Rightarrow \sup _{\forall z \in S}\left\|A_{k i}(z)\right\|=\infty$, for each $z \in S$ i.e. $\|z\| \leq 1$
$\Rightarrow \quad \exists$ a sequence $<z_{i}>$ in S such that $\left\|A_{k i}\left(z_{i}\right)\right\|>i^{2 p_{k i}}$ where $k_{i} \geq i$

Define $\quad x_{k}=Z_{i} / i^{2} p_{k}$ for $k=k_{i}$ and $x_{k}=0$ for $\mathrm{k} \neq \mathrm{k}_{\mathrm{i}}$;

For $\mathrm{k}=\mathrm{k}_{\mathrm{i}}$
$\left\|\mathrm{X}_{\mathrm{k}}\right\|^{1 / \mathrm{p}_{\mathrm{k}}}=\left\|\mathrm{Z}_{\mathrm{i}} / \mathrm{i}^{2} \mathrm{p}_{\mathrm{k}}\right\|^{1 / \mathrm{p}_{\mathrm{k}}}=\left\|\mathrm{Z}_{\mathrm{i}}\right\|^{1 / \mathrm{p}_{\mathrm{k}}} / \mathrm{i}^{2} \rightarrow 0$ as $\mathrm{i} \rightarrow \infty$, i.e. $k=k_{i} \rightarrow \infty$
and for $\mathrm{k} \neq \mathrm{k}_{\mathrm{i}},\left\|\mathrm{X}_{\mathrm{k}}\right\|^{1 / \mathrm{p}_{\mathrm{k}}}=0$
Then $<\mathrm{x}_{\mathrm{k}}>\overline{I_{0}(X, P)}$
for $k=k_{i} \geq m$,
$\left\|A_{k}\left(x_{k}\right)\right\|=\left\|A_{k}\left(Z_{i} / i^{2} p_{k}\right)\right\|=\left\|A_{k}\left(Z_{i}\right)\right\|\left(1 / i^{2} p_{k}\right)>1$ for every value of k.
$\Rightarrow \sum_{k=m}^{\infty}\left\|A_{k} x_{k}\right\|$ does not converge, which is contradiction.

Hence, our assumption is wrong.
Therefore, $\exists \mathrm{m} \in \mathrm{N}$ such that $\mathrm{A}_{\mathrm{k}} \in \mathrm{B}(\mathrm{X}, \mathrm{Y})$, for each $\mathrm{k} \geq$ m.

Again suppose (ii) fails
i.e. $\left(\sum_{k=m}^{\infty}\left\|A_{k}\right\|\right)=\infty$

Then \exists a strictly increasing sequence $\left\langle n_{i}>\right.$ such
that $\sum_{k=1+n_{i}}^{k=n_{i+1}}\left\|A_{k}\right\|>(2 i){ }^{p_{k}}$
and \exists a sequence $<\mathrm{z}_{\mathrm{k}}>$ in S such that $2^{\mathrm{k}}\left\|\mathrm{A}_{\mathrm{k}}\left(\mathrm{z}_{\mathrm{k}}\right)\right\| \geq \|$ $A_{k} \mid$

Define $\quad x_{k}=Z_{k} / i p_{k}$ for $n_{i}<k \leq n_{(i+1)}$ and x_{k} $=0$ otherwise ;

For $\mathrm{k}=\mathrm{k}_{\mathrm{i}}$
$\left\|x_{k}\right\|^{\frac{1}{p_{k}}}=\left\|\frac{z_{k}}{i^{p_{k}}}\right\|^{\frac{1}{p_{k}}}=\frac{\left\|z_{k}\right\|^{\frac{1}{p_{k}}}}{i} \rightarrow 0$ as $\mathrm{I} \rightarrow \infty$ i.e. $\mathrm{k}=\mathrm{ki}$ $\rightarrow \infty$

For $\mathrm{k} \neq \mathrm{k}_{\mathrm{j}},\left\|\mathrm{X}_{\mathrm{k}}\right\|^{1 / \mathrm{p}_{\mathrm{k}}}=0$
Then $\left\langle\mathrm{x}_{\mathrm{k}}\right\rangle \in \overline{I_{0}(X, P)}$
But

$$
\sum_{k=1+n_{i}}^{n_{i+1}}\left\|A_{k} x_{k}\right\|=\sum_{k=1+n_{i}}^{n_{i+1}}\left\|A_{k}\left(\frac{z_{k}}{i^{p_{k}}}\right)\right\|=\sum_{k=1+n_{i}}^{n_{i+1}} \frac{\left\|A_{k}\left(Z_{k}\right)\right\|}{i^{p_{k}}}
$$

$$
\geq \sum_{k=1+n}^{n_{i+1}} \frac{\left\|A_{k}\right\|}{2^{k}, i^{p_{k}}} \geq \sum_{k=1+n}^{n_{i+1}} \frac{\left\|A_{k}\right\|}{(2 i)^{p_{k}}}>1
$$

$\Rightarrow \sum_{k=m}^{\infty}\left\|A_{k} x_{k}\right\| \quad$ does not converge, which is a contradiction.

Hence our assumption is wrong
Therefore, $\exists \mathrm{m} \in \mathrm{N}$ such that

$$
\sum_{k=m}^{\infty}\left\|A_{k}\right\| \quad<\infty
$$

Theorem : 3. $<\mathrm{A}_{\mathrm{k}}>\in{\overline{l_{\infty}(X, p)}}^{(m, \beta)}$ iff
(i) $\left\langle A_{k}\right\rangle \in{\overline{l_{0}(X, p)}}^{(m, \beta)}$
(ii) $\left\|R_{n}\right\|^{1 / n} \rightarrow 0$ as $n \rightarrow \infty$.

Proof : Suppose (i) and (ii) holds good.
Let $\mathrm{x}=\left\langle\mathrm{x}_{\mathrm{k}}\right\rangle \in \overline{\infty_{\infty}(X, p)}$
$\Rightarrow \exists$ a real number $M>0$ such that $\left\|x_{k}\right\|^{1 /} p_{k}<M$.
since, $\left\|R_{n}\right\|^{1 / n} \rightarrow 0$, and for every $\in>0$,
$\left\|R_{k}\right\|^{1 / k}<\in / M$ for sufficiently large k.
we have the identity by the Lemma (1),
$\left\|\sum_{k=n}^{n+p} A_{k}\left(x_{k}\right)\right\| \leq\left\|R_{n}\right\| \cdot \max \left\{\left\|\mathrm{x}_{\mathrm{k}}\right\|: \mathrm{n} \leq \mathrm{k} \leq \mathrm{n}+\mathrm{p}\right\} \leq$ ϵ^{k}
for sufficiently large k.
Hence $\Sigma A_{k} x_{k}$ converges.
consequently, $\left(A_{k}\right) \in{\overline{l_{\infty}}(X, p)}^{(m, \beta)}$
conversely, Let $<A_{k}>\in{\overline{\left.\right|_{\infty}(X, p)}}^{(m, \beta)}$
since $\overline{\left.\right|_{\infty}(X, p)} \subset \overline{l_{\infty}(X, p)}$
$\Rightarrow{\overline{l_{\infty}(X, p)}}^{(m, \beta)} \subset{\overline{\rho_{\infty}(X, p)}}^{(m, \beta)}$
and therefore $\left(A_{k}\right) \in{\overline{l_{\infty}}(X, p)}^{(m, \beta)} \quad \Rightarrow\left(A_{k}\right) \in$
$\overline{\Gamma_{\infty}(X, p)}{ }^{(m, \beta)} \quad$ which proves (1)
Now suppose, if possible that (ii) fails
Let $\lim _{n}$ sup $\left\|R_{n}\right\|^{1 / n}=3 p>0$.
Then, there exist natural numbers $n_{1}>m_{1}>m$ and z_{m},
.........., Z_{n} in S such that
$\left\|\sum_{k=m_{1}}^{n_{1}} A_{k} z_{k}\right\|>p$
choose $m_{2}>n_{1}$ such that $\left\|R_{m 2}\right\|^{1 / m 2}>2 p$.
Then there exist $n_{2} \quad m_{2}$ and $z_{m 2}, \ldots \ldots, z_{n 2}$ in S such
that $\left\|\sum_{m_{2}}^{n_{2}} A_{k}\left(z_{k}\right)\right\|>p$. Proceeding in this way, we and define
$\mathrm{x}_{\mathrm{k}}=0, \mathrm{k} \leq \mathrm{m} 1$
$=\mathrm{z}_{\mathrm{k}}, \mathrm{m} 1 \leq \mathrm{k} \leq \mathrm{n} 1$
= $0, \mathrm{n} 1 \leq \mathrm{k} \leq \mathrm{m} 2$
$=\mathrm{z}_{\mathrm{k}}, \mathrm{m} 2 \leq \mathrm{k} \leq \mathrm{n} 2$ and so on.
Then $\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right) \in \overline{\infty_{\infty}(X, p)}$
But $\sum A_{k} x_{k}$ diverges which is contradiction to the fact that
$\left(A_{k}\right) \in{\overline{l_{\infty}}(X, p)}^{(m, \beta)}$
Hence our assumption is wrong.
Therefore $\left\|R_{n}\right\|^{1 / n} \rightarrow 0$ as $n \rightarrow \infty$.

References

[1] T. Balasubramanim and A. Pandiarari, 2009: Duals of vector sequence spaces; Int. Journal of Math. Analysis, Vol. 3, No. 16, 779-785.
[2] Köthe G. and Toeplitz O., 1934 : Lineare Raime mit unendlichvielence koordinaten and Ringe unendlicher materizen J. F. Reine U. Angew Math., 174 193-226.
[3] R. G. Cooke 1949: Infinite matrices and sequence spaces Macmillan and Co. London.
[4] G. H. Hardy 1949: Divergent series, Oxford University Press,
[5] J. Maddox, 1970: Element of functional Analysis. Combridge University Press.
[6] G. Köthe, 1969: Topological vector space I (English); Springer-Verlag.
[7] A. R. Robinson 1995: On functional transformations and summability, Poc. London Math. Soc. 52,132-160
[8] J. Maddox 1986: Infinite matrices of operators, Lecture notes in mathematics, Springer-verlag, Barlin.

