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Introduction 

The field of numerical analysis predates the invention of 
modern computers by many centuries. Linear interpolation was 
already in use more than 2000 years ago. Many great 
mathematicians of the past were preoccupied by numerical 
analysis, as it obvious from the names of important algorithms 
like Newton's method, Lagrange interpolation polynomial, 
Gaussian elimination, or Euler's method [1] . 

To facilitate computations by hand, large books were 
produced with formulas and tables of data such as 
interpolation points and function coefficients [2-4]. Using these 
tables, often calculated out to 16 decimal places or more for 
some functions, one could look up values to plug into the 
formulas given and achieve very good numerical estimates of 
some functions. The canonical work in the field is the NIST 
publication edited by Abramowitz and Stegun, [5] a 1000-plus 
page book of a very large number of commonly used formulas 
and functions and their values at many points. The function 
values are no longer very useful when a computer is available, 
but the large listing of formulas can still be very handy. 

The mechanical calculator was also developed as a tool 
for hand computation. These calculators evolved into electronic 
computers in the 1940s, and it was then found that these 
computers were also useful for administrative purposes. But 
the invention of the computer also influenced the field of 
numerical analysis, since now longer and more complicated 
calculations could be done. 

Numerical quadrature is another name for numerical 
integration, which refers to the approximation of an integral 
∫f(x)dx of some function f(x) by a discrete summation Σwi f(xi) 
over points xi with some weights wi. There are many methods 
of numerical quadrature corresponding to different choices of 

points xi and weights wi, from Euler integration to sophisticated 
methods such as Gaussian quadrature,[6] with varying degrees 
of accuracy for various types of functions f(x).  

Popular methods use one of the Newton–Cotes formulas 
(like the midpoint rule or Simpson's rule) or Gaussian 
quadrature. These methods rely on a "divide and conquer" 
strategy, whereby an integral on a relatively large set is broken 
down into integrals on smaller sets. In higher dimensions, 
where these methods become prohibitively expensive in terms 
of computational effort, one may use Monte Carlo or quasi-
Monte Carlo methods or, in modestly large dimensions, the 
method of sparse grids. 

More accurate integration formulas with smaller truncation 
error can be obtained by interpolating several data points with 
higher-order interpolating polynomials. For example, the fourth-
order interpolating polynomial P4(t) between five data points 
leads to the Boole's rule of numerical integration. The Boole's 
rule has the global truncation error of order O(h6). However, 
the higher-order interpolating polynomials often do not provide 
good approximations for integrals because they tend to 
oscillate wildly between the samples (polynomial wiggle). As a 
result, they are seldom used past Boole's rule. Another popular 
numerical algorithm is used instead to reduce the truncation 
error of numerical integration. This is Romberg integration 
based on the Richardson extrapolation algorithm 

In numerical analysis, the Newton–Cotes formulas are a 
group of formulas for numerical integration (also called 
quadrature) based on evaluating the integrand at n+ 1 equally-
spaced point. Newton–Cotes formulas can be useful if the 
value of the integrand at equally-spaced points is given. If it is 
possible to change the points at which the integrand is 
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evaluated, then other methods such as Gaussian quadrature  
[6-7]   and Clenshaw–Curtis quadrature [8] are probably more 
suitable. 

It is assumed that the value of a function f is known at 
equally spaced points xi, for i = 0, …, n. There are two types of 
Newton–Cotes formulas, the "closed" type which uses the 
function value at all points, and the "open" type which does not 
use the function values at the endpoints. The closed Newton-
Cotes formula [9-10] of degree n is stated as 

 

 
 
where xi = h i + x0, with h (called the step size) equal to (xn 

− x0)/n. The wi are called weights. 
As can be seen in the following derivation the weights are 

derived from the Lagrange basis polynomials. This means they 
depend only on the xi and not on the function f. Let L(x) be the 
interpolation polynomial in the Lagrange form for the given 
data points (x0, f(x0) ), …, (xn, f(xn) ), then 

 

 
 
The open Newton–Cotes formula of degree n is stated as 

 
A Newton–Cotes formula of any degree n can be 

constructed. However, for large n a Newton–Cotes rule can 
sometimes suffer from catastrophic Runge's phenomenon 
where the error grows exponentially for large n. Methods such 
as Gaussian quadrature and Clenshaw–Curtis quadrature with 
unequally spaced points (clustered at the endpoints of the 
integration interval) are stable and much more accurate, and 
are normally preferred to Newton–Cotes. If these methods can 
not be used, because the integrand is only given at the fixed 
equi-distributed grid, then Runge's phenomenon can be 
avoided by using a composite rule, as explained in next 
section. 

            
Material and Method 

In order to find out the relative numerical accuracy of 
quadrature formulas, we have calculated the definite integral  

1

1−∫ (x2 + 2) dx 

by dividing the interval of integration [-1, 1] into 96 
equal parts in trapezoidal rule, 192 equal parts in Simpson’s 
1/3 rule, 288 equal parts in Simpson’s 3/8 rule and 384 equal 
parts in Boole’s rule. These rules[11-13] are given below-
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Simpson's 1/3 Rule:  
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where h=x2k+1 –x2k, n>3 and n are odd numbers 
 
 

Simpson's 3/8 Rule:  
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where h=x3k+1 –x3k, (n-1)/3 are positive integers. 

 
Boole's Rule:  
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where h = x4k-3 - x4k-2 = x4k-2 - x4k-1 =…. = x4k+2 - x4k+1, (n-1)/4 
are positive integers. 

 
The values of the definite integral have been obtained 

with the help of following C++ programs developed by us- 
 

C++ Program for Trapezoidal Rule 
#include<conio.h> 
#include<stdio.h> 
#include<math.h> 
//Trapezoidal rule 
void main(void) 
{ 

   FILE *fpt; 
   int i, n=97; 
   float a, b, h, x[200]; 
   double s=0.0,ev; 
   double f(float x); 
   double g(float x); 
   clrscr(); 
   // filename 
   fpt=fopen("jst1.txt", "w"); 
   printf("a= "); 
   scanf("%f", &a); 
   printf("b= "); 
   scanf("%f", &b); 
   h=(b-a)/(n-1); 
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    fprintf(fpt,"a= %6.2f\n",a); 

   fprintf(fpt,"b= %5.2f\n",b); 
   fprintf(fpt,"h= %10.8f\n",h); 
   //Function 
   fprintf(fpt,"f(x)=x^2+2\n"); 
   fprintf(fpt,"S.No. Lower Limit   Upper Limit     

  Value by Trepezoidal      Exact Value\n"); 
   for(i=1; i<=n; i++) 
 x[i]=a+(i-1)*h; 
   for(i=1; i<n; i++) 
   { 
     s=s+h*(f(x[i+1])+f(x[i]))/2; 
     ev=g(x[i+1])-g(x[1]); 
     fprintf(fpt,"%4d   %7.2f  %8.3f %22.15f  

  %22.15f\n",i,a,x[i+1],s,ev); 
   } 
 
   fclose(fpt); 

} 
double f(float x) 
{ 

   double r; 
   r=x*x+2; 
   return(r); 

} 
double g(float x) 
{ 

    double r; 
    r=x*x*x/3 + 2*x; 
    return(r); 

} 

C++ Program for Simpson's 1/3Rule 
#include<conio.h> 
#include<stdio.h> 
#include<math.h> 
//Simpson's rule 
void main(void) 
{ 
   FILE *fpt; 
   int i, n=193; 
   float a, b, h, x[200]; 
   double s=0.0,ev; 
   double f(float x); 
   double g(float x); 
   clrscr(); 
   //to change filename 
   fpt=fopen("jss1.txt", "w"); 
   printf("a= "); 
   scanf("%f", &a); 
   printf("b= "); 
   scanf("%f", &b); 
   h=(b-a)/(n-1); 
   fprintf(fpt,"a= %6.2f\n",a); 
   fprintf(fpt,"b= %5.2f\n",b); 
   fprintf(fpt,"h= %10.8f\n",h); 
   //Function 
   fprintf(fpt,"f(x)=x^2+2\n"); 
   fprintf(fpt,"S.No. Lower Limit   Upper Limit     Value by 

   Simpson1/3          Exact Value\n"); 

   for(i=1; i<=n; i++) 
 x[i]=a+(i-1)*h; 
   for(i=1; i<=(n-1)/2; i++) 
   { 
     s=s+h*(f(x[2*i-1])+4*f(x[2*i])+f(x[2*i+1]))/3; 
     ev=g(x[2*i+1])-g(x[1]); 
     fprintf(fpt,"%4d  %7.2f  %8.3f %22.15f      

    %22.15f\n",i,a,x[2*i+1],s,ev); 
   } 
 
   fclose(fpt); 
 } 
double f(float x) 
{ 
   double r; 
   r=x*x+2; 
   return(r); 
} 
double g(float x) 
{ 
    double r; 
    r=x*x*x/3 + 2*x; 
    return(r); 
} 

C++ Program for Simpson's 3/8 Rule  
#include<conio.h> 
#include<stdio.h> 
#include<math.h> 
//Simpson's 3/8 rule 
void main(void) 
{ 
   FILE *fpt; 
   int i, n=289; 
   float a, b, h, x[300]; 
   double s=0.0,ev; 
   double f(float x); 
   double g(float x); 
   clrscr(); 
   //to change filename 
   fpt=fopen("jsst1.txt", "w"); 
   printf("a= "); 
   scanf("%f", &a); 
   printf("b= "); 
   scanf("%f", &b); 
   h=(b-a)/(n-1); 
   fprintf(fpt,"a= %6.2f\n",a); 
   fprintf(fpt,"b= %5.2f\n",b); 
   fprintf(fpt,"h= %10.8f\n",h); 
   //Function 
   fprintf(fpt,"f(x)=x^2+2\n"); 
   fprintf(fpt,"S.No. Lower Limit   Upper Limit     Value by 

 Simpson3/8       Exact Value\n"); 
   for(i=1; i<=n; i++) 
 x[i]=a+(i-1)*h; 
   for(i=1; i<=(n-1)/3; i++) 
   { 
  s=s+h*(3*f(x[3*i-2])+9*f(x[3*i-1])+9*f(x[3*i])+3*f(x[3*i+1]))    

  /8; 
     ev=g(x[3*i+1])-g(x[1]); 
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     fprintf(fpt,"%4d  %7.2f  %8.3f %22.15f  
 %22.15f\n",i,a,x[3*i+1],s,ev); 

   } 
 
   fclose(fpt); 
 } 
double f(float x) 
{ 
   double r; 
   r=x*x+2; 
   return(r); 
} 
double g(float x) 
{ 
    double r; 
    r=x*x*x/3 + 2*x; 
    return(r); 
} 
C++ Program for Boole's Rule  
#include<conio.h> 
#include<stdio.h> 
#include<math.h> 
//boole's rule 
void main(void) 
{ 
   FILE *fpt; 
   int i, n=385; 
   float a, b, h, x[400]; 
   double s=0.0,ev; 
   double f(float x); 
   double g(float x); 
   clrscr(); 
   //to change filename 
   fpt=fopen("jsb1.txt", "w"); 
   printf("a= "); 
   scanf("%f", &a); 
   printf("b= "); 
   scanf("%f", &b); 
   h=(b-a)/(n-1); 
   fprintf(fpt,"a= %6.2f\n",a); 
   fprintf(fpt,"b= %5.2f\n",b); 
   fprintf(fpt,"h= %10.8f\n",h); 
   //Function 
   fprintf(fpt,"f(x)=x^2+2\n"); 
   fprintf(fpt,"S.No. Lower Limit   Upper Limit     Value by 

   Booles           Exact Value\n"); 
   for(i=1; i<=n; i++) 
 x[i]=a+(i-1)*h; 
   for(i=1; i<=(n-1)/4; i++) 
   { 
     s=s+h*(14*f(x[4*i-3])+64*f(x[4*i-2])+24*f(x[4*i-1])+  

     64*f(x[4*i])+14* f(x[4*i+1])) /45; 
     ev=g(x[4*i+1])-g(x[1]); 
     fprintf(fpt,"%4d  %7.2f  %8.3f %22.15f    

 %22.15f\n",i,a,x[4*i+1],s,ev); 
   } 
   fclose(fpt); 
 } 
double f(float x) 
{ 

   double r; 
   r=x*x+2; 
   return(r); 
} 
double g(float x) 
{ 
    double r; 
    r=x*x*x/3 + 2*x; 
    return(r); 
} 
 

Result and Discussion 
Values of the integral have been obtained at different 

upper limits in the interval [-1, 1] by keeping lower limit -1 with 
the help of computer programs developed by us. Methods of 
evaluation of the integral are trapezoidal rule, Simpson’s one-
third rule, Simpson’s three-eighth rule and Boole’s rule. Exact 
values of integral at different upper limits have also been 
obtained and then compared with the calculated values. 

Values of integral at different upper limits in the interval [-
1, 1] by keeping lower limit -1 have been obtained by 
trapezoidal rule and are shown in Table-1. This Table also 
contains the exact values, error in calculated values and 
percentage error in calculated values. Graph between errors at 
various upper limits are shown in Graph-1 which indicates that 
the error increases as upper limit increases. Close look to 
Table-1 indicates that the maximum error is 0.0001448563 and 
average percentage error is 0.0029852961. 

With the help of Simpson’s one-third rule the value of 
integral has been calculated and shown in Table-2. Error in the 
value of integral is shown in Graph-2. It is clear from Graph-2 
that the error oscillates if upper limit is less than -1. At the 
upper limit -1, the value of error increases suddenly. Maximum 
error in the values of integral obtained by Simpson’s one-third 
rule is 0.0000001794 and average percentage error is 
0.0000034667. 

Table-3 contains the values of integral obtained by 
Simpson’s three-eighth rule, exact value of integral, error in the 
calculated value and percentage error.  Errors between 
calculated and observed values of integral at different upper 
limits are shown in Graph-3. It is clear from Graph-3 that the 
error oscillates as the upper limit approached to -1. Maximum 
error in the values of integral obtained by Simpson’s three-
eighth rule is 0.0000000723 and average percentage error is 
0.0000033255. 

Table-4 contains the values of integral obtained by 
Boole’s rule, exact value of integral, error in the calculated 
value and percentage error.  Errors between calculated and 
observed values of integral at different upper limits are shown 
in Graph-4. It is clear from Graph-4 that the error oscillates and 
it amazingly increases as upper limit becomes -1. Maximum 
error in the values of integral obtained by Simpson’s three-
eighth rule is 0.0000001806 and average percentage error is 
0.0000034753. 

It is clear that the errors in the value of integral obtained 
by trapezoidal rule are very high as compared to the other 
rules. Graph between maximum error and average percentage 
error for Simpson’s one-third rule, Simpson’s three-eighth rule 
and Boole’s rule are shown in Graph-5 and Graph-6 
respectively. 
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Table-1: Values of integral obtained by trapezoidal rule at different upper limits 
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1 -1 -0.979 0.0620704956 0.0620689275 0.0000015681 0.0025263550 

11 -1 -0.771 0.6390109786 0.6389944333 0.0000165453 0.0025892777 

21 -1 -0.562 1.1490388405 1.1490071615 0.0000316791 0.0027570818 

31 -1 -0.354 1.6102385759 1.6101918373 0.0000467386 0.0029026739 

41 -1 -0.146 2.0406946773 2.0406328768 0.0000618005 0.0030284989 

51 -1 0.063 2.4584916367 2.4584147733 0.0000768634 0.0031265428 

61 -1 0.271 2.8817139462 2.8816220201 0.0000919261 0.0031900829 

71 -1 0.479 3.3284460983 3.3283391106 0.0001069878 0.0032144494 

81 -1 0.688 3.8167725857 3.8166505380 0.0001220477 0.0031977698 

91 -1 0.896 4.3647779020 4.3646407122 0.0001371898 0.0031432095 

96 -1 1.000 4.6668115230 4.6666666667 0.0001448563 0.0031040636 
 

 
 
 
 
 
 
 
 
 
 

Graph-1: Error in the value of integral obtained by trapezoidal rule at different upper limits, lower limit=-1 
 
 

Table-2: Values of integral obtained by Simpson’s one-third rule at different upper limits, lower limit=-1 
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1 -1 -0.979 0.0620689877 0.0620689275 0.0000000602 0.0000970279 

11 -1 -0.771 0.6389944004 0.6389944333 0.0000000329 0.0000051457 

21 -1 -0.562 1.1490071925 1.1490071615 0.0000000311 0.0000027040 

31 -1 -0.354 1.6101918573 1.6101918373 0.0000000200 0.0000012426 

41 -1 -0.146 2.0406328883 2.0406328768 0.0000000115 0.0000005642 

51 -1 0.063 2.4584147772 2.4584147733 0.0000000040 0.0000001607 

61 -1 0.271 2.8816220165 2.8816220201 0.0000000036 0.0000001252 

71 -1 0.479 3.3283390980 3.3283391106 0.0000000125 0.0000003759 

81 -1 0.688 3.8166505137 3.8166505380 0.0000000243 0.0000006356 

91 -1 0.896 4.3646407603 4.3646407122 0.0000000481 0.0000011013 

96 -1 1.000 4.6666668461 4.6666666667 0.0000001794 0.0000038440 
 



R. B. Srivastava and Jai Singh Yadav/Rec Res Sci Tech 2011, 3(7): 77-84 
 
  

 82

 
 
 
 
 
 
 
 

Graph-2: Error in the value of integral obtained by Simpson’s one-third rule at different upper limits, lower limit=-1 
 

 
 

Table-3: Values of integral obtained by Simpson’s three-eighth rule at different upper limits 
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1 -1 -0.979 0.0620689872 0.0620689275 0.0000000597 0.0000961161 

11 -1 -0.771 0.6389943869 0.6389944333 0.0000000464 0.0000072597 

21 -1 -0.562 1.1490071702 1.1490071615 0.0000000087 0.0000007569 

31 -1 -0.354 1.6101918278 1.6101918373 0.0000000095 0.0000005875 

41 -1 -0.146 2.0406328508 2.0406328467 0.0000000041 0.0000002025 

51 -1 0.063 2.4584147307 2.4584147285 0.0000000022 0.0000000908 

61 -1 0.271 2.8816219586 2.8816219583 0.0000000003 0.0000000102 

71 -1 0.479 3.3283390256 3.3283390441 0.0000000185 0.0000005546 

81 -1 0.688 3.8166504230 3.8166503906 0.0000000324 0.0000008492 

91 -1 0.896 4.3646406417 4.3646407122 0.0000000705 0.0000016158 

94 -1 0.958 4.5433787087 4.5433787811 0.0000000723 0.0000015924 

96 -1 1.000 4.6666667119 4.6666666667 0.0000000452 0.0000009695 
 

 
 
 

 
 
 
 
 
 
 
 

Graph-3: Error in the value of integral obtained by Simpson’s three-eighth rule at different upper limits, lower limit=-1 
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Table-4: Values of integral obtained by Boole’s rule at different upper limits 
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1 -1 -0.979 0.0620689884 0.0620689275 0.0000000609 0.0000980875 
11 -1 -0.771 0.6389944010 0.6389944333 0.0000000323 0.0000050500 
21 -1 -0.562 1.1490071932 1.1490071615 0.0000000318 0.0000027661 
31 -1 -0.354 1.6101918579 1.6101918373 0.0000000207 0.0000012835 
41 -1 -0.146 2.0406328890 2.0406328768 0.0000000122 0.0000005968 
51 -1 0.063 2.4584147779 2.4584147733 0.0000000046 0.0000001877 
61 -1 0.271 2.8816220170 2.8816220201 0.0000000030 0.0000001053 
71 -1 0.479 3.3283390987 3.3283391106 0.0000000118 0.0000003554 
81 -1 0.688 3.8166505146 3.8166505380 0.0000000234 0.0000006120 
91 -1 0.896 4.3646407607 4.3646407122 0.0000000485 0.0000011104 
96 -1 1 4.6666668473 4.6666666667 0.0000001806 0.0000038710 

 
 
 
 
 
 
 
 
 

 
Graph-4: Error in the value of integral obtained by Boole’s rule at different upper limits, lower limit=-1 

 
Table-5: Maximum error and average percentage error in the various methods 

Method Minimum Error Maximum Error Average percentage error 

Trapezoidal rule 0.0000015681 0.0001448563 0.0029852961 

Simpson’s one third rule 0.0000000001 0.0000001794 0.0000034667 

Simpson’s three eighth rule 0.0000000003 0.0000000723 0.0000033255 

Boole’s rule 0.0000000009 0.0000001806 0.0000034753 

 
 
 
 
 
 
 
 
 
 

Graph-5: Maximum error Simpson’s one-third rule, Simpson’s three-eighth rule and Boole’s rule 
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Graph-6: Average percentage error Simpson’s one-third rule, Simpson’s three-eighth rule and Boole’s rule 
 

Conclusion 
Value of integral calculated by trapezoidal rule is accurate 

up to three places after decimal point while it is accurate up to 
6 places after decimal point in Simpson’s one-third, Simpson’s 
three-eighth and Boole’s rule. Values of minimum errors, 
maximum errors and average percentage errors are shown in 
Table-5 which indicates that the values calculated by 
Simpson’s three-eighth rule is very reliable as compared to 
trapezoidal rule, Simpson’s one-third rule and Boole’s rule. 
Accuracy of the quadrature formulas has been found in the 
following order-  

Simpson’s three-eighth rule > Simpson’s one-third rule > 
Boole’s rule > trapezoidal rule 

It is evident that Simpson’s three-eight rule is better 
approximation for the value of integral as compared to other 
rules. 
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