

EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF SPECTROSCOPIC PROPERTIES OF CLOBAZAM

S.Muthu^{1*}, M.Prasath², R. Arun Balaji³

¹Sri Venkateswara College of Engineering, Sriperumbudur, Chennai – 603 314, India ²Aksheyaa College of Engineering, Pulidivakkam, Chennai – 603 314, India ³GRT Institute of Engineering and Technology, Tiruttani-631 209, India

Abstract

Ab initio and density functional theory methods have been employed to study the vibrational (IR) spectrum, molecular geometry, and chemical shifts of clobazam (CLB). Experimental studies were conducted on these parameters, including FTIR,

FTRaman and ¹H- and ¹³C NMR spectroscopy. The FTIR and FTRaman spectra of Clobazam have been recorded in the region 4000-400cm⁻¹ and 3500-100 cm⁻¹respectively. On the basis of the comparison between calculated and experimental results and the comparison with related molecules, assignments of fundamental vibrational modes are examined. A detailed

interpretation of the infrared spectrum of CLB is reported. Moreover, the complete assignment of ¹H- and ¹³C-NMR signals was achieved using DFT/GIAO calculated isotropic magnetic shielding at the B3LYP/6-31G(d) basis set. Theoretical values were compared to the experimental data's.

Keywords: FTIR & FTRaman spectra, HF & DFT methods, molecular geometries, vibrational analysis, Clobazam, Chemical shifts

Introduction

Clobazam (C₁₆H₁₃ClN₂O₂) is chemically known as 7-Chloro-1-methyl-5-phenyl-1, 5-benzodiazepine-2,4(3H)-dione. Clobazam (CLB) is a new antiepileptic drug that is the first 1, 5-benzodiazepine (BZP) having nitrogen atoms in the 1 and 5 positions of the heterocyclic ring, whose chemical structure was designed to give it a different pharmacological profile from that of 1, 4-BZPs. CLB had a wide spectrum of anticonvulsive actions against seizures in several animal models induced by chemical convulsants and maximal electroshock. Clobazam is approved for adjunctive therapy in complex partial seizures [1] certain types of status epileptics, specifically the myoclonic, myoclonic-absent, simple partial, complex partial, tonic varieties and non-status absence seizures [2]. From both experimental and clinical observations, CLB was proven to possess a wide spectrum of activity, high effectiveness and good tolerability in several types of epilepsies.

For the proper understanding of IR and Raman spectra, a reliable assignment of all vibrational bands is essential. For this purpose, the quantum chemical methods, ranging from HF to DFT approaches, are invaluable tools [3-5], each method having its own advantages. The Hartree-Fock, ab-initio methods are able to give good results provided a reasonable basis set and an appropriate correlation treatment are taken into account. On the other hand, DFT methods have evolved to a powerful quantum chemical tool for the determination of the electronic structure of molecules. In the frame work of DFT approach, different exchange and correlation functions are routinely used. Among these, the B3LYP combination [6, 7] is the most used since it proved its ability in reproducing various molecular properties, including vibrational spectra. In this study, an attempt has been made to interpret the vibrational spectra of clobazam by applying ab initio and density functional theory calculations based on Hartree-Fock and Becke3- Lee-Yang-Parr (B3LYP) level using 6-31G (d,p) basis set. In addition to these ¹H and ¹³C- chemical shifts were calculated with GIAO method [8, 9] using corresponding TMS shielding calculated at the B3LYP/6-31G(d) level.

Experimental

The compound Clobazam was purchased from sigma-Aldrich chemical company, USA with more than 98% purity and was used as such without further purification to record Fourier transform infrared (FTIR) spectrum in the region 4000 - 400 cm⁻¹ at a accuracy of ± 4 cm⁻¹ on a bruker model IFS 66V spectrophotometer using the KBr pellet technique. The FT-Raman spectrum of TMHQ was recorded using 1064 nm line of Nd:YAG laser as excitation wavenumber in the region100-3500 cm⁻¹ on the BRUCKER IFS-66 V spectrophotometer equipped with

^{*} Corresponding Author, Email: sanprasath_career@yahoo.co.in

FRA 106 Raman module. The observed FTIR and FT Raman spectrum of clobazam is shown in Fig.1.

Computational Details

The entire calculations were performed using the G03 [10] package of programs. Initial geometry generated from standard geometrical parameters [11] and full optimization was carried out at Hartree-Fock level of theory employing 6-31G(d,p) basis set. All the geometries were then reoptimized using 6-31G(d,p) basis set using density functional theory (DFT)[12] employing the Becke's three - parameter hybrid functional [6] combined with Lee-Yang-Parr correlation [7] functional (B3LYP) method. The optimized structural parameters were used in the vibrational frequency calculations at the HF and DFT levels to characterize all stationary points as minima. Vibrationally averaged positions of CBZ were used for harmonic frequency calculations resulting in IR frequencies together with intensities. By combining the results of the Chemcraft program [13] with symmetry considerations, vibrational frequency assignments were made. The Raman activities (Si) calculated with the GAUSSIAN 2003 program and adjusted during the scaling procedure with chemcraft were subsequently converted to relative Raman intensities (li) using the following relationship derived from the basis theory of Raman scattering [14,15].

$$I_{i} = \frac{f(u_{0} - u_{i})^{4}S_{i}}{u_{i} [1 - \exp(-hcu_{i}/kT)]} ---- (1)$$

where u_0 is the exciting frequency (in cm⁻¹ units), u_i is the vibrational wave number of the ith normal mode; h, C and k are fundamental constants and f is a suitably chosen common normalization factor for all peak intensities. ¹H- and ¹³C- chemical shifts were calculated with GIAO method using corresponding TMS shielding calculated at the B3LYP/6-31G(d) level.

Results and Discussion Molecular Geometry

The optimized structure parameters of clobazam calculated by ab initio HF and DFT-B3LYP levels with the 6-31G(d,p) basis set are listed in the Table.1 in accordance with the atom numbering scheme given in Fig.2. Table 1 compares the calculated bond lengths and angles for clobazam with the experimentally obtained data [11]. From the theoretical values, we can find that most of the optimized bond angles are slightly larger than the experimental values, due to the theoretical calculations belong to isolated molecules in gaseous phase. Comparing bond angles and lengths of B3LYP with those of HF, as a whole the formers are on higher side than the later and the HF calculated values correlates well with the experimental results. In spite of the differences, calculated geometric parameters represent a good approximation and they are the bases for calculating other parameters, such as vibrational frequencies and thermodynamic properties.

CBZ is a non-planar molecule and possesses C₁ point group symmetry. The molecule has 34 atoms and 96 normal modes of fundamental vibrations [16]. All the 96 vibrations are active in both IR and Raman. The harmonic vibrational frequencies calculated at HF and B3LYP level using 6-31G(d,p) basis set have been collected in Table 2. Comparison of the frequencies calculated at B3LYP with experimental assignments (present in Table 2) reveals the overestimation of the calculated vibrational modes due to the neglect of anharmonicity in the real system. Reduction in the computed harmonic vibrations, though basis set sensitive are only marginal as observed in the HF and B3LYP values using 6-31G(d,p) basis set. Anyway notwithstanding the level of calculations, it is customary to scale down the calculated harmonic frequencies in order to improve the agreement with the experiment. In our study, we have followed the scaling factors 0.903 for HF and 0.961 for B3LYP and those values are entered in Table 2. The computed spectra at B3LYP level, using 6-31G (d,p) has been shown in Fig. 3. In order to investigate the performance and vibrational frequencies for the title molecule, root mean square value and correlation coefficient(s) between calculated harmonic and observed fundamental vibrational frequencies for HF and B3LYP method using 6-31G(d,p) basis set were also calculated. The small difference between the experimental and calculated vibrational modes is observed. This discrepancy can come from the formation of intermolecular hydrogen bonding. Also we note that the experimental results belong to the solid phase and the theoretical calculations belong to the gaseous phase. The frequency values computed at B3LYP level

contains known systematic error. Therefore, linearity between the experimental and calculated vibrational frequency can be estimated by plotting the calculated values against experimental frequency (shown in Fig. 4). Certain values obtained between the two methods, are strongly underestimated. If the variations are omitted, B3LYP calculations provide good linearity between the calculated and experimental frequencies (correlation coefficient for HF is 0.997 and for B3LYP is 0.999).

Figure 2 Geometry of the Clobazam optimized at the B3LYP/6- 31G(d,p)

Fig. 3 Calculated IR and Raman spectra of Clobazam using B3LYP/6-31G(d,p)

Table 1 Optimized geometrical parameters of Clobazam molecules, bond length (Å), interfacial angles (°)

Parameters	Expt	HF/6-31G(d,p)	B3LYP 6-31G(d,p)	
Bond Length				
N1-C2	1.462	1.369	1.388	
N1-C7	1.462	1.414	1.417	
N1-C20	1.470	1.459	1.466	
C2-C3	1.509	1.517	1.523	
C ₂ -O ₁₂	1.208	1.195	1.219	
C3-C4	1.509	1.517	1.523	
C3-H22	1.113	1.085	1.096	
C3-H23	1.113	1.077	1.088	
C4-N5	1.462	1.377	1.398	
C4-O ₁₃	1.208	1.192	1.216	
N5-C6	1.462	1.420	1.425	
N5-C14	1.462	1.436	1.442	
C6-C7	1.420	1.393	1.413	
C6-C8	1.420	1.393	1.404	
C7-C11	1.420	1.393	1.405	

C8-C9	1.420	1.376	1.387
C8-H24	1.100	1.072	1.083
C9-C10	1.420	1.384	1.395
C9-Cl21	1.719	1.741	1,756
C10-C11	1.420	1.378	1.389
C10-H25	1 100	1.070	1.000
C10-1125	1 100	1.073	1.004
C44-C45	1.100	1 386	1 308
	1.420	1.300	1.308
	1.420	1.303	1.390
	1.420	1.304	1.090
С ₁₅ -П ₂₇ Сис Си-	1.100	1.074	1.005
0.11	1.420	1.303	1.390
C16-H28	1.100	1.075	1.080
0 17-018	1.420	1.385	1.396
C17-H29	1.100	1.075	1.086
C18-C19	1.420	1.385	1.394
C ₁₈ -H ₃₀	1.100	1.075	1.086
C ₁₉ -H ₃₁	1.100	1.075	1.085
C ₂₀ -H ₃₂	1.113	1.081	1.091
C ₂₀ -H ₃₃	1.113	1.085	1.096
C ₂₀ -H ₃₄	1.113	1.078	1.089
Bond angle			
C2-N1- C7	124.000	122.3	123.1
C ₂ -N ₁ - C ₂₀	108.000	116.9	116.5
N ₁ -C ₂ - C ₃	118.000	116.2	115.6
N1-C2- O12	122.600	122.0	121.8
C7-N1- C20	108.000	119.4	119.3
N1-C7- C6	120.000	121.8	122.2
N ₁ -C ₇ - C ₁₁	120.000	119.4	119.2
N1-C20- H32	109.500	108.9	109.2
N1-C20- H33	109.442	112.1	112.2
N ₁ -C ₂₀ - H ₃₄	109.462	108.7	108
C3-C2- O12	122.500	121.8	122.6
C2-C3- C4	110.200	110.3	110.1
C2-C3- H22	108.800	110.6	110.6
C ₂ -C ₃ - H ₂₃	108.800	107.6	107.6
C4-C3- H22	108.800	110.9	110.9
C4-C3- H23	108.800	107.5	107.5
C3-C4- N5	118.000	116.0	115.2
C3-C4- O13	122.500	121.4	122.2
H22-C3- H23	109.400	109.9	110
N5-C4- O13	122.600	122.6	122.6
C4-N5- C6	124.000	122.6	122.9
C4-N5- C14	124 000	119.2	119.2
Ce-N5- C14	124 000	118 1	117.8
Nr-Cr- C7	120.000	10.1	122.7
No-Co- Co	120.000	118 4	118
N5-06-06 N5-04- 045	120.000	120.9	121 1
No-014- 015	120.000	110.0	121.1
N5-014- 019 C= C= C=	120.000	110.9	110.0
$C_7 - C_6 - C_8$	120.000	119.5	119.5
06-07-011	120.000	110.0	10.0
	120.000	120.4	120.0
0.0.0	120.000	119.4	119.2
C7-C11- C10	120.000	121.7	122
C7-C11- H26	120.000	119.1	118.9
C9-C8- H24	120.000	120.1	120.3
C8-C9- C10	120.000	120.8	120.9
C ₈ -C ₉ - Cl ₂₁	118.800	119.5	119.4

S. Muthu et al./Rec Res Sci Tech 3 (2011) 127-135

C10-C9- Cl21	118.800	119.7	119.7
C9-C10- C11	118.823	118.8	118.7
C ₉ -C ₁₀ - H ₂₅	120.589	120.5	120.6
C11-C10- H25	120.589	120.7	120.8
C10-C11- H26	120.000	119.2	119.1
C15-C14- C19	120.000	120.2	120.1
C14-C15- C16	120.000	119.7	119.6
C14-C15- H27	120.000	119.8	119.8
C14-C19- C18	120.000	119.9	119.9
C14-C19- H31	120.000	119.6	119.5
C ₁₆ -C ₁₅ - H ₂₇	120.000	120.5	120.6
C15-C16- C17	120.000	120.3	120.5
C15-C16- H28	120.000	119.6	119.4
C ₁₇ -C ₁₆ - H ₂₈	120.000	120.1	120.1
C16-C17- C18	120.000	119.8	119.7
C ₁₆ -C ₁₇ - H ₂₉	120.000	120.1	120.1
C ₁₈ -C ₁₇ - H ₂₉	120.000	120.1	120.1
C ₁₇ -C ₁₈ - C ₁₉	120.000	120.1	120.1
C ₁₇ -C ₁₈ - H ₃₀	120.000	120.2	120.3
C ₁₉ -C ₁₈ - H ₃₀	120.000	119.7	119.6
C ₁₈ -C ₁₉ - H ₃₁	120.000	120.5	120.6
H ₃₂ -C ₂₀ - H ₃₃	109.000	109.5	109.5
H ₃₂ -C ₂₀ - H ₃₄	109.000	109.6	110.2
H33-C20- H34	109.000	108.1	107.8

Table 2 Calculated Scaled IR wavenumbers & relative intensities for Clobazam using HF/6-31G(d,p) and B3LYP/6-31G(d,p) [for a clear view of Table 2, please see supplementary file supplied with the article]

redex	FTR	Computed nationumbers (cm ⁴)					Vorstonal Assignments	
		HF6-31G(dg)		ESLYPE-31G(dp)		Rinkraty	Raman Adhity	
W(1)		39	35	35	33	0.950	2,938	ring bullerly
W(2)		42	38	43	42	0.042	8.939	ring bullerly
W(3)		64	- 20	62	60	1.180	1,496	C+O bending, CHs roding
W(4)	-	74	67	69	67	1,948	5.636	Ring feating
W(3)	-	-	70	07	24	1.270	1.112	King to ang
W(8)		110	105	107	102	2.300	2,000	Charoong
W(7)	-	120	183	143	147	0.971	0.501	Chicketer
10(0)	-	127	185	171	154	1005	1450	C. Liberding, ring feating
W1100		219	197	207	199	1,262	2.342	CH ₂ scinoring
W0113		234	211	218	210	1.104	2.397	Ring twisting
W1120		270	244	255	245	8.198	1.308	NCH bending
W(13)		306	276	255	275	2,439	3.008	Studure delormation
W(14)		313	283	293	281	1.299	3.931	CCI bending, CHaroding
W(15)		348	314	323	310	1.538	2.058	C+Obanding.
W(16)		393	355	388	353	4.080	0.835	N-CHs bending
W(17)		415	375	389	274	8.676	5,459	C+O bending, CHs wagging
W(18)		438	394	395	383	1.135	0.987	Ringfeating
W(19)		459	415	420	404	0.413	0.290	Ring feating
W(20)	414	474	428	434	+17	+ 907	0.195	King preacting
W(21)	450	400	+50	+00	473	2,830	1.241	City baseling
10(22)	-	547	430	405	470	20.754	2.858	Rine feature
W(24)	I	579	523	531	510	20.019	0.567	Ring feating
W(25)	522	593	535	544	522	13.587	1.535	C+Obending
W(26)	551	634	572	581	559	8.942	0.918	Ring feating
W(27)	567	661	596	602	578	0.961	4.353	Ringbreaking
W(22)	605	676	611	626	601	1245	4.505	Ringbanding
W(29)		691	624	636	611	7.165	3.307	Ringbreathing
W(30)	632	705	637	642	617	3.160	1.090	CHs loraton
W(31)		740	663	684	653	3.062	12557	CCH bending, CHs bending
W(32)	670	758	682	698	670	2.652	6.140	HCH bending
W(33)	696	774	699	709	681	37,774	1.575	Phony/ring bullerly
W(34)		827	747	738	709	10.064	0.798	CCH bending
W(35)		040	700	114	742	6.011	3.579	Preny registery
W(30)	700	2007	807	704	724	40.000	1.741	CCH bending
W(27)	110	013	247	870	797	10 101	1.627	CCH banding
10/200	807	947	858	847	814	0.271	2334	CCH bending
WIND	839	1004	906	897	862	3.320	3.017	CH2 watchto
W0413	876	1019	920	923	887	11.676	5.180	CCH bending
W1420		1029	930	925	889	5,755	3.798	CHs roding
W(43)		1038	938	946	909	0.065	5,401	CHabending
W(44)	915	1078	973	953	916	5.807	5,448	CCH bending
W(45)		1090	984	970	932	0.441	0.395	Ringfeeing
W(46)		1093	987	978	939	1.330	29.861	CHs bending
W(47)		1100	994	997	255	0.122	1.261	CHo wagging
WT400			1003	1017		10.510	2040	Chi wagging, woo banang
W(\$1)	1034	1164	1051	1076	1034	10,217	2.188	CHs roding
W(52)	1058	1178	1064	1105	1065	2.239	0.146	CHo roding
W(53)	1072	1201	1085	1116	1073	3.009	10.989	CHs bending
W(\$4)	1083	1210	1092	1132	1088	4.155	6.720	CH bending
W(55)	1115	1230	1100	1120	1100	21.221	1.175	Chi sercing
W(\$7)		1254	1133	1182	1135	3.392	5,795	CH bending
W(58)	1143	1265	1143	1125	1142	5,995	1.824	CH bending
W(59)		1286	1181	1203	1156	38,433	6.051	CH bending
W(60)	1167	1291	1165	1223	1175	9.597	4.747	King publishing
W(61) W(62)	1202	1232	1203	1200	1236	0.821	1,636	CH bending
W(63)		1390	1255	1293	1243	11.148	4.805	CH bending
W(84)	1261	1422	1224	1324	1273	23,472	2.464	CHs bending
W(65)		1438	1297	1334	1282	21,850	10.315	CNC bending
W(66)	1297	1401	1320	1345	1293	110.467	14.062	Chi banding Chi bandha
W(87)	+	1482	1338	1262	1309	194,400	5,950	CN shelphing
W(69)	1342	1529	1381	1387	1333	\$15,250	21,237	CHs shelping, CN shelping
W(70)	1388	1567	1415	1442	1388	25.570	3.999	CHs shelping
W(71)	1379	1594	1440	1455	1399	6,474	10.595	Chatelohing
W(72)	1425	1602	1446	1475	1418	60.189	4.903	Childrathing
W(73)	 	1612	1400	1499	1441	11,572	12,555	Cha shelphing
W(75)	t	1649	1489	1530	1471	18.429	19,571	CHs shelding
W(76)	1440	1666	1505	1524	1474	94,942	1.838	CHs shelping
W(77)	1492	1675	1513	1538	1478	185.873	9.515	Chistelphing
W(78)	1510	1771	1599	1015	1553	19,015	27.835	C+C statistics
W(78)	+	1200	1625	1040	1581	35.479	53,454	Chistelating
W(\$1)	1547	1505	1631	1655	1591	10.114	53,970	C+C shelthing
W(82)	1721	1962	1771	1781	1712	351,343	7.977	C+O shelphing
W(23)	1738	1985	1793	1803	1733	690.027	18,779	C-Ostabling
W(84)	2918	3204	2893	3046	2927	43,514	104,850	CH2 symsheldring CH2 symsheldring
W(25)	2003	3233	2019	3072	2003	25,215	52.075	Chambeltin
W(87)	-	3332	3009	3179	3055	8,285	65.743	Citis amy shelping
W(28)		3345	3021	3186	3061	0.494	39,744	Chistelphing
W(89)		3348	3021	3188	3064	0.884	89,292	CHaseymatelching
W(90)		3356	3030	3195	3070	7.231	112,774	Chistelphing
W(91)	-	3366	3040	3205	3080	31,904	49,914	Cristeting Childreither
W(94)	-	3377	2040	3213	3087	4,250	48,729	Chistelation
W(24)	+	3365	3059	3230	3104	4,324	140,564	Chistelating

Vibrational assignments C-H vibrations

The hetero cyclic aromatic compounds and its derivatives are structurally very close to benzene. The C-H stretching frequency of such compounds falls very nearly in the region of 3100- 2900cm⁻¹ for asymmetric stretching and 2980 - 2900cm⁻¹ for symmetric stretching modes of vibration. This permits the ready identification of the structure. Further in this region, the bands are not much affected by the nature and position of the substitutions [17]. Hetero cyclic compound C-H vibration absorption bands are usually week; in many cases it is too week for detection. In general, the aromatic C-H stretching vibrations calculated theoretically in the region 3109 - 3061cm-1for B3LYP and 3073 - 3021cm⁻¹ for HF predicts the CH stretching bands, which supports the literature values[18,19].

Methyl group vibrations

The molecule CLZ consists of CH₃ group attached in the diazepine(7 membered ring) ring. For the assignment of CH₃ group frequencies one can expect that there are nine fundamentals, viz., the symmetrical stretching in CH₃ (CH₃ sym. stretch) and asymmetrical stretching (in plane hydrogen stretching mode), the symmetrical (CH₃ sym. deform) and asymmetrical (CH₃ asym. deform) deformation modes; the in-plane bending (CH₃ ipb), out of plane bending (CH₃ opb), twisting (t CH₃) and bending modes. The FTIR bands observed 2977, 2918 cm⁻¹ represent symmetric CH₃ stretching vibrations in CLZ. The theoretically computed values of CH₃ asymmetric stretching gives calculated at 3055 cm⁻¹ and CH₃ symmetric stretching calculated at 3008,2927 cm⁻¹ for B3LYP shows an excellent agreement with experimental results. The identified asymmetric inplane bending vibration at 1440 cm⁻¹, symmetric inplane bending vibration at 1368 cm⁻¹ and rocking vibration (mode no:51) of CH₃ at 1034 cm⁻¹ are well comparable with theoretically calculated values. These assignments find support within the frequency intervals given by Varsanyi [18]. The CH₃ torsional modes are assigned at 102 and 147 cm⁻¹.

C=O stretching vibrations

The structural unit C=O has an excellent group frequency, which is described as a stretching vibration. Since the C=O group is a terminal group, only the carbon is involved in a second chemical bond. This reduces the number of force constants determining the spectral position of the vibration. The C=O stretching vibration usually appears in a frequency range that is relatively free of other vibrations. For, example, in many carbonyl compounds the double bond of the C=O has a force constant different from those of such structural units such as C=C, C-C, C-H, etc.; only structural units such as C=C have force constants of magnitudes similar to that of the C=O group. The C=C vibration could interact with the C=O if it were of the same species, but generally it is not. Almost all carbonyl compounds have a very intense and narrow peak in the range of 1800 - 1600 cm⁻¹. This is why this region is considered as a very important region by organic chemists. In this present study the C=O stretching vibration observed at 1736 cm-1 is in excellent agreement with theoretically predicted frequency obtained in B3LYP/6-31G(d,p) value [20,21]

Charge density

The gross atomic charges of clobazam with chemical shifts are given in Tables 3. This data would be used to explain the preferred position of nucleophilic attack of this molecule. In the present study, we employed Hartree-Fock and DFT levels to calculate the atomic charges. The gross atomic charges at the carbon C₂ attached to nitrogen and oxygen atoms are electron deficient compared to other carbon atoms. In general, electron deficient atoms have the higher δ value than an electron rich atom. The chemical shift at δ 165.9 was assigned to the carbonyl carbon (C-2) and the presence of a carbonyl group was confirmed through the IR absorption at 1736 cm⁻¹. With increase in the electron density of the hydrogen atom the shielding increases and hence δ values for such proton decrease as show in Table 3. We attempted to correlate the total charge density on the hydrogen and carbon atoms with the chemical shifts obtained in NMR spectrum [22, 23]. The ¹H- and ¹³C- chemical shifts were calculated with the B3LYP/6-31G(d,p) optimized geometries by GIAO method [24]. In order to obtain the calculated results comparable with the experimental data, we have transformed the absolute shieldings returned by the program in chemical shifts subtracting to the absolute shielding of TMS and the absolute shieldings of the molecule in exam. σ_{rel} . = σ_{rel} - σ_{abs} . In particular, each value of the absolute shieldings of the TMS was obtained with the same level of the absolute shieldings of the TMS, which was found with the same level of theory used in the determination of absolute shielding of the compound. There is satisfactory correlation between the total charge density and chemical shifts (exp & Theoretical).

	Atomic Charge density		1H & ¹³ C NMR Expt	B3LYP/6-31G (d,p)			
Atom	HF/6-31G(d,p)	B3LYP/6-31G(d,p)					
4 N	-0 730946	0.40204	Chemical (õ)shift	Chemical (δ)shift			
1 N	0.00400	-0.49301	165.9	182,2828			
20	0.0007	0.482982	44.7	61.4293			
30	-0.36207	-0.29139	165.3	186.5421			
4 C	0.55376	0.352528					
5 N	-0.68685	-0.46892	137.2	122,2198			
6C	0.305218	0.308148	130.5	110 8562			
70	0.255843	0.234942	119.7	134 5799			
8 C	-0.06518	-0.01139	130.8	127 6228			
90	-0.1852	-0.1/016	118.6	117 7686			
10 C	-0.14931	-0.10179	123.9	120 6818			
11 C	-0.11856	-0.08872	125.5	120.0010			
12 0	-0.51515	-0.41493					
13 O	-0.50325	-0.4126	140 7	100.0544			
14 C	0.326712	0.273712	140.7	123.8544			
15 C	-0.19482	-0.04674	119.1	127.4104			
16 C	-0.12438	-0.14209	129.7	122.9138			
17 C	-0.17203	-0.07154	118.3	114.9895			
18 C	-0.14106	-0.1052	129.7	122.2732			
19 C	-0.2053	-0.12493	119.1	104.9685			
20 C	-0.15327	-0.19554	29.8	56.0128			
21 CI	0.009195	-0.01642					
22 H	0.185784	0.150877	3.17	5.7529			
23 H	0.199171	0.162263	3.17	5.3819			
24 H	0.127187	0.065957	7.70	32.8006			
25 H	0.168292	0.093899	7.06	7.3109			
26 H	0.1796	0.100147	7.02	7.8618			
27 H	0.227481	0.167283	7.64	33.3832			
28 H	0.157613	0.084288	7.24	8.0799			
29 H	0.143092	0.072426	7.00	7.3904			
30 H	0.158756	0.086294	7.24	7.7522			
31 H	0.172315	0.101984	7.64	7.4163			
32 H	0.155864	0.142861	2.78	4.1822			
33 H	0.152963	0.139958	2.78	4.9626			
34 H	0.147165	0.134801	2.78	3.8922			

Table 3 Gross atomic charge density and chemical shift (Experimental and Theoretical) of Clobazam

Table 4. Calculated polarizabilities for Clobazam

Basis set	Dipole moment	ахх	άχγ	αyy	αxz	Øyz	αzz	(α)
B3LYP/6- 31G(d,p)	4.0514	231.255	4.932	210.553	-12.659	12.589	141.702	194.503
HF/6-31G(d,p)	4.4836	203.998	6.448	183.134	-13.098	3.991	136.522	174.551

Table 5. Theoretically computed energies (a.u.), zero-point vibrational energies (Kcal mol⁻¹), rotational constants (GHz) entropies (cal mol⁻¹K⁻¹) and heat capacity (Kcal mol⁻¹K⁻¹)

Parameters	HF/ 6-31G(d,p)	B3LYP/ 6-31G(d,p)
Total energy	-1331.3	-1337.4
Zero point vibrational energy	175.76674	163.77832
Rotational constants		
	0.30272	0.30070
	0.28838	0.28435
	0.17664	0.17282
Entropy		
Total	131.575	135.995
Translational	42.993	42.993
Rotational	34.299	34.341
Vibrational	54.282	58.661

Other molecular properties

One of the objectives of this investigation is to study the effect of the basis set on molecular polarizability of clobazam using Gaussian 03W. In this study the computation of molecular polarizability of CLZ with different levels are reported. Here, α is a second rank tensor property called the dipole polarizability and mean polarizability (α) are evaluated using Eq. (1) [25].

 $(\alpha)=1/3(\alpha_{xx}+\alpha_{YY}+\alpha_{ZZ})$

The calculated polarizabilities using different basis sets for CLZ molecule are summarized in Table 4.

(1)

Several calculated thermodynamic parameters are presented in Table 5. Scale factors have been recommended [26] for an accurate prediction in determining zero-point vibrational energies (ZPVE) and the entropy *S*. The variation in ZPVEs seems to be insignificant.

Conclusion

From the before described results, the following conclusions can be drawn:

1. On the basis of calculated results, assignments of the entire fundamental vibrational

Frequencies have been made.

2. The optimized geometry parameters calculated at B3LYP/6-31G(d,p) are slightly larger than

those calculated at HF/6-31G(d,p) level and the HF calculated values correlates well compared with the experimentally obtained data on the whole.

3. Comparison between the calculated vibrational frequencies and the experimental values (FTIR and FT-Raman spectral data) indicates that both the

methods of B3LYP/6-31G(d,p) and HF/6-31G(d,p) can predict the vibrational spectra of the title compound well.

4. Atomic charges and chemical shifts of CBZ were calculated and results are discussed.

5. Molecular polarizability of CBZ were discussed and reported.

References

- Larrieu, JL; Lagueny, A; Ferrer, X; Julien, J (1986). Revue d'electroencephalographie et de neurophysiologie clinique 16 (4): 383–94.
- Gastaut, H; Tinuper, P; Aguglia, U; Lugaresi, E (1984). Revue d'electroencephalographie et de neurophysiologie clinique 14 (3): 203–6.
- 3. Castella M Ventura, Kassab E, Buntinx G, Poizat O, Phys.chem.chem.Phys. 2 (2002) 4682.
- Shin D N, Hahu J W, Jung K H, Ha T K, J. Raman spectrosc. 29 (1998) 245.
- Giese B, Mcnaughton D, Phys.Chem.Chem.Phys. 4 (2002) 5161.
- 6. Becke A D, J. Chem. Phys. 98 (1993) 5648.
- Lee C, W. Yang W, Parr R G, *Phys. Rev.*, B37 (1988) 785.
- 8. H.F.Hameka, Mol.phys., 1,203(1958).
- 9. K.Wolinski,K.J.F.Hilton,P.Pulay,J.Am.Chem.Soc.,112, 8251 (1990).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,

X.Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W.Wong, C. Gonzalez, J.A. Pople, Gaussian Inc., Pittsburgh PA,2003.

- 11. www.Chemsoft.com
- 12. P.Hohenberg, W.Kohn, Phys. Rev., 136B, 864 (1964).
- 13. www.Chemcraft.com.
- 14. Polavarapu P L, J. Phys. Chem. 94 (1990) 8106.
- 15. S.Seshadri, S.Gunasekaran, S.Muthu, J.Raman. Spec., 40,639-644(2009).
- G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York, 1945.
- 17. D.N.Sathyanarayana, Vibrational spectroscopy, Theory and Applications, New Age International Publishers: New Delhi,2004.

- G.Varasanyi, Assignments for vibrtional spectra of seven hundred Benzene derivatives, ¹/₂ Academic Kiaclo, Budapest, 1973.
- N.B.Colthup, L.H.Daly,S.E.Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic press, Newyork, 1964, pp.74, 221, 226.
- R.M.Silverstein, G.Clayton Bassler, Terence C. Morill, Spectrometric identification of organic compounds, 5 th ed, John Wiley & Sons, (1991).
- 21. A.J.Abkowicz Bienko, Z.Latajka, D.C. Bienko, D.Michalska, J.Chem.Phys., 250, 123 (1999).
- 22. Aldrich Library of 13C and 1H FT-NMR spectra. www.Sigma-Aldrich.com.
- Petr Pavláta, Ale. Halamab, Tomá. Weidlichb, Boøivoj Fialac, and Vojtich Bekárekc, ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM, CHEMICA 38, 59 (1999).
- 24. M A Palafox, int J Quant chem, 77(2000) 661.
- 25. Seda Sagdine, Fatma Kandemirli, Sevgi Haman Bayari, Spectrochim Acta Part A., 66, 405 (2007).
- 26. M. Alcolea Palafox, Int. J. Quant. Chem. 77 (2000) 661.