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Abstract 
The Mettupalaiyam ultramafic complex (MUC) in Tamil Nadu is a major lithological association consisting mostly of 
Pyroxenites, Peridotite, Gabbro, Anorthosite gabbro in a predominantly gneissic grantite-granite terrain. Pyroxenite occurs as 
thin lenses and bands, at times attaining moderate thickness. Major, Trace and rear earth element geochemistry and 
petrography of  pyroxenites collected from well exposed outcrops near Thenkalmalai areas of this complex are presented in 
this paper and their Petrogenetic significance is discussed. 
The geochemical signatures of the pyroxenites show a significant variation in major and trace element concentration. The 
pyroxenites show SiO2 composition ranging from 49.6-55.5%, Al2O3 from 6-13.6%, MgO from 3.6-14.3%, CaO from 8.4-15.5% 
and TiO2 from 0.24-1.7%. Bulk composition/whole rock analyses indicate that the magma type is tholeiitic but trending towards 
a calc-alkaline. The pyroxenites are poor in incompatible and high field strength (HFS) elements like Rb, Sr, Hf, and Ta.  
Total rare earth element (∑REE) content varies in a limited range and exhibits limited REE fractionation in both LREE and 
HREE. The pyroxenite sample shows Negative Eu-anomalies with slight enrichment of HREE. Primitive mantle normalized 
multi-element spider grams suggest that the melt parental to these pyroxenites was derived from a mantle source enriched in 
several trace trace elements.  
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Introduction 
The Mettupalaiyam Mafic-Ultramafic complex 

located in the western part of Tamil Nadu forms a part 
of the Archean Complex of the peninsular shield. The 
detailed studies lead to the recognition of an array of 
rock types including leucogabbro, anorthosite with 
chromites layers, pyroxenites, and peridotite, occurring 
as layers in close association. They show a flat E-W 
trending linear bodies showing sub-parallelism to the 
trend of main shear. The pyroxenites in the complex 
occur as a thin lenses and bands where as some 
outcrops shows moderate thickness. The ultramafic 
and mafic association represents dissected pattern and 
are considered to have been emplaced along  

 
reactivated lineaments, shear zones and deep crustal 
fractures. These rocks form part of Bhavani layered 
complex, emplaced into the rocks of the 
Sathyamangalam Group and was subjected to three 
phases of deformation (Selvan, 1981; Baskar Rao et 
al., 1996).the general geology of the study area is 
given in Fig. 1. The general trend of the foliation of the 
different litho units within MUC is ENE-WSW with 
moderate southerly dip in the southern part and 
moderate to steep northerly dip in the northern part. All 
the litho units had undergone high degree of 
deformation as evident from shearing, flattening and 
compression with well developed linear and planar 
fabrics.

 
 
Fig. 1: Geology and sample location map of the study area (Source: Geological survey of India-1993) 
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Petrography 

Petrographic analysis was performed on 20 thin 
sections cut from the hand samples collected in the 
field. Pyroxenite is the dominant lithology in the studied 
area. In hand specimen, the pyroxenites are coarse 
grained dark grayish in color. Pyroxenites in thin 
section are texturally characterized by distinct 
adcumulate texture. They are quite mafic and probably 
represent pyroxene rich and plagioclase poor portion of 
cumulate. The sample OM-37 and OM-40 is composed 
of coarse grained clinopyroxenes, orthopyroxenes and 
medium grained hornblende crystals. Most of the 
grains show euhedral crystal surfaces. The accessory 
phase being the magnetite and ilmenite, concentrated 
characteristically along the grain boundaries.  
 
Geochemistry 

Seven representative pyroxenite samples were 
analyzed for bulk chemistry at National Geophysical 
Research Institute (NGRI) Hyderabad. Major elements 
were determined by X-ray fluorescence Spectrometry 
(XRF) using Philips MAGIX PRO Model 2440. Trace 
and REE elements were analyzed by Inductive 
Coupled Plasma mass Spectroscopy (ICP-MS) using a 
Perkin Elmer SCIEX ELAN DRC II. The geochemical 
signatures of pyroxenites show a significant variation in 
major and trace elements. The SiO2 abundance covers 
a narrow compositional range of (49.6-55.5wt %). The 
pyroxenites shows a slight concentration of TiO2 (0.24-

1.7wt %). MgO content varies from (3.6-14.3wt. Major, 
Trace, and rare earth element (REE) concentration are 
given in (Table 1). The pyroxenites shows a high 
concentration of Total iron (8.4-16wt %), MgO (3.6-
14.3wt %) with moderate enrichment of TiO2 (0.24-
1.7wt %) and depleted alkalies Na2O (0.39-2.5wt %); 
K2O (0.03-1.5wt %). Bulk composition/whole rock 
analyses indicate that the magma type is tholeiitic but 
trending towards a calc-alkaline nature also supported 
by AFM diagram (Irvin and Banger) (Fig. 2). A plot for 
SiO2-K2O based on (Peccerillo and Taylor 1976) (Fig. 3) 
indicates that the samples belong to low-K tholeiitic 
series. The element Mn, Ti, and P are relatively 
immobile and insensitive to hydrothermal processes.  
Based on the TiO1, MnO, P2O5 triplot (proposed by 
Mullon 1983) most of the samples fall within the Calc-
alkaline basaltic (CAB) field but trending towards 
boninite field which represents MnO rich sector of CAB 
field (Fig. 4). Thus it could be inferred that the tectonic 
environment of eruption is volcanic arc environment 
and the studied sample falls within the Calc-alkaline 
basaltic field. Concentration of compatible trace 
elements in pyroxenites like V (263-309.4ppm), Cr 
(9877.1-21200.4ppm), Co (87.0-111.5ppm) and Ni 
(676.8-1055.4ppm) are high while these pyroxenites 
are poor in incompatible and HFS elements like Rb, Hf, 
Ta, Th, and U. Sr shows a remarkable low 
concentration ranging from (0.37-0.94wt%). 

 
 

Table 1 Representative Major (wt %) and trace (ppm) element composition of Pyroxenites from Thenkalmalai (Mettupailium Ultramafic 
complex), Tamilnadu, South India 
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Fig. 2 AFM diagram for pyroxenites (after Irvin and Baragar, 

1975) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Rock Classification diagram (K2O Vs SiO2 after 
Peccerill and Taylor 1976) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 TiO2-MnO-P2O5 triplot for Pyroxenite. (after Mullen 
1983) 

 
 
 
 
 
 
 
 
 
 

Total REE value of pyroxenites varies from (10.13-
13.99ppm) with limited REE, (CeN/YbN= 0.55-0.69) and 
LREE fractionation (LaN/SmN= 1.32-1.66). The HREE 
also conclude limited fractionation (GdN/YbN= 0.49-0.58) 
with negative Eu anomaly.  

Condritic normalized REE plot (after Sun and 
McDonough (1989) of pyroxenites reflects negative Eu 
anomaly with slight enrichment of HREE (Fig. 5). The 
negative Eu anomaly in these samples may be 
interpreted as due to fractionation of plagioclase ± 
hornblende and can be imposed when the melt phase 
enters the stability field of plagioclase. The Low LREE 
and slight enriched trend of HREE may be retained 
some what by clinopyroxenes or to a greater extent by 
hornblende. Relative to primitive mantle most of the 
samples shows the relative enrichment of LILs and 
LREEs (Fig 6). They are further characterized by a low 
Th abundance and a distinct Nb-Ta, Zr-Hf trough. 
These features are characteristic of tholeiitic basalts 
produced at destructive plate margins or within plate 

tholeiites contaminated by continental crust 
(Hawkesworth et al., 1994). In order to understand the 
tectonic environment of the studied samples the plot 
Ti/1000 &V (after Shervais, 1982) shown in (Fig. 7) 
depicts that the studied samples fall in the Arc tholeiitic 
environment.  

 
Fig. 5 Chondrite normalized REE diagram for the Pyroxenites 

after Sun and McDonough (1989) 
 

 

 

 

 

 
 
 
 

Fig. 6 Primitive Element-normalizes multi-element diagram for 
Pyroxenites after Sun and McDonough (1989) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Ti/1000 Vs V tectonic discrimination diagram (after 
Shervais 1982) for Pyroxenite 

 
 
 
 
 
 
 
 
 
 
 

Conclusions 
The geochemical constraints of the pyroxenites of 

Mettupalaiyam ultramafic complex suggest island arc 
magmatism. The major element relations of 
pyroxenites suggest tholeiitic to calcalkaline signatures 
of typical island arc environment. They are further 
characterized by a low Th abundance and a distinct 
Nb-Ta, Zr-Hf trough. These features are characteristic 
of tholeiitic basalts produced at destructive plate 
margins or within plate tholeiites contaminated by 
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continental crust. The studied samples show depleted 
trend in HFSE. The –Ve Eu anomaly observed in the 
pyroxenite samples signify the role of plagioclase 
fractionation in their petrogensis. 
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