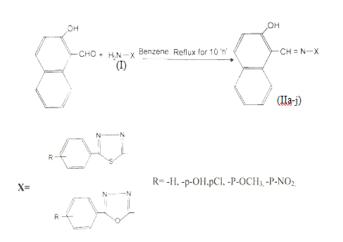
CHEMISTRY

Synthesis of some New 2-Hydroxy-1-naphthal-2'-[5'-Pheny-1',3',4'-oxadiazole/thiadiazole] as Potential Antifungal Agents

Dhananjaya Singh^{1,2*}, Santosh Pathak¹ and S.C. Mehra¹

¹Department of Chemistry, Bareilly College, Bareilly (U.P) India-243006 ²Department of Chemistry, PPN College Kanpur

Abstract


Several new 2-hydroxy-1-naphthal-2'-[5' (p-substituted/unsubstituted) pheny- 1',3',4' oxadiazole/thiadiazole] (IIa-j) have been reported by the condensation of 2-hydroxy-1-naphthaldehyd with 2-amino-4(substituted/unsubstituted) pheny1 thiadiazole/ oxadiazole in benzene. The synthesized compounds were characterized by Ir and nmr spectra. All these synthesized compounds have been screened against Aspergillus niger for antifungal activity.

Introduction

Imines have been reported to possess biological activity¹⁻². Various 1,3,4 thaidiazole/oxadiazole compounds have also been reported to have significant biological activities, specially fungicidal³⁻¹⁵ and bactericidal¹⁶⁻²⁰. The fact were also considered during heterocyclic derivatives preparation that presence of hydroxyl, methoxy, ethoxy etc. (electron donating

groups) in the phenyl nucleus increases the activity of the parent compound²¹.

In the present study attempts were made to synthesise some new 2-hydroxy-1-naphthal-2']5'-(substituded/unsubstitued) phenyl-1',3',4'Thaidiazole / oxadiazole] derivatives and their antifungal-activity.

Experimental

Melting points were determined in open capillary tubes and are uncorrected. Purity of compounds were checked by TLC using silica gel-G. Ir spectra were recorded on a Perkin-Elmer spectrophotometer and nmr spectra (CDC1₃) were recorded on Varian EM 360L spectrometer using T.M.S. as an internal standard.

Synthesis of 2-Hydroxy-1-naphthal-2'-[5-'phenyl-1',3',4',-thiadiazole]

A mixture of 2-hydroxy-1-naphthaldehyde (0.01mole) in dry benzene (50ml) and 2-amino-5phenyl-1,3,4 thiadiazole (0.01mole) was refluxed on water bath for 10 hours. The solution was then allowed to cool and the separated solid was recrystallized fram methanol. (Yield-62%) MP-178-179°C.

Ir (KBr)-1260cm⁻¹ (C-N), 685cm⁻¹ (C-S-C), 1620 cm⁻¹, 1610cm⁻¹, 1580cm⁻¹ (C=N). pmr δ =7.6 (5H,m, Ar-H), δ =8.1 (H,s,-CH=N-), δ =7.8-8.6 (6H,m, Naphthyl proton) δ =9.2 (H,s,-OH). The compounds thus obtained are listed in table – 1.

^{*} Corresponding Author, Email: dhananjay360@gmail.com

Comp. No.	Х	R	Molecular Formula	Yield (%)	M.P(⁰ C)
lla	2-Amino-5phenyl (subs/unsubs.) Thaidiazole	-H	C ₁₉ H ₁₃ N ₃ SO	62	178-179
llb	33	-р-ОН	C19H13N3O2S	56	183-184
llc	27	-P-Cl	C ₁₉ H ₁₂ N ₃ OSCI	60	163-164
lld	33	-p-OCH₃	C20H15N3O2S	68	192
lle	27	-p-NO ₂	C19H12N4O3S	54	158
llf	2-Amino-5phenyl (subs/unsubs.)oxadiazole	Ĥ	C19H13N3O2	62	95
llg	37	-p-OH	C19H13N3O3	52	85-86
llĥ	33	-p-Cl	C ₁₉ H ₁₂ N ₃ O ₂ CI	55	88-89
lii	37	-p-OCH₃	C ₂₀ H ₁₅ N ₃ O ₃	58	100-101
llj	27	-p-NO ₂	C ₁₉ H ₁₂ N ₄ O ₄	55	80-82

Table - 1: Physical and analytical data of Compounds

satisfactory NS analyses were obtained for all compounds

Table – 2: Antifungal activity data for newly synthesized compounds against *Aspergillus niger* at optimum temp. 28 \pm 1°C after 10 days included

Comp. No	Dose in %	Average colony Diam.(in mm)in PDA medium ²²⁻²³	% of inhibition	
Control	-	60.66	-	
lla	.20	14.22	76.55	
llb	.20	13.11	78.38	
llc	.20	10.11	83.33	
lld	.20	4.44	92.68	
lle	.20	27.33	54.94	
llf	.20	16.66	72.53	
llg	.20	11.11	81.68	
llĥ	.20	10.33	82.29	
lii	.20	4.92	91.88	
llj	.20	30.36	49.95	
Carbendazine(Std.drug)	0.15	.20	100.00	

Fungicidal Screening

All synthesized compounds were screened for their antifungal activity against aspergillus niger by using food and poison technique. The compounds were tested at 0.2% concentration. Fungus cultures were incubated at 28 \pm 1° c for 10 days. The efficiency of all antifungal compound was recorded by measuring the radial growth of the fungal colony in mm. Under similar condition control experiment was carried out by using carbendazine as a standard for comparison. % Inhibition by various compounds were calculated from the formula % inhibition = (C-T)x100/C, where C = dia. of zone inhibition in control plates and T = dia. of zone of inhibition in treated plate. All data are given in table (2).

Result and Discussion

The fungal screening data indicates that all synthesized compounds tasted were found statistically superior over control but inferior to that of standard antifungal (Carbedazin) compound. Two compound (IId, IIi) showed a marked inhibition of the fungal growth on vitro tests. Compound IIa, IIb, IIc, IIg and IIh also showed a significant level of inhibition, were found to inferior than the compound IId and IIi and the standard which has shown complete inhibition of the fungal colony. It can also be concluded from the result that compound with -Cl and -OCH₃ group possess more activity as most of the compounds possessing these groups showed significant level of antifungal activity.

Acknowledgement

The authors are thankful to Dr. S.K. Tondon (Sr. Scientist), division of Pharmacology, IVRI, Izzatnagar, Bareilly for helping him carrying out pharmacological screening of compounds and Dr. P.K. Kaicher, Deputy Director, Shri Ram Institute, Delhi for interpretation of Ir and pmr Spectra.

Reference

- 1. D.N. Dhar and C.L. Taploo, J. Sci. Ind. Res; 1982, 40: 501.
- M.R. Manrao, R.K. Sethi, R.C. Sharma and P.S. Kalsi, J. Indian chem. Soc; 1996, 73: 695.
- S.A. Khanum, S. Shashikant, S.G. Satyanarayan, S. Lokesh and S.A. Deepak, Gaertn Pest

Management science; 2009, 65: 776-780 doi, 10, 1002/Ps, 1752.

- C. Lukaszuk, E. Krajewska Kulak, A. Niewiadony, J. Stachowicz, U. Glaszcz, E. Oksiejczuk; Advance in medical science; 2007, 52: 26-29.
- W. Rzeski, J. Matysiak, M. Kandefer Szerszen; Bioorg Med Chem; 2007, 15; 3201 – 7.
- S.N. Swamy, Basappa, BS Priya, B. Prabhuswamy, BH Doreswamy, J. S. Prasad, K.S. Rangappa; Eur J. Med. Chem; 2006, 41: 531-8.
- 7. F. Foroumadi, M. Daneshtalab, A. Shafiee; Arznein- Forsch./Durg Res. 1999, 49: 1035.
- Y.J. Ram and H.N. Pandey, Agric. Bio. Chem; 1993, 37: 2191.
- 9. Y. Yasuda and Y Uciyama, Japan Kokai; 1974, 7.020: 335 Chem. Abstr. 1974, 81: 73399.
- J.C. Debourage, D. Pillon and S. Trinh, Ger. Often; 1974, 3:, 361, 613, Chem. Abstr; 1974, 81: 91537.
- 11. Balakrishna Kulluraya et al, Ind. Jr. Het. Chem. 1996, 5: 273-276.
- 12. R.S. Sharma and S.C. Bahel, J. Ind. Soc; 1982, LIX: 887-800.

- Nizamuddin, Madhulika Mishra, Manoj Kumar Srivastava and Mukhtar Hussain Khan, In. Jr. of Chem; 2001, 40B: 49-53.
- 14. Vandana Diwivedi and R.K. Agarwal, Asian Jr. Chem; 1992, 4: 780-784.
- 15. G. Palazzo and B. Silvestrini, U.S. Pat, 1970, 3: 502608 Chem Abstr. 1970, 72 132741.
- 16. W.R. Sharma, J. Org. Chem. 1961, 26: 88.
- 17. Jagmohan, Ind. J. hetero Chem. 1999, 9, 143-146.
- A.M. Dhiman and K.N. Wadodkar, Ind. Jr. Chem; 2001, 40B: 636-639.
- 19. Rajini Gupta, A.K. Gupta, Satya Paul and P. Somal, Ind. J. Chem; 2000, 39B: 847-852.
- 20. M.R. Manroa and S. Kohli; J. Indian Chem. Sco. 1986, 63: 348.
- M. Rai, B-Kaur and B.S. Dhir, J. Ind. Chem. Soc; 1982, 59: 416, M.R. Manrao and B.S. Dhir, Pesticides 1980, p-30.
- C.J. Alexopoulos and C.W. Mims, Intro. Mycology 3rd Ed. Wiley Eastern Ltd. (1993).
- R.C. Mehrotra and K.R. Aneja, An. Intro. to Mycology, Wiley Eastern Ltd (1990).