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Abstract

This paper focuses on the study of a stochastic model for predicting seroconvesion time of HIV transmission with change of
threshold under correlated intercontact times. The antigenic diversity threshold is an important aspect of consideration in the
studies relating to HIV infection. Successive sexual contacts are the mode of transmission of HIV would result in acquiring more of
HIV which contribute to the antigenic diversity of the antigen. As and when the cumulative antigenic diversity contributed due to
successive contacts crosses the antigenic diversity threshold, seroconversion takes place. In developing this model the result of
Gurland (1955) has been used. The mean time to seroconversion and its variance are derived and the numerical illustrations are

provided.
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Introduction

The concept of shock model and the cumulative
damage process has been used to determine the
expected time to seroconversion under different
assumptions, especially regarding the threshold
distribution and the distribution of inter arrival times
between successive contacts. In the study of the HIV
infection and its consequences the seroconversion of the
infected is a vital event. If more and more of HIV are
getting transmitted from the infected person to the
uninfected, the antigenic variation would be on the
increase. The time to seroconversion from the point of
infection depends upon what is known as antigenic
diversity, which acts against the immune ability of an
individual. Every individual has a threshold level of
antigenic diversity, beyond which the human immune
system cannot withstand. If the antigenic diversity due to
acquiring more and more of HIV due to homo or hetro
sexual contacts exceeds the threshold level, the immune
system of human body is completely suppressed which in
turn leads to seroconversion. For a detailed study of

antigenic diversity threshold and its estimation one can
refer to Nowak and May (1991) and Stilianakis et al.
(1994).

The antigenic diversity threshold is taken to be a
random variable which has a change of distribution after
a change point in the sense that antigenic diversity
threshold will have a change in its behavior with the
passage of time. This assumption is justified in the sense
that he antigenic diversity threshold of an individual may
undergo changes due to the ageing of a person, remedial
intervention etc. So the model is developed taking these
aspects into consideration. Also it has been assumed
that the contributions to the antigenic diversity due to
successive contacts are i.i.d random variables and the
interarrival times between successive contacts are also
identically independently distributed random variables. It
may be observed that the interarrival times between
successive contacts may not always the independently
distributed by virtue of the fact that a person who has
contacts with an infected partner may have psychological

* Corresponding Author, Email: statkannan@yahoo.co.in; thirustat@gmail.com



R. Kannan et al./Rec Res Sci Tech 1(2009) 273-277

depressions and hence the time interval between the
successive contacts, may undergo changes.

In this paper a stochastic model is developed under
the assumption that the intercontact times between
successive contacts are correlated random variables.
Shock model with correlated intercontact times has been
studied by Sathiyamoorthi (1979). In developing this
model, the result of Gurland (1955) has been used.
Using the same concept, time to seroconversion and its
variance are obtained in this paper.

Assumption of the model
1. Sexual contact is the only source of transmission.

2. When an uninfected individual has sexual contacts
with a HIV infected partner, a random number of HIV
gets transmitted.

3. Anindividual is exposed to a damage process acting
on the immune system and damage is assumed to
be linear and cumulative.

4. The intercontact times between successive contacts
are not independent but are correlated.

5. The threshold is a random variable whose
distribution undergoes a change after a change
point.

6. The process which generates the contacts, the
sequence of damages and threshold are mutually
independent.

Notations:
X = Increase in the antigenic diversity arising due tothe HIV  transmission during
the i* contact X: X.... Xeare confinuous

i1.d. random variables, with p.dfg () and cdf G ()

Y = Arandom variable denoting the threshold with p.d f. h (y) and c.df. H (y).
Ui = is random variable denoting the intercontact times between contacts, with p.d f
f()andcdf ()
13
gd) = denotes the p.dfof the random variable Z X,
=l
p = is correlation coefiicient between Xiand X, i# |

&
We(u)=thecdf or Z =ZUI

=l
b . c(i-p)

ninw= (e dA
!

Wdh) = probability of exactly k contacts in (0]

S(t) = P(T>Y)
prthat the seroconversion does not take place before t |
®
= Z Pr [seroconversion does not take place before t. ]
tel

xP{ exactly k contacts in (o, ff}

= i[\’vk - W, (0] Pr{iX‘ < Y} )
=0 =0

Where Wi(t) - Wies (t)is the probability that there are exactly k contacts in (0, ), by renewal theory.

Itmay be noted that

P[iX‘ < Y} =Prob {the o di onk contacts in
4<Y)
= { g, (x) HRx) dx

Where
H(x)=1-H()

Itis assumed that the random variable Y denoting the threshold is one which has a change of distribution namely from

exponential with parameter 61, to Erlang 2 with parameter 6, at a change pointdenotedas 7
ThepdfofY isgivenas h(y) and

h(y) =0:e®,Yif0<YL 7T
=83 (-7)eS0Ties Tify> 7

Now the change point 7 itselfis taken to be random variable which follows exp(2.)

Sureshkumar (2006) has derived p.dfof Y as follows.
v

h(y) =gefe iy J B (y—r)y—1)e 20 ¥ s dr
[

I A6jye ™ 263 i
6+6,+1  (6,+6,+1) (6—-6,+4)

~(6+2)4

=Bie

on simplification (2)

The cdfofY is given as

Hiy)=1- 6{(91—62+/.)'+/,‘6: EDy /.93—/.(/.-%6}—\6:) e
(A+6))(6,-6,+2)° (6,-6, +24)°

- A

2 4 on simplification 3
@ —0:*}.)'“3 p @

Hence using (3) we have

The survivor function H (x) =1-H(x) which is given by

s

H(x) =me ™% —m e~ —m ye &=

where
. 6,(8,—6,+ 1)’ +16;
(2+6)(6,— 6,+4)

46, —A(A+6,-6,)

m= —
6,-6, +4)

e A0,
©-6.+2

Now

I‘g;, (x)H(x) dx =Jx'g;; x) [mle_(f"“" —rn:e's" - nge”“"‘]dx
° °

4 ci60

=M 16+ ) ~mgi (6,) +m, -

=m g6, +2] —m, [g76)] +m, d%:[g'(ﬁ: I @
There fore

so=m S[7.0-,.,0llgG+o)]
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Let Us, Us,..., Uk represent the interarrival times between successive contacts which are correlated. Gurland (1955)
&
has derived the cumulative distribution function of the sum, say Z« = Z U, . when U/’ s from a sequence of exchangeable

=
constantly correlated random variables each having exponential distribution with pdf
flu)= pe ™, u>00<u<w.

such that the correlation co-efficient between Ui and U (i) is p.
This cdfis given by

Wilu) =P[Ze<u]

i) i[ (k) nlk+iu/b]

. ()
2= p+kp] (ki =i-1D) ©

where b = (1-p)/ and
n(ku)= Ie-.u#k—ld#
°

The Laplace transform of the density function of Z« is given by

J

Hence taking Laplace transform of L () and substituting for W ; (s) in (5) we get,

1
kpbs
a=p)i=5s)

Wis)=

U]
(1+bs)* [1 +

-mz [19°(62)] i ol )

smg' (@] > kg*(6,)""

kpb 1
- (1-p) (1 +bs)’
(1+bs)* i\l kpbs
+ e
(1-p)(1+bs)

J

— kb
1
(1+bs)* [l+

1
kpbs
(1-p)(1+bs)
R, 3
1 (1-p) (1+bs)’

1
L kebs }

L (1+bs)* {1 " kpbs
(1-p)1+bs)

Kl

J

- p)(1+bs)

—kb

(1+bs)* [1

Kl

kpb
kpbs ]
(1-p)(1+bs)

1
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—(k+1)b 1

-mag”(62)) zkg ¥ (CA )K‘l kpbs

Kel (1-'}'b.¥))(‘2 |:1+ :|
. o zg*(6+4)" kpbs =
£x(s)=1-m +m[l-g=(6 + )3 ety |:l+(l—le+bs):| (1-p)(1+bs)
sigmin =g .(92)15: g=(6,)" ﬂ
= (1+bs)*[1+—"”bs J 1 1-p
1-p)A+bs) s )
(1+bs)* n kpbs
(1-p)(1+bs)
d = s 1
-m——g*(6,) Y kg *(6.)""
de, = & kpbs * bl
ghda) \\1+(l—p)(l+bs)J de*s) =m1[1-g*(9,+ﬂ.)]2g*(9,+A)K'l[-kb-ﬂ)
ds |y X 1-p
IR R L
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di*(s) _ (8 + D5 2 *(8 + 1) (—kb) 1 E(T)= =m. —m, = |—-mb— .
ST mli-g @ AT e @A [1+ o ] o I W e e 2 |7 ’boz
(1-p)(A+bs)

275



R. Kannan et al./Rec Res Sci Tech 1(2009) 273-277

on simplification

Similarly to find E (T2)

a1’ (s) £ 2 k pb k(k+2)pb 2k2p=b2
=m,|l-g"(6 1 ‘st ) s 30, A

-2l =mfi-g'( ,+/)]zg (6,+ 47 | kk+1p7+ e
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mifi- g(a)]zg &) [Ir(lul)b e A

2 2,222
—mg ¥ (a,)zg ® )“[k(lul)b‘ X RN S }
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Letg()~exp (&)

Theng " (6,)=

o
a+6,

Hence
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Ua+e ) - p)”"" 6. ) a-p? 7 6
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Hence

ViT)= [“"’;""91)[2(“*7*91\172(1+p3) 2p2b2‘]

+6, 2+6, ) (1-p) (-p)
i mz(awazj z(az+492Jbz(l+p:) 2p%°
0, o, 1-p)°  (-p)
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Ta-p
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P) oy 6,
Table-1
a=0.18:=1,82=1p=0.7
A E) vim)
1 10200 0.5655
2 20733 23255
3 31350 52129
4 42000 94063
5 52667 147253
[ 63343 212295
7 74025 289189
8 84711 377934
[) 95400 478530
10 106097 59,0976
Figure-1
o E(T) V()
60 P
= 50 /./ d

>

20 x
E /

o 20

10 i

1 2 3 45 67 8 910
A

k(k+1)pb* _k(k +3)pb‘ 2k%p%?
1-p

}

Table-2

A=18:=1,6,=1,p=0.7
o EM VM)
01 70200 05655 |
02 70400 05991 |
03 70600 06299 |
04 70800 06576
05 1000 06821 |
06 11200 07032 |
07 11400 07209
08 71600 0731 |
09 71800 0787 |
1 72000 0752
Figure-2
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: 08 -»—’.'_H_J—"—‘.*—.H—. ——E(M
g 08 =S=-Vi{T)
w 04
0.2
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0.1 02 0.3 04 05 06 07 0.8 09 1
a
Table -3
Q=01 A=1, 8:=1, 6,=1
P EM V(M)
01 0% 21985
02 097 8175
03 098 14992
04 099 12262 |
05 100 0985 |
06 o1 07678
07 702 05655 |
08 703 03730
09 704 0187 |
T 705 01038 |
Figure-3
24 TN
E 1.5
> 1.
=5
- e -
e
w B
0.5 e
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P
Table-4
p=07,a=0.1, A=1, 01
[ EM) v
1 1.0200 0.5655
2 1.0350 03454
3 70317 02963 |
] 10275 02709
5 1.0240 02547
6 10212 02433
7 10189 02348
g 10171 02283 |
g 10156 02230 |
10 10143 02188
Figure-4
12
1y &=
§ 08 ——EM - V(T)
3 06 LY
E 04 \\\"H‘-H_._._.
0.2
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10.2. Conclusions

If the value of A which is the parameter of the
exponential distribution of the random variable 1 denoting
the truncation point increase the expected time to
seronversion increases as indication table (1) and figure
(1), So, also in the variance of T.

ii) If a which is the parameter of the random variable
X denoting the magnitude of increases in antigenic
diversity increases then E (x) =1/a decreases. Hence
there is an increase in E (T) and also its variance V (T).
This is given table (2) and figure (2).

When ‘p’ which is the constant correlation between
the interarrival times between successive contacts
increases, there is a marginal increase in the value of E
(T). But the variance V (T) is on the decrease as
indicated in table (3) and figure (3).

iv) It can be seem that when 6: which is the
parameter of the exponential distribution denoting the
threshold prior to the truncation point 1, and 6, which is
the parameter of the threshold distribution usually Erlang
2 after 1 produce insignificant changes in E(T) and V (T)
as indicated in table (4) and table (5) respectively.
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