Available Online: http://recent-science.com/ # Effect of biofertilizer, vermicompost and chemical fertilizer on different biochemical parameters of *Glycine max* and *Vigna mungo* **Shozeb Javed and Aruna Panwar** Department of Biotechnology, Beehive College of Advance Studies, Selaqui, Dehradun, India. #### Abstract The objective of any agricultural research program is to increase the level of crop productivity. The strategy to boost the level of crop productivity would be through the adoptionof package of practices comprising use of seeds of high yielding varieties, adequate doses of manures and fertilizers and plant protection chemicals. Seed germination is one of the important factors for progressive farming. In present investigation, the effect of plant fertilizers on growth and productivity of *Glycine max* and *Vigna mungo* were studied at the various concentrations of fertilizers. We used Biofertilizer (B), Vermicompost (V), Chemical fertilizer (C) and combination of these three. It was found that, the seed germination percentage was high in Vermicompost treated soil in *Vigna mungo* and Biofertilizer treated in *Glycine max*. *Vigna mungo* protein content was found high in B+C treated soil, while carbohydrate and phenol content increased in B+V treated soil. High seed germination was observed in vermicompost treated soil .In case of *Glycine max*, carbohydrate content increased in C+V+B treated soil ,protein and phenol content observed max. in vermicompost treated soil and high seed germination % observed in biofertilizer treated soil. **Keywords:** Biofertilizer, Vermicompost, Chemical fertilizer, Seed germination, phenol. #### INTRODUCTION India has made spectacular break through in production and consumption of fertilizers during the last four decades. But consumption of renewable form of energy (chemical fertilizers) will be quite a limiting factor for increasing agriculture production in future. Because of escalating energy cost, chemical fertilizers are not available at affordable prices to the farmers. Moreover, the unbalanced and continuous use of chemical fertilizers is leading to a reduction in the crop yields and results in imbalance of nutrients in the soil which has adverse effects on soil health. Good quality farm yard manure (FYM) is more valuable organic manure. The long term manurial studies conducted at many places have revealed the superiority of integrated nutrient supply system in sustaining crop productivity in comparison to chemical fertilizer alone (Gaur, 1991). The beneficial effect of vermicompost was first highlighted by Darwin (1881). Vermciompost contains micro site rich in available carbon and nitrogen (Sudhakar *et al.*, 2002). Worm cast incorporated soils are also rich in water soluble P (Gratt, 1970) and contained two to three times more available nutrients than surrounding soils (Sudhakar *et al.*, 2002) which encourages better plant growth. Bano and Kale (1987) reported that application of vermicompost along with chemical fertilizers recorded higher yield of brinjal. Savalagi and Savalagi (1991) found increased germination percentage, shoot length and dry matter of hybrid sorghum (CSH-5) upon seed treatment with vermicompost. Jasvir Singh *et al.* (1997) *Corresponding Author Shozeb Javed Department of Biotechnology, Beehive College of Advance Studies, Selaqui, Dehradun, India. Email: shozab_j@rediffmail.com registered higher fruit yield per plant in chilli with the application of vermicompost Sharma and Mahendra (1963) stated that application of 27 kg nitrogen and 27 kg phosphorus in addition to a basal dose of FYM @ 10 car loads per acre, recorded significantly highest fruit yield of tomato. Natarajan (1990) noticed higher plant height and number of branches per plant in chilli when FYM was applied @ 25 t per ha as a basal dose along with 75:33:35 kg NPK per ha. Surlekov and Rankov (1989) reported greater plant height, number of branches and number of leaves per plant in chilli with the application of farmyard manure @ 20 t per ha along with 100:80:100 kg N, P_2O_5 and K_2O per ha. Okon (1985) reported that it is possible to increase plant height, leaf size and early flowering by use of *Azospirillum*. Shashidhara (2000) noticed that *Azospirillum* + phosphobacteria recorded higher 1000-seed weight (5.93 g) which was significantly superior over 50 per cent RDF (5.40 g) in chilli. Chandrashekar (2003) observed that the plant growth parameters *viz.*, shoot and rootlength and number of leaves per plant in green gram plants at 45 Days were significantly increased due to inoculation of P-solubilizing fungal strains along with rock phosphate application as compared to rock phosphate alone (control). Mahendran and Kumar (1998) studied effect of biofertilziers on quality parameters of potato and observed that application of two equal split doses of 100 per cent recommended dose of NPK with *Azospirillum* and phosphobacterium increased the ascorbic acid content significantly over control. Seetha (1999) obtained an early flowering in gerbera plants (100.60days) when inoculated with *Azospirillum* and VAM in addition to 50 per cent nitrogen and phosphorus dose. Suthar *et al* (2005) reported the highest values for standard germination percentage under N:P:K:Zn at the rate of 125:62.5:62.5:25 kg per ha, respectively than other treatments in brinjal cv. BR-112. Gapsa *et al.* (1995) reported that due to application of 300:150:200 kg NPK per ha, the seed germination percentage was more in chilli. Sjamsudin et al., 1994 reported the highest yield and quality were obtained from treatment receiving organic fertilizer together with 1.5 t NPK/ha in tomato Vermicompost suppress parasitic attacks dramatically and also have shown to increase germination rates, growth etc in wide ranges of crops (Arancon *et al.*,2004). Similar results were also reported by application of Vermicompost on seed germination in mung bean by Nagavallemma *et al.* (2004). El-Saht(1995) observed a greater increase in reducing sugars associated with progressively greater decreases in the content of sucrose, polysaccharides and total saccharides in soybean plants with the increase in concentration of urea fertilizer Sugiyama *et al.* (1984) stated that the soluble proteins are increased with better N supply and favorable growth condition. Greef (1994) reported that high values of the reduced N fraction (protein fraction) were found in photo synthetic active leaf tissue. ### **MATERIALS AND METHODS** **Plant material -** Two plants *Vigna mungo* and *Glycine max* were used for sowing and research purpose. **Treatment of soil** –The soil contained in seven plant pots treated with different type fertilizer along with the control one. - 1. Control soil contain no fertilizer. - 2. Vermicompost 4gm of soil contain 1gm of vermicompost. - 3. Biofertilizer (azotobacter) 4gm of soil contains 1gm of biofertilizer - 4. Chemical fertilizer (urea) -0.5 gm chemical fertilizer spread over the soil after sowing the seed. - 5. Biofertilizer + Vermicompost (B+V) 1gm of biofertilizer and 1gm of vermicompost used for 4gm of soil - 6. Biofertilizer +Chemilical fertilizer (B+C) 4gm of soil contain 1gm of biofertilizer and 0.5 gm urea spread over the soil. - 7. Chemical fertilizer + Vermicompost 4gm of soil contain 1gm of vermicompost and urea. - 8. Biofertilizer + Vermicompost +Chemical fertilizer 4gm soil contain 1gm of vermicompost and biofertilizer +0.5gm of chemical fertilizer spread over the soil. # Sowing of seeds – 50-50 seeds of each *Vigna mungo* and *Glycine max* were sown in the pots This contains different types of fertilizer and combination of fertilizers. The seeds were sown in the pots filled with the normal fertile soil as well as the soil treated with different fertilizer like chemical fertilizer, Biofertilizer, Vermicompost and combination of different Fertilizer. We used eight pots for each of the plant. ### Percentage of seed germination Germination test was conducted in three replications of 100 seeds each by adopting between paper towel methods as described by ISTA rules . The temperature of 25 \pm 10C and RH of 95 per cent was maintained during the germination test. The first and final germination counts were recorded on fifth and eighth days of germination test respectively for normal seedlings and germination was expressed in percentage. ### Isolation of carbohydrate from leaves of plants grown on treated and controlled soil One gm of finely powdered oven dried sample was taken in 4 ml of distilled water , heated in boiling water bath for 30 min. and centrifuged at 3000 rpm. for 20 min. Supernatant was collected & transferred in to test tubes. Volume to 25 ml. was made with distilled water. ## Estimation of carbohydrates of sample by phenol - sulphuric acid assay. Several test tubes containing 10 ml of neutral hexose such as D-glucose in 10 ml of distilled water in order of 10 μ l, 20 μ l....170 μ l were set. 190 μ l, 180 μ l...30 μ l. of phenol in each test tube to make final vol. 200 μ l was added. Six test tubes of sample containing 50 μ l carbohydrates were also set and then added 150 μ l of phenol to make final vol. 200 μ l. Blank test tube (containing no carbohydrate) of 200 μ l phenol were also set and added 1 ml of conc. Sulphuric acid rapidly in all test tubes wait for 10 min. shaked vigorously 30 min. and absorbance at 490 nm was recorded. Then concentration of carbohydrate of unknown samples from a standard curve plot was determined. ### Isolation of protein from plant Took 500 mg of leaf from both (treated & controlled) plants separately and washed well to remove dusts. Then the leaf sample were grinded with distilled water using pestle and mortar separately. Grained mixture of leaf was centrifuged at 1000rpm for 10 minutes, supernatant was taken out and used as leaf extract. ### Total protein estimation from leaves of plant grown on treated and controlled soils Suitable aliquot (1ml) of extracted protein solution was taken and added 5ml of freshly prepared alkaline copper sulphate reagent. Mixed properly and after 10 min added 0.5ml of Folin's reagent. Mixed the contents instantaneously. Allowed the colour to develop for 30 min.Recorded the absorbance at 660 nm after setting the instrument with reagent blank which contains 1ml of phosphate buffer instead of sample aliquot. In another set of tubes took suitable aliquot of BSA solution (in a range of 20-200 μg) , made the total volume to 1ml with phosphate buffer and allowed to develop the colour as described in steps 1-3. A standard curve of absorbance at 660nm verses μg of BSA was drawn. From this standard curve the amount of protein in the sample tube was determined. ### Isolation of total phenol content of leaf Weighed 0.5g of leaf samples of different genotypes and grinded with a pestle and mortar in 10-time volume of 80% ethanol. 42 Javed and Panwar Centrifuged the homogenate at 10,000 rmp for 20min.and saved the supernatant. Re-extracted the residue with five times the volumes of 80% ethanol, centrifuge and pool the supernatants evaporated the supernatant to dryness. ### Estimation of total phenol content of leaf Pipetted out the aliquots (0.2ml to 1.0ml) into test tubes. Made the volumes in each tube to 3ml with double distilled water. Added 0.5ml of folic -ciocalteau reagent. After 3min, added 2ml of 20% Na₂Co₃, solution to each tube. Mixed thoroughly the tubes in boiling water bath for 1min, cooled and measured the absorbance at 650nm against a reagent blank. Prepared a standard curve using different concentration of phenols in the test samples were estimated. Total phenol content was expressed in term of gallic acid (mg/gm of dry mass) which is used as reference. ## RESULTS Percentage of seed germination after 30 days After 30 days in soybean plant maximum seed germination observed by biofertilizer treated plant (82.85%) and minimum by chemical fertilizer treated plants (0%). In urad (Vigna mungo) maximum seed germination percentage observed by vermicompost (88%) and minimum by chemical fertilizr (64%). Table 1. Percentage of seed germination in Soyabean and Urad plants | S.No. | Fertilizer | Soybean | Urad | |-------|---------------------|---------|------| | 1. | Biofertilizer | 82.85% | 74% | | 2. | Vermicompost | 71.42% | 88% | | 3. | Chemical fertilizer | 0% | 64% | | 4. | B+V | 80% | 72% | | 5. | V+C | 17.14% | 68% | | 6. | C+B | 31.42% | 68% | | 7. | C+V+B | 5% | 74% | | 8. | Control | 74.28% | 76% | ### Carbohydrate content in the leaves of plants After 30 days the maximum carbohydrate content was obtained by C+V+B treated plant (0.530 mg/g) and the minimum concentration was obtained by soil treated with B+C (0.010mg/g) in soybean plant. In urad plant maximum carbohydrate concentration was obtained by control (0.900mg/g) and minimum in V+B treated soil 90.049mg/g). Table 2. Total carbohydrate content of plants after 30 for Soybean | S.No. | Fertilizers | Carbohydrates content after 30 days(mg/g) | |-------|---------------------|---| | 1. | Biofertilizer | 0.280 | | 2. | Vermicompost | 0.360 | | 3. | Chemical fertilizer | | | 4. | B+V | 0.090 | | 5. | V+C | 0.310 | | 6. | C+B | 0.010 | | 7. | C+B+V | 0.530 | | 8. | Control | 0.470 | Table 3. Total carbohydrate content of plants after 30 days for Urad | S.No. | Fertilizers | Carbohydrates content after 30 days(mg/g) | |-------|---------------------|---| | 1. | Biofertilizer | 0.860 | | 2. | Vermicompost | 0.790 | | 3. | Chemical fertilizer | 0.940 | | 4. | B+V | 0.490 | | 5. | V+C | 0.700 | | 6. | C+B | 0.680 | | 7. | C+B+V | 0.730 | | 8. | Control | 0.800 | ### Total protein content in the leaves of plants After 30 days the maximum concentration of protein in soybean plants was obtained by soil treated with vermicompost $(3.010 \mu g/ml)$ and the minimum concentration was obtained by control(0.060 $\mu g/ml$) In Urad plant maximum protein concentration was observed by B+C treated soil $(6.10\mu g/ml)$ and minimum by biofertiizer treated soil $(3.80\mu g/ml)$. Table 4. Total protein content in the leaves after 30 days for Soyabean | S.No. | Fertilizers | Protein content after 30 days(μg/ml) | |-------|---------------------|--------------------------------------| | 1. | Biofertilizer | 2.50 | | 2. | Vermicompost | 3.10 | | 3. | Chemical fertilizer | | | 4. | B+V | 1.50 | | 5. | V+C | 3.00 | | 6. | C+B | 2.70 | | 7. | C+B+V | 2.30 | | 8. | Control | 0.600 | Table 5. Total protein content in the leaves of Urad plants | S.No. | Fertilizers | Protein content after
30 days(µg/ml) | |-------|---------------------|---| | 1. | Biofertilizer | 3.80 | | 2. | Vermicompost | 4.90 | | 3. | Chemical fertilizer | 5.10 | | 4. | B+V | 5.70 | | 5. | V+C | 4.70 | | 6. | C+B | 6.10 | | 7. | C+B+V | 4.80 | | 8. | Control | 5.90 | ### Total phenol content of plants The value of phenol content after 30 days was observed maximum in soil treated with vermicompost (.950 mg/g) and observed minimum in C+V+B treated soil(0.070mg/g) in soybean plant. In Urad plant maximum phenol content observed in biofertilizer treated soil (0.930mg/g)and minimum observed by B+V treated soil (0.230mg/g). Table 6. Total phenol content in the leaves of Soyabean plant | S.No. | Fertilizers | Phenol content after
30 days(mg/g) | |-------|---------------------|---------------------------------------| | 1. | Biofertilizer | 0.740 | | 2. | Vermicompost | 0.950 | | 3. | Chemical fertilizer | | | 4. | B+V | 0.640 | | 5. | V+C | 1.19 | | 6. | C+B | 0.160 | | 7. | C+B+V | 0.070 | | 8. | Control | 0.930 | Table 7. Total phenol content in the leaves of Urad plant | S.No. | Fertilizers | Phenol content after 30 days(mg/g) | |-------|---------------------|------------------------------------| | 1. | Biofertilizer | 0.930 | | 2. | Vermicompost | 0.720 | | 3. | Chemical fertilizer | 0.370 | | 4. | B+V | 0.230 | | 5. | V+C | 0.250 | | 6. | C+B | 0.350 | | 7. | C+B+V | 0.370 | | 8. | Control | 0.420 | #### **DISCUSSION** Laboratory experiments were carried out with the objective of studying the effect of Biofertilizer, Vermicompost and Chemical fertilizer on seed germination and Biochemical aspect of soybean (*Glycine max*) and Urad (*Vigna mungo*). In case of soybean high seed germination percentage (82%) was found in Biofertilizer treated soil and in case of Urad (vigna mungo) high seed germination percentage (88%) was observed in Vermicompost treated soil. the maximum carbohydrate content was obtained by C+V+B treated plant (0.530 mg/g) and the minimum concentration was obtained by soil treated with B+C (0.010mg/g) in soybean plant. In urad plant maximum carbohydrate concentration was obtained by control (0.900mg/g) and minimum in V+B treated soil 90.049mg/g). The maximum concentration of protein in soybean plants was obtained by soil treated with vermicompost (3.010 μ g/ml) and the minimum concentration was obtained by control(0.060 μ g/ml) In Urad plant maximum protein concentration was observed by B+C treated soil (6.10 μ g/ml) and minimum by biofertiizer treated soil (3.80 μ g/ml). The value of phenol content after 30 days was observed maximum in 44 Javed and Panwar soil treated with vermicompost (.950 mg/g) and observed minimum in C+V+B treated soil(0.070mg/g) in soybean plant. In Urad plant maximum phenol content observed in biofertilizer treated soil (0.930mg/g)and minimum observed by B+V treated soil (0.230mg/g). We concluded that-in Urad plant protein content increased through B+C treated soil, while carbohydrate and phenol content increased through B+V treated soil and high seed germination was observed in vermicompost treated soil . In case of Soybean plant carbohydrate content increased through C+V+B treated soil ,protein and phenol content was observed maximum. in vermicompost treated soil and high seed germination % observed in biofertilizer treated soil. ### **REFERENCES** - [1] Arancon N Q, Edwards C A, Atiyeh R M and Metzger J D. 2004. "Effects of vermicomposts produced from food waste on green peppers." Bioresource Technology 93: 139-144 - [2] Bano,K. and Kale, R.P., 1987, "Vermicompost: A rural technology." *Agril. Technol*, 5:33-37. - [3] Chandrashekhar, B. S., 2003, "Studies on mineral phosphate solubilizing fungi from vertisols of Northern Karnataka and other Biofertilzier potential." Ph. D. Thesis, Univ. Agric. Sci., Dharwad, Karnataka. India - [4] Darwin, C. R., 1881, "The Formation of Vegetable Mould Through the Action And Worms, with Observations on Their Habitats". John Murray, London, p. 326. - [5] El-Saht H.M. 1995. "Amino acids and protein metabolism in soybean as affected by urea fertilizer". J. Agric. Sci. Mans. Univ., 20: 4611–4618 - [6] Gaur, A. C., 1991, "Bulky organic manure and crop residues. In: Fertilizers organic matter recyclable wastes and biofertilziers," H. L. S., Tondon, Fertilizer Development and Consulation Organization, New Delhi. - [7] Gapsa, F., Viocan, A. A., Gaurilive, M. and Viocam, Y., 1995, "Studies on the effect of mineral fertilizers on seed production and quality of tomatoes.," 13: 457-466 - [8] Gratt, J. D., 1970, Earthworm Ecology. Cultural Soils, 10: 107-123 - [9] Greef 1994. "Comparing vermicomposts and composts." *BioCycle*, 39:63-66. - [10] Jasvir Singh, B., Sree Krishna B. and Sundharaman, M. R., 1997, "Performance of Scotch bonnet chilli in Karnataka and its response to vermicompost. Indian Cocoa, *Arecanut and Species J.*, 21: 9-10. - [11] Mahendran, P.P. and Kumar, N., 1998, "Effect of biofertilizers on tuber yield and certain quality parameters of potato cv. Kufri - Jyoti." South Indian Hortic., 46(1&2): 97-98. - [12] Nagavallemma K P, Wani S P, Stephane Lacroix, Padmaja V V, Vineela C, Babu Rao M and Sahrawat K L. 2004. "Vermicomposting: Recycling wastes into valuable organic fertilizer." Global Theme on Agri-ecosystems Report no.8. Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 20 pp. - [13] Natarajan, S., 1990, "Standardization of nitrogen application for chilli (*Capsicum annuum* L.) growth under semi-dry condition." *South Indian Hortic.*, 47 (1-6): 252-254. - [14] Okon, Y., 1985, "Azospirillum as a potential inoculent for agriculture." Trends in Biotechnol., 3: 223-228. - [15] Savalagi, V. P. and Savalagi, V., 1991, "Effect of Azospirillum brasilense and earthworm cast on seed treatment in sorghum." J. Maharashtra Agril. Uni., 16:107-108. - [16] Seetha, M. C., 1999, "Effect of vermicompost and biofertilizers on growth and yield of gerbera (*Gerbera jamesonii* L.)" Cv. Local. M. Sc. (Agri.) Thesis, Univ. Agric. Sci., Bangalore. - [17] Shashidhara, G. B., 2000, "Integrated nutrient management for chilli (*Capsicum annuum* L.) in Alfisops of Northern Transition Zone of Karnataka." M. Sc. (Agri.) Thesis, Univ. Agric. Sci., Dharwad, Karnataka, India - [18] Sjamsudin, E., Harjadi, S. S., Poerwanto, Endang, S., Widodo, W. D. and Sudarsono, 1994, "Response of tomato to soil conditioners and NPK dosage on red yellow podzolic soil." Acta Hort., 369: 344-351. - [19] Sharma, J. N. and Mahendra, S., 1963, "Relative effect of levels of nitrogen, time of application of nitrogen and levels of phosphorous on tomato crop." *Indian J. Agron.*, 8: 279-284. - [20] Sudhakar, G., Christopher Lourdura, A., Rangasamy, A., Subbian, P.and Velayuthan, A., 2002, "Effect of vermicompost application on the soil properties, nutrient availability, uptake and yield of rice – A review. "Agrilc. Rev. 23(2): 127-1 - [21] Suthar, M. R., Singh, G. P., Rana, M. K. and Makhan-Lal, 2005, "Growth and fruit yield of brinjal (Solanum melongena L.) as influenced by planting dates and fertility levels." Crop Res. Hissar, 30 (1): 77-79 - [22] Sugiyama., Christopher Lourdura, A., Rangasamy, A., Subbian, P.and Velayuthan, A., 1984 "Effect of vermicompost application on the soil properties, nutrient availability, uptake and yield of rice – A review." *Agrilc. Rev.* 23(2): 127-133 - [23] Surlekov, P. and Rankov, U., 1989, "The effect of fertilization on capsicum productivity and soil agrochemical and biological properties in monoculture." Pochrozananie Agro Khimiya, 24: 17-23.