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INTRODUCTION

The Solanaceae include tobacco (Nicotiana tabacum L.) and 
tomato (Solanum lycopersicum L.). Tobacco and tomato are 
agriculturally important Solanaceae crops which are extensively 
studied [1-3]. Being sessile, plants as defense mechanism can 
rapidly modify in response to the changes in their surroudings 
such as drought, flood, salinity, shading or low/high temperature. 
Such stresses often found to be the major causes to affect plant 
production. Salinity stress is one of such leading causes for crop 
losses in the field. In order to give impetus to the stress-response-
mechanism in tobacco and tomato, it is essential to understand 
their response to different abiotic stresses at multiple levels.

Flexibility in the growth patterns of plants is partly achieved by 
the action of phytohormones. They together form a signaling 
network which regulates plant response to different abiotic 
as well as biotic stresses. Several reviews in this regard add to 
the recent knowledge of hormonal cross-talk responsible for 
plant stress responses [4-6]. Plant hormones are the signaling 
chemicals which control almost all aspects of plant life.

Plants have successfully evolved through their developmental 
processes to face the challenges of environmental cues. Several 
hormones play major roles in abiotic (Figure 1) and biotic stress 

responses, where ABA is the key player. This hormone has a 
major role in stress signaling causing an immediate response like 
hydraulic signal that triggers ABA biosynthesis in the system [7]. 
Phytohormones can mediate a wide range of plants’ responses, 
from rapid (e.g. stomata closure) to long term adaptations by 
modulating the programs of plant growth and development. 
Cytokinins and auxins are predominantly positive regulators 
of cell division and growth. Abscisic acid as a growth inhibitor, 
acts in stress conditions like drought.

Plant hormones have an important role in the response 
mechanism against abiotic stress [8]. Stress ultimately may 
result into retarded growth thus the plant can focus its resources 
on combating the stress [9]. In nature, plants fight against 
stresses by modulating various physiological, biochemical and 
molecular actions. These counter-actions lead to alterations in 
gene expression, regulation of biogenesis, changes of cellular 
metabolite levels and changes in ion homeostasis. Regulation 
of gene at the transcription level is one of the major control 
points in biological system. These growth-regulators and 
transcription-factors are the key players in this process [10]. ABA 
as a stress-responsive signaling molecule is the most well studied 
hormone in the past decade. In the recent past, a lot of research 
has been done in the field of elucidation of the core ABA-
signaling pathway and proper identification of ABA receptors. 
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For example, less water availability is first confronted by the 
plant roots which results in stomatal closure of leaf and thereby 
resulting into reduced transpiration to a great extent by the 
action of the stress hormone ABA [11]. Many recent experiments 
on plant hormones have shown that some hormones (such as 
ABA, auxins, cytokinins, SA, JAs, brassinosteroids etc.) have 
the potential to elevate the abiotic stress tolerance in various 
plant species [12]. Such hormonal responses are fundamental 
to the plant growth and development. In addition to their 
regulatory functions in development they have also key roles 
to play in coordinating different signal transduction pathways 
in environmental stresss responses [13].

The analysis of plants/mutants with an altered phytohormone 
profile has uncovered a high degree of interactions between 
auxins and cytokinins, abscisic acid and ethylene [14], jasmonates 
and ethylene [15], brassinolides and jasmonates [16], auxins and 
ethylene [17, 18], ethylene and cytokinin [19] or gibberellins 
and auxin [20].

Generally, the use of mass spectrometry (MS) is often 
coupled with an appropriate separation method like HPLC 
or GC [21, 22]. Both the techniques are powerful enough to 
detect trace amounts of organic compounds even at the level 
of picogram (10-12 g) or femtogram (10-15 g).

This study describes a simple method with extensive potential 
applicability. An objective of GC-MS based analysis of 
biochemical signals is to uncover the complex interaction and 

intensive crosstalk between ABA, IAA, SA and JA during salinity 
stress that can modulate the levels of these growth factors in 
the aerial parts of plants.

MATERIALS AND METHODS

Plants and Growth Condition

Two plant species (Figure 2) were used for the experiment. 
Tobacco (Nicotiana tabacum) cv SR1, Tomato (Solanum 
lycopersicum) cv Punjab Keshari. Tomato, and tobacco seeds 
were surface sterilized with 0.1% (w/v) HgCl2 for 10 minutes 
then rinsed thoroughly and imbibed in sterile water for 6 to 
8 hours and finally spread over sterile wet blotting papers 
in petriplates. Plates were kept in dark at 26°C. Seeds were 
germinated in aseptic condition in the tissue culture room 
within 3 to 7 days. Seedlings were transferred in 0.25X 
Murashige & Skoog [23] liquid medium (Hi-media) and grown 
for another 15 days (16 h dark and 8 h light period, 25-26ºC). 
The 15 day old plantlets were cultured in 0.5X Murashige 
& Skoog liquid medium with or without salt (150mM NaCl 
solution) and kept on observation for a month. The media 
were replaced weekly.

Harvest and Extraction of Plant Material

We evaluated four growth factors in terms of reproducibility, 
carryover and linearity. Our attempt was to develop a simple but 
near accurate method as much as possible for the detection of 
selected non-polar compounds in leaf tissues of two different 
plants. To achieve the goal, we adopted the extraction 
procedure routinely used in our lab (Muller’s method with 
modification) [21] for GC-MS analysis which has been found 
reliable method for the simultaneous monitoring of different 
plant hormones during physiological processes.

For the experiment, 200mg of leaf tissue were harvested from 
30 days’ culture of two plant species in Murashige and Skoog 
medium. Healthy leaf tissues of plants were cut off with a 
scissor which were found of typical stature and absolutely free 
from any signs of senescence and were immediately weighed 
on a Sartorius weighing tool. The desired parts immediately 
were ground in porcelain mortar-pestle using solvent (hot 
methanol). After that the homogenized tissue was incubated 
in the solvent for 1 hour at room temperature and the resulting 
fluid centrifuged at 10,000 rpm to remove cell debris. After 
centrifugation, the debris-free supernatant was decanted and 
transferred into an eppendorf tube. 1ml of ethylacetate was 

Figure 2: Tobacco and tomato plants in laboratory condition

Figure 1: Chemical structures of important plant tohormones involved in abiotic stress response and tolerance
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added in each tube. All samples were analysed immediately to 
prevent any degradation of facile phytohormones.

All samples were performed in triplicate. We always determine 
the optimum level of standard by a preliminary analysis of 
representative samples in a first run before the actual experiment 
for quantitation. Four standard solutions were prepared.

Stock solutions as standard of original phytohormones 
were prepared at 1 mg/ml in methanol. For calibration and 
comparison, working solutions of standards were prepared 
diluting stock solutions in methanol: water (7:3), at different 
concentration for each phytohormone depending on the range 
of the calibration curve.

IAA and ABA (100µg/ml), SA and JA (200µg/ml).

Gas chromatography – mass spectrometry

The compounds under study were determined using Mass 
spectrometer (Model: POLARIS Q; Serial no: MS 211912) 
coupled with trace GC ultra gas chromatograph (Thermo Fisher 
Scientific India Pvt. Ltd., Model: Trace GC Ultra 320080111). 
A DB-5MS column (30 m x 0.25 mm ID x 0.25 µm film 
thicknesses with stationary phase 5% Phenyl polysilphenylene 
siloxane was used. Helium gas of 99.999% purity was used as 
a carrier gas at a flow rate of 1 ml/min with a linear velocity of 
10ml/s. 1 µl extracted sample was injected with autosampler 
(Model no: AI3000) into the column in a split mode. Initially 
the temperature of GC oven was programmed at 50°C with a 
hold time of 1 min and gradually raised to 300°C at the rate of 
rising temperature 80°C/min with a hold time of 5 min and was 
finally raised to 320°C at the rate of rising temperature 10°C/min 
with a hold time of 10 min. The MS (mass spectra) was carried 
out in the electron impact mode (EI) at 70 eV. Keeping the 
temperature at 250°C, the detector was set at 40-600 D. Mass 
spectrum of GC-MS was interpreted using the database of 
National Institute Standard and Technology (NIST) harbouring 
1,50,000 patterns. With the aid of database information and 
the data store software XCALIBUR, the name of the compound 
of the experimental materials, molecular weight and structure 
were determined.

Validation of the method

Standard solutions of all four selected compounds were run 
before analysis of each sample to assess the linearity of the 
profiling method. A standard solution containing a mixture of 
JA, IAA, SA and ABA (Sigma-Aldrich, USA) was prepared. The 

calibration graph was obtained in the concentration range of 
the standard phytohormones (Table. 1).

For reproducibility, all samples were run on the same day because 
sample preparation procedure and instrumental analysis can 
contribute to the variability of the method adopted.

For recovery, the chemical stability of the metabolites/derivatives 
and the exraction method were assessed. In this recovery test, 
double amounts of standard compounds were mixed in the 
leaf-extract at the initial stage of the extraction procedure. 
Both tissue mixes and unspiked extracts from the same test 
samples were then run to compare and calculate the recovery 
rates. The eluted compounds were characterized on the basis of 
their molecular formula, structure, retention time, and percent 
relative peak area. Processed data were subjected to statistical 
analysis (the term significant is used only when p<0.05 
according to the t-test embedded in Microsoft Office Excel).

RESULTS AND DISCUSSION

GC–MS based metabolite study is still considered the most versatile 
platform with many advantages over other analytical methods in 
respect to high separation power and reproducibility [12,13]. The 
method adopted here to detect the most abundant phytohormones 
in leaf sample of tobacco and tomato. Several studies have shown 
that between different phytohormones, there are synergistic as 
well as antagonistic actions in plants [24].

Enough reports are available authenticating that in the 
regulation process of plant growth and development, there are 
signaling crosstalks between several plant hormones besides 
their individual actions.

Hormonal changes in response to salt stress

Based on GC-MS results (Figures 3 and 4), salt stress has been 
found to have elevated levels of IAA, ABA, SA and JA in leaves 
of tobacco and tomato compared to the control. Endogenous 
level of all signaling molecules under study was found higher 
in tomato than in tobacco.

ABA is a well documented phytohormone for stress responses. 
Its signaling pathway is the core of salt stress response in plant 
system. ABA-mediated signaling has a vital role to play in plant 
responses to different adverse environmental conditions (abiotic 
constraints) and also biotic stresses like plant pathogens [25].  
producing more ABA than tomato under stress (Figures 3-5). 

Table 1: Fragmented parameters and obtained values in GC‑MS method for quantification of phytohormones
Analyte Standard concentration (ng/ml)

(n=3)
Tobacco (ng/g FW)

(n=3)
T omato (ng/g FW)

(n=3)
Retention time (min) ion m/z

Range of conc Linearity Control Treated Control Treated

IAA 1‑50 0.9887 3 2.1 15.2 18 2.04 141
SA 1‑50 0.9878 8.8 25.5 101 138 5.45 120
ABA 5‑100 0.9954 80 150 421 440.4 12.06 200
JA 5‑100 0.9988 3 5.7 25 28 22.71 183
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The result may be because tomato is moderately salt tolerant. 
Previous study [26] with wheat also showed lesser enhancement of 
ABA under stress. So in different plant species ABA synthesis and 
catabolism are regulated differently. ABA is also produced in the 
roots where the plant may be under stress. ABA is then translocated 
from roots to the aerial parts/leaves and there it rapidly alters the 
osmotic potential of the guard cells of the stomata, resulting into 
stomatal shrinkage and closure. The rate of transpiration is reduced 
by ABA-induced stomatal closure. This phenomenon prevents 
further water loss from the leaves at the time of water scarcity [27]. 
As also described by He and Cramer [28], salt withstanding plants 
produce low amount of ABA than sensitive ones and can perform 
normally during moderate salinity [29].

IAA level of occurrence in our findings is of quite variable in 
nature (Figure 5). IAA is known to be involved in response 
to salinity in crop plants. According to the GC-MS result 
(Figures 3 and 4) NaCl treatments resulted in a marginal increase 
of IAA in tomato but decreased in tobacco. The difference 
between two plant species can be perceived by noting the ability 
of the plants in resisting the rise of IAA level in leaves under 
salinity [30], and a higher level of IAA also has been correlated 

with retarded growth [31]. A study shows 75% reduction in 
IAA level in tomato while under salinity stress [32]. A report 
suggests significant reduction of this regulator in crop plants 
such as rice and tomato [33]. Another report shows that salinity 
caused reduction in IAA levels in maize plants but SA application 
could enhance them effectively [34]. According to an another 
study, elevation of IAA (auxin) level by overexpression of auxin 
biosynthetic related YUCCA3 caused hypersensivity to salt 
stress [35]. Several investigations have shown that auxins have 
the ability to increase stress tolerance in various plant species.

SA is considered as the stress hormone and also has been 
recognised as a contributor to improved plant abiotic stress 
tolerance [36]. The result demonstrates (Figure 5) that SA 
increased 3-fold in tobacco whereas tomato shows 1.5-fold 
enhancement. So under stress, elevation is lesser in tomato in 
comparison to tobacco leaves. SA has been identified for its 
involvement in plat response to abiotic stress (e.g. drought, 
salinity cold, and heat) [37,38]. Previous study [39] has 
shown that several proteins were induced by SA in cucumber. 
The expression of these proteins were found to be involved 
in cell defence, carbohydrate metabolism, photosynthesis, 

Figure 3: Representative GC chromatograms of selected plant hormones. This study with leaf sample shows that tobacco is detection and 
quantification of plant hormones by using GC-MS. A) Standards of phytohormones showing the peaks of IAA (indole acetic acid), ABA (abscisic 
acid), SA (salicylic acid) and JA (jasmonic acid); B) ethyl acetate extract of untreated leaf sample of tobacco; C) ethyl acetate extract of 150 mM 
NaCl treated leaf sample of tobacco displaying the chromatographic peaks in the range as compared with the standard.

A

B

C



Roy, et al.

20	 Res	Plant	Biol	 •	 2019	 •	 Vol	9

antioxidative reactions, respiration and energy homeostasis, 
protein folding and bigenesis. Alteration of SA in two species 
under study indicates that tomato here is being less affected 
by the stress imposed. Endogenous level of SA increased 
significantly in tobacco. SA in general, involved in the process 
of defence mechanism [40]. A report suggests that endogenous 
SA increased salt stress tolerance in wheat seedlings [41]. SA 
induction could ameliorate abiotic stress such as water deficit 
on cell membrane by upregulating ABA and proline [42].

JAs have major function in the abiotic and biotic stresses as well 
as [43,44]. This plant growth regulation includes senescence, 
reduced growth, tendril coiling, flower development and leaf 
abscission. Based on our GC-MS analysis (Figures 1 and 2), it was 
noted that JA level was significantly increased, reaching to more 
than 1.5-fold in salt treated tobacco compared to the control 
(Figures 3 and 5). Here in treated tomato leaves, no significant 
elevation of JA was detected (Figures 4 and 5). The results 
indicate that abiotic stress like salinity differentially modulates 
the endogenous level of JA. There are sporadic reports of 
evaluation that plant’s responses under stress in this regard [45].

Comparatively lesser is known about JA’s role in abiotic stresses in 
relation to biotic stress. According to a study done, JA signaling is also 
active in the response to different abiotic stresses [46]. JA signaling 
research performed in wheat plant suggests that JA has an important 
role in getting rid of potentially harmful ROSs [47-49]. Zhao 
et al. [50] demonstrated salinity tolerance in wheat via the JA 
signaling pathway. Other studies demonstrated that jasmonate 
levels were enhanced under stresses [51,52]. A study on rice brought 
out that, both low availability of water and high salinity stresses 
resulted in an induced and enhanced jasmonate levels in the leaves 
and roots [53,54]. Another research in rice reported overexpression 
of OsJAZ6 improved salt and mannitol stresses [55].  Ismail 
et al. [45] suggested that salt stress response may be modulated by 
jasmonate. The present study is in accordance with several other 
experiments cites that JA can differentially regulate the plants’ 
responses and adaptation to various kinds of abiotic stresses.

Cross-talk of IAA, SA, ABA and JA

The plant hormones such as auxins, cytokinins (CKs), gibberellins 
(GAs), abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), 

Figure 4: Representative GC chromatograms of selected plant hormones. Detection and quantification of plant hormones by using GC-MS. A) 
Standards of phytohormones showing the peaks of IAA (indole acetic acid), ABA (abscisic acid), SA(salicylic acid) and JA (jasmonic acid); B) 
ethyl acetate extract of untreated leaf sample of tomato; C) ethyl acetate extract of 150 mM NaCl treated leaf sample of tobacco displaying the 
chromatographic peaks in the range as compared with the standard.

A

B
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ethylene (ET), and brassinosteroids (BRs) respond to diverse 
stresses through synergistic and antagonistic ways. This interaction 
between various phytohormones often referred to as signaling cross 
talk. In fact, the response mechanism to different stresses not solely 
restricted to these hormones only. Recent researches provide clues 
that the interactions of these hormones with each other and with 
other hormones are increasingly more complex than previously 
thought in various crop species. In plants, abiotic stress response 
regulated by phytohormone-signaling depends upon several factors 
like stress type, duration of exposure and intensity. ABA is known 
to be occupying the key position as a hormone regulator in stresses. 
The cross-talk between SA and JA was initially observed in tomato 
responding to wound [56]. SA, JA take active roles in plant abiotic 
stress tolerance, whereas IAAs are involved in stress tolerance of 
both kinds [57, 58, 38]. SA and JA are biochemically linked signaling 
molecules. Their induction can be triggered by stresses and become 
integral part of plant defence responses [59]. JA, SA also interact 
with ABA to trigger stomatal closure and thereby restricting 
water loss during osmotic stresses [60, 61, 62]. In an experiment 
on Arabidopsis, Miao and Zentgraf [63] demonstrated that two 
pathways of SA and JA interact during senescence and regulate a 
senescence-responsive TF, WRKY53 antagonistically. A previous 
research found that inspite of being antagonistic, both SA and 
JA signaling pathways simultaneously become active in certain 
conditions [64]. Our findings propose that in the process of stress 
responses, phytohormone signaling is critical for homeostasis and 
for maintaining a fine balance between ABA, IAA, SA and JA. In 
this experiment tomato seems more efficient in keeping hormonal 
balance in the shoot parts. On the contrary tobacco responds with 
higher alteration in the hormonal accumulation in leaves against 
salinity stress.

CONCLUSIONS

With the great advantage of sensitivity and simplicity of the 
powerful tool GC-MS, the individual hormones IAA, ABA, JA or 
SA targeted here for quantitative measurement in two different 

plant species. Differences in the accumulation of chemical signals 
(IAA, ABA, JA and SA) in tobacco and tomato, is possibly due to 
the differences in their ability to stress resistance. Though in minor 
amount but these molecules have significant roles in balancing 
plants behaviour under salinity stress. The same method should 
be applicable to a broad range of other regulating factors or 
metabolites of interest. The versatility of the technique is important. 
Moreover, analysis of altered levels of signaling molecules at different 
experimental conditions in our study is providing more precise 
insight into the dynamics of regulatory processes. Present study 
may be helpful in pronouncing the fate of selected phytohormones. 
It also may assist in evaluating the capacity of detoxification in 
various plant species. The underlying molecular mechanism of 
signaling networks between ABA and other hormones is complex 
and more comprehensive study is needed in future. In this direction, 
phytohormone engineering seems promising for plant biologists.
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