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Liquid chromatography is one of the most common separation techniques. 
Optimization of the experimental conditions is a complicated process due to the large 
number of the variables, which must be simultaneously treated. This mini review 
summarizes some of the chemometric approaches used in the literature to separate mixtures. 
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Optimization of chromatographic conditions 
Micellar liquid chromatography (MLC) has been extensively utilized lately as a useful 

chromatographic method due to several reasons; such as its ability to separate ionic and 
nonionic compounds, direct injection of biological fluids such as serum and plasma without 
complicated extraction procedures. Other advantages include the enhancing effect of micelle 
formation on luminescence intensity, low cost, low volatility of mobile-phase constituents and 
being environmentally benign (Hernandez et al., 1992).  

Since large number of the variables must be simultaneously treated; optimization of the 
experimental conditions in MLC is complicated. Retention of the analytes as well as extent of 
the surfactant monomers that are adsorbed onto the stationary phase are affected by variations 
of the experimental parameters. Consequently, such factors affect retention in an 
interdependent and nonlinear way (Rukhadze et al., 1998; Gianotti et al., 2005, Marengo et al., 
1996). As a result, multivariate analysis is applied usually. 

For optimization of different chromatographic parameters, multivariate analysis, 
experimental design, and multi-criteria decision-making (Smilde et al., 1986) are employed 
usually.  

Taking the determination of caffeine in presence of non steroidal anti inflammatory 
drugs (El Sherbiny et al., 2014) as an example, face centered cube response surface experimental 
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design was used for optimization. Stepwise multiple linear regression (MLR) was used 
subsequently to choose the most significant effects and also to calculate the coefficients that 
relate such effects with retention time. To evaluate the optimal points, the Pareto-optimal 
approach was applied.  

On the other hand, optimization of the separation conditions for 27 molecules was 
investigated by Mbinze et al. (2012). To establish a design space (DS); Design of experiments 
(DoE) was utilized (Lebrun et al., 2008), which was dependant on using a predictive statistical 
model of the retention times. DoE with predictive probability is able to optimize the separation 
and also to estimate the robustness of the method over the experimental domain. 

Simultaneous determination of caffeine, paracetamol and p-aminophenol was 
conducted using a reversed phase liquid chromatographic method (Crevar et al., 2008), full 
factorial design of 8 experiments was used. Where; all possible combinations of selected factors 
are covered by the number of experiments utilized. When the number of factors is limited, full 
factorial design is significant. This experiment was conducted using three variables which were 
found to influence the outcome significantly. 

Trial and error methodology was the basis in HPLC separations for decades. The 
traditional approach is based upon measuring the effect of the specified factors by Changing 
One Single factor at a Time (COST), keeping other factors constant (Singh et al., 2004). The 
technique is known also as OFAT (Singh et al., 2004; Fonner et al., 1970; Shek  et al., 1980). After 
applying it for many experiments, COST methods were found to be inefficient and time 
consuming since they require effort (planned experiments) and time without being capable of 
identifying the optimum conditions (Singh et al., 2004; Tye, 2004). These remarkable 
disadvantages forced scientists to utilize experimental design as a more efficient optimization 
technique. The basic concept of these techniques which are known as Design of Experiments 
(DoE), includes the application of experimental design and consequently generation of graphic 
outcomes and mathematical equations (Singh et al., 2004). 

Through employment of several combinations of factors, statistical experimental design 
transforms experimental data to be mathematical equations which are known as models; in 
order to be able to predict and optimize the responses. DoE was found to be important in the 
development and optimization of various mixtures applying HPLC as a separation technique 
(Wang et al., 2006a; Wang et al., 2006b; Sivakumar et al., 2007; Nemutlu et al., 2007). 

 
Multivariate optimization  

Before the researchers start to optimize various experimental parameters, it is essential to 
identify the crucial factors that affect the quality of the delivered outcomes. For instance, when 
CAF was determined with NSDIs (El Sherbiny et al., 2014), the effect of six independent factors 
on the separation parameters was thoroughly studied using a two-level fractional factorial 
design. Factors selection for optimization procedure was mainly based on preliminary 
experiments. The six factors selected in this work were considered to influence the outcome 
dramatically. It is worth to mention that identification of  significant main effects rather than 
interaction effects is performed through application of screening designs . Hence, they are in 
most cases first-order designs with low resolution (Singh et al., 2004). The simplest form of 
design applied for screening k number of factors is the two-level factorial designs (2k) 
(http://www.itl.nist.gov/ div898/handbook/05/07/2008).  
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The following equation represents the mathematical model revealing the effect of main 
and  interaction effects (Barmpalexis et al., 2009): 

 
Where X is the factor examined, n is the number of factors, Y is the measured response, and β0, 
βi, βij are the coefficients for each main or interaction effect. Based on preliminary experiments, 
the high and low levels of factors could be determined, putting in consideration that all 
experiments are performed randomly and in triplicate.  
 
Factorial design 
In most cases, the experiments utilized for optimization are performed on three levels 
corresponding to each of the studied factors. Face centered cube response surface experimental 
design are usually applied. This design is gaining the reputation of being one of the most 
suitable experimental designs for modeling and optimization. It is well known that a full 
factorial design using six variables and two levels would need 64 experiments. To reduce the 
experiments number, a two-level fractional experimental design which is consisting of 26−3 

experiments might be utilized. Such design allows the preliminary assumption of the main 
factor effects confounded with the second-order interaction; however this leads to a partial loss 
of information. Central point Experiments are repeated to estimate the experimental error and 
to test system reproducibility. 
 
Fold-over fractional factorial design 
To determine the typical factors which affect separation, a complementary set of experiments 
known as fold-over design is usually carried out. This design is used to differentiate between 
the principal effects and the second-order interactions. Combination between results (fold-over 
and fractional factorial design) confirm the observed results.  

 
Star design 

Presence of quadratic  significant effects could be evaluated by means of F-test which 
compares the variation between the experimental retention time in the central point and 
factorial design (Marengo  et al., 2009). F-test is calculated according to the following equation: 

 
Where;  is the purely experimental variance.  , , , and   are average response 

of the replicated central, factorial design experiments, number of experiment in the central 
point, and in the factorial design, respectively. Quadratic effects must be included in the 
regression models if it was found that the calculated F-values are greater than the critical F-
value. This is the main reason for the addition of star design experiments to the factorial 
experimental design to produce a composite design. Best regression models are produced by a 
variable selection algorithm. Separation optimization is achieved through grid search program. 



Roushdy et al. / Research in Pharmacy 4(5): 19-23, 2014 
 

 

22 
 

Application of this program allows the prediction of the retention times of all studied analytes 
for every mobile phase composition. 
 
Optimization of design and analysis 

Statistical analysis tools; (analysis of variance (ANOVA)) is usually applied to identify 
significant effects.  
Chromatographic optimization function (COF) is calculated according to the equation 
(Barmpalexis et al., 2009): 

 
Where Rsi is the resolution of the ith pair, Rsid is the desired resolution for the specific pair, Ai 
and B are weighted parameters, tM is the the desired maximum analysis time, and tL is the actual 
time of the last eluted peak. COF is used since it has the capability to reduce data from each 
chromatogram to a single number which can be applied in optimization. 
Greater COF value represents satisfactory peak resolution and low elution time. It is important 
to notice that COF is satisfactory only when all peaks have the same relative order of retention 
in all conditions (Barmpalexis  et al., 2009). Response transformations are made when necessary. 
When an independent factor has a p-value < 0.05, it imposes a significant effect on a given 
response.  
 
Optimization using central composite design 

By understanding factor’s main and interaction effects, Central composite design could 
be applied to optimize an HPLC separation (Sivakumar et al., 2007).  
To clarify the results, predicted models are presented as perturbation plot. For an optimization 
design, this graph shows the changes in the response when each factor moves from a chosen 
reference point, when all of the other factors are kept constant at the reference value (Sivakumar 
et al., 2007). If a steep slope or curvature in a factor takes place, it indicates that the response is 
sensitive to that factor.  
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