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INTRODUCTION

In supervised machine learning, a performance criterion 
is optimized using historical data (Jiang et al., 2020). If 
the performance criterion involves predicting a numerical 
outcome, the task is said to be a regression (Castillo-Botón 
et al., 2022). If the performance criterion involves predicting 
a categorical outcome, the task is said to be a classification 
(Howlader et al., 2022). If there are just two possible outcomes 
in the latter scenario, the classification is specified as binary 
(Naik & Purohit, 2017). If, however, there are more than two 
possible outcomes, the classification is specified as multi-class 
(Tabosa de Oliveira et al., 2022).

Supervised machine learning has been used in diverse 
plant research endeavors. They include but are not limited 
to salt stress tolerance assessment (Moghimi et al., 2018), 
mitochondrially localized plant protein prediction (Zhang 
et al., 2018), hyperspectral imagery-based grapevine variety 
classification (Gutiérrez et al., 2018), gene regulatory network 
prediction from transcriptomic datasets (Mochida et al., 
2018), determination of arbuscular mycorrhizal signature in 

roots (Mohammadi-Dehcheshmeh et al., 2018), real-time fruit 
detection within trees (Bresilla et al., 2019) and leaf-movement-
based growth prediction (Nagano et al., 2019).

Research involving plant disease identification usually requires 
the introduction of data consisting of images of symptomatic 
plant parts and images of asymptomatic plant parts into 
appropriate machine learning algorithms, after which plant 
disease classification models are returned. There are multiple 
factors which can influence the performances of these models, 
some of which include the type of algorithm employed, the 
algorithm evaluation criteria, overfitting, underfitting, the 
problem complexity and the learning complexity (Chaturvedi, 
2008). However, arguably the most important factors are the 
quantity and the quality of the datasets (Jain et al., 2020).

Provided sufficient quality data is supplied, even the best 
algorithms may not offer much in terms of classification 
accuracy. When it comes to obtaining and assembling high 
quality crop image data, different factors may pose practical 
hindrances. For example, the financial resources needed to 
utilize the services of skilled personnel may not be readily 
available and the image gathering process may be both error 
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prone and time consuming (Deng et al., 2021). Furthermore, 
a small number of data annotations may exist, especially for 
emerging plant diseases for which the time constraint hinders 
the availability of large amounts of image data ground-truthed 
with specialized knowledge (Lu et al., 2022).

To mitigate these, several researchers have employed generative 
adversarial networks (GANs) as a method of augmenting 
existing crop image datasets in order to improve both the 
quantity and quality of the training dataset and ultimately 
classification accuracy.

Giuffrida et al. (2017) developed the synthetic Arabidopsis 
image generator called ARIGAN (Arabidopsis Rosette Image 
Generator [through] Adversarial Network) to augment the 
A1, A2 and A4 CVPPP 2017 LCC image dataset containing 
Arabidopsis thaliana plants. Their approach resulted in a 
reduction in Arabidopsis counting errors.

Shete et al. (2020) developed the TasselGAN for generating 
field-based maize tassel data against sky backgrounds. Their 
approach increased the classification accuracy of their k-NN 
classifier.

Bin et al. (2020) augmented a dataset containing 4,062 images 
of disease grape leaves obtained from the Plant-Village dataset 
with their LeafGAN. Their LeafGAN outperformed both a 
Deep Convolutional GAN (DC-GAN) and a Wasserstein 
GAN (WGAN) on the basis of Fréchet Inception Distance 
(FID) scores. Their LeafGAN augmented dataset was used to 
develop classification models with the AlexNet, VGG, ResNet, 
DenseNet, Xception, ResNext, SEResNet and EfficientNet 
algorithms. Xception achieved a 98.70% classification accuracy 
on the LeafGAN augmented dataset, up from 96.56% on the 
initial dataset.

Deng et al. (2021) developed their RAHC_GAN to augment 
tomato leaf disease image data. Their RAHC_GAN used 
continuous hidden variables added to the generator input in 
order to continuously control the size of the generated disease 
area and to supplement intra-class information on the same 
disease. A residual attention block was added to the generator 
to make it pay more attention to the disease region of the image. 
Their RAHC_GAN significantly improved the performances 
of the AlexNet, VGGNet, GoogleNet and ResNet recognition 
networks.

Finally, Xu et al. (2022) developed a SCIT (Style Consistent 
Image Translator) which consisted of a Generator (G) for image 
translation, a Discriminator (D) for the improvement of the G 
and a VGG19 Deep Convolutional Neural Network (DCNN) 
for class-unrelated extraction and style extraction. They used 
their SCIT to augment a dataset containing 1,258 images of 
tomato leaves collected in real farms with multiple variations, 
including tomato type (such as healthy, leaf mold, canker, and 
powdery), the distance between the camera and tomato leaf, 
weather and illumination. Image classification models trained 
with datasets which contained SCIT-synthesized images 
outperformed models trained only with the original dataset.

Mindful of the trend of using GANs only as a means of data 
augmentation, we decided to investigate the effect of using a 
training dataset consisting entirely of GAN-synthesized plant 
images on the classification accuracy of an image classifier 
model. In essence, we sought to initiate research aiming at 
testing the hypothesis that it is theoretically possible to have a 
(near) perfect classifier model in every image classification task 
by using a sufficiently large GAN-synthesized training dataset.

MATERIALS AND METHODS

Dataset

Two classes of tomato data – healthy and bacterial spot disease 
– from the Plant-Village dataset (Plant Village, n.d.) were 
used. In order to ensure a balanced setup, 1,590 instances were 
selected per class, of which 1,272 instances (80%) and 318 
instances (20%) were used for training and testing respectively. 
The following figures show 9 randomly selected instances from 
both the bacterial spot disease class (Figure 1) and the healthy 
class (Figure 2).

System Specification

The scripts used for this research were written in Python 3 with 
system specifications as follows: 64-bit operating system, x64-
based processor, 8GB RAM, intel CORE i7 processor. After the 
results were obtained, both the scripts and the research dataset link 
were pushed to a GitHub repository (GitHub-Enowtakang, n.d.).

Experimental Design

A Deep Convolutional Generative Adversarial Network 
(DC-GAN) algorithm was designed and trained (with varying 
epochs) on the original bacterial spot disease training dataset 
(A) (Figure 3 and Table 1). The selected model was used to 
generate three batches of synthetic bacterial spot disease 

Figure 1: Nine instances from the bacterial spot disease class
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training datasets, namely D1, D2 and D3. Next, the same 
DC-GAN algorithm was trained (also with varying epochs) on 
the original healthy tomato training dataset (B) and the selected 
model was used to generate three batches of synthetic healthy 
tomato training datasets (D4, D5 and D6).

A stand-alone CNN classifier algorithm was then designed. It 
was trained on the original bacterial spot and healthy tomato 
training datasets (A and B) and also on the following pairs of 
synthetic training datasets (containing different batches/batch 
combinations of D1 through to D6) – E and F, G and H, I and 
J. Using the original bacterial spot disease and healthy tomato 
test datasets, the four trained classifiers (O, 1, 2 and 3) were 
tested and scored on the basis of their classification accuracies.

The DC-GAN Discriminator

The inputs consisted of images with three color (RGB) channels 
and 256 x 256 pixels. The output was a binary classification, the 

likelihood that the sample is real or not. The model consisted 
of a normal convolutional layer followed by three convolutional 
layers using a stride of 2 x 2 to down sample the input image. 
The model had no pooling layers and a single node in the output 
layer with the sigmoid activation function to predict whether 
the input sample was real or fake. The model was trained to 
minimize the binary cross-entropy loss function, appropriate 

Table 1: Description of dataset/variable codes used in Figure 3
Code Description

A Original training dataset containing 1,272 examples of 
tomato leaves with bacterial spot symptoms

B Original training dataset containing 1,272 examples of 
healthy tomato leaves

C Original testing dataset containing 318 examples of 
tomato leaves with bacterial spot symptoms

D Original testing dataset containing 318 examples of 
healthy tomato leaves

D1, D2, D3 Synthetic training datasets, each containing 1,272 
different examples of tomato leaves with bacterial spot 
symptoms

D4, D5, D6 Synthetic training datasets, each containing 1,272 
different examples of healthy tomato leaves

E Synthetic training dataset containing 3,816 
examples of tomato leaves with bacterial spot 
symptoms (D1 +D2 + D3)

F Synthetic training dataset containing 3,816 examples 
of healthy tomato leaves (D4 + D5 + D6)

G Synthetic training dataset containing 2,544 
examples of tomato leaves with bacterial spot 
symptoms (D1 +D2)

H Synthetic training dataset containing 2,544 examples 
of healthy tomato leaves (D4 + D5)

I Synthetic training dataset containing 1,272 examples 
of tomato leaves with bacterial spot symptoms (D1)

J Synthetic training dataset containing 1,272 examples 
of healthy tomato leaves (D4)

DC‑GAN Deep Convolutional Generative Adversarial Network 
algorithm

CNN 3‑block VGG Convolutional Neural Network algorithm 
with dropout and one training epoch

CNNmodel O CNN model built with A, B, C and D
CNNmodel 1 CNN model built with I, J, C and D
CNNmodel 2 CNN model built with G, H, C and D
CNNmodel 3 CNN model built with E, F, C and DFigure 2: Nine instances from the healthy class

Figure 3: Graphic description of the experimental design
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for binary classification. Dropout was used. LeakyReLU was 
used instead of ReLU. The Adam version of stochastic gradient 
descent with a learning rate of 0.0002 and a momentum of 0.5 
was also used.

The aggressive 2 x 2 stride acted to down sample the input 
image, first from 256 x 256 to 128 x 128, then to 64 x 64 and 
more before the model made a prediction. This pattern was 
designed expressly since pooling layers were not used and a large 
stride was instead adopted to achieve a similar down sampling 
effect, as detailed by Brownlee (2019b). Figure 4 graphically 
represents the model plot.

The discriminator was trained with both real and generated 
examples. The real examples were assigned a class label of 1 

while the generated examples were assigned a class label of 0. 
The pixel values were scaled from the range of unsigned integers 
[0, 255] to the normalized range of [-1, 1]. It is noteworthy that 
the generator model would later generate images with pixel 
values [-1, 1] as it would use the Tanh activation function.

The discriminator was updated on batches, specifically with a 
collection of real samples and a collection of generated samples. 
On training, an epoch was defined as one pass through the 
entire training dataset. While it was possible to systematically 
enumerate all samples in the training dataset, good training via 
stochastic gradient descent requires that the training dataset 
be shuffled prior to each epoch. A  simpler approach (which 
was employed) was to select random samples of images from 
the training dataset.

Figure 4: The DC-GAN discriminator
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Given that the generator model was not yet constructed (in 
order to provide fake images to be used during the training 
phase of the discriminator), images comprised of random pixel 
values in the range [0, 1] were generated, then further scaled to 
the range [-1, 1] in order to be normalized the same way as the 
scaled real images. Their associated class label was 0.

Finally, training the discriminator involved repeatedly retrieving 
samples of real images and samples of generated images and 
updating the discriminator for a fixed number of iterations. The 
idea of epochs was not employed at this stage. The discriminator 
was fit for a fixed number of batches (batch size=128 images) 
where per batch/iteration, 64 images were real and 64 images 
were fake. The discriminator was updated separately for real 
and fake examples so that the accuracy of the model on each 
sample prior to an update was computed.

The DC-GAN Generator

The inputs consisted of a one-hundred-element vector. The 
output was a two-dimensional square color image (3 channels) 
of 256 x 256 pixels with pixel values in the range [-1, 1]. 
Developing the generator required the transformation of a 
vector from a latent space with one hundred dimensions to a 
two-dimensional array with 256 x 256 x 3, or 196,608 values. To 
achieve this, a Dense layer with enough nodes to represent a low-
resolution version of the output image was used. Specifically, 
an image half the size (one quarter the area) of the output 
image would be 128 x 128 x 3, or 49,152 nodes, and an image 

of one quarter the size (one eighth the area) would be 64 x 64 
x 3, or 12,288 nodes. 32 x 32 x 3, or 3,072 nodes, was used. The 
activations from the latter nodes were then reshaped into an 
appropriate configuration, such as 256 different 32 x 32 feature 
maps (32 x 32 x 256).

Next, the low-resolution image was upsampled to a higher 
resolution version of the image. This deconvolution was achieved 
using the Conv2DTranspose layer. The Conv2DTranspose layer 
was configured with a (2 x 2) stride which served to quadruple the 
area of the input feature maps by doubling their width and height 
dimensions. A (4 x 4) kernel size which was double the stride 
size was used in order to avoid the checkerboard pattern which 
is sometimes observed during upsampling. Upsampling was 
repeated twice in order to arrive at the required output image.

Just as with the generator, LeakyReLU with a default slope of 
0.2 was used. The output layer of the model was a Conv2D 
with three filters for the three required channels and a kernel 
size of (3 x 3) and ‘same’ padding, designed to create a single 
feature map and preserve its dimensions at 256 x 256 x 3 pixels. 
A Tanh activation was used in order to restrict the output values 
in the desired range of [-1, 1]. It is noteworthy that since the 
generator is not trained directly, it was not compiled after its 
creation and a loss function or optimization algorithm was not 
specified. Figure 5 details the generator architecture.

Next, 9 examples of fake images were generated and visualized 
on a single plot of 3 by 3 images. Since the model was yet 

Figure 5: The DC-GAN Generator
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untrained, the generated images were completely random pixel 
values in [-1, 1], rescaled to [0, 1] (Figure 6).

The weights in the generator are updated based on the 
performance of the discriminator. When the discriminator is 
good at detecting fake samples, the generator is updated more. 
When the discriminator is relatively poor or confused when 
detecting fake samples, the generator is updated less. This 
defines the zero-sum or adversarial relationship between these 
two models (Brownlee, 2019b).

In order to implement the afore-mentioned principle, a GAN 
model which combines both the generator and the discriminator 
was created. The generator and discriminator were stacked such 
that the generator received as random input points in the latent 
space and generated samples which were directly fed into the 
discriminator, classified, and the output of the GAN used to 
update the model weights in the generator. Since the generator 
is only concerned with the discriminator’s performance on fake 
examples, all of the layers in the discriminator were marked as 
not trainable when the discriminator was part of the GAN model 
such that they could not be updated and overtrained on fake 
samples. Additionally, another change was made when training 
the generator in the GAN model – the generated samples were 
labeled as real (class label of 1) in order to attempt to deceive 
the discriminator into considering that the fake output samples 
provided by the generator were in fact, real. The rationale was 
that the discriminator would then classify the generated samples 
as not real or have a low probability of being real. Once the 
back-propagation process used to update the generator weights 
noticed this, it would be considered as a large error and then will 
update the generator weights to correct for this error, in turn 
making the generator better at generating good fake samples. 
Figure 7 details the architecture of the composite model.

The number of batches within an epoch is defined by how 
many times the batch size divides into the training dataset. 
The training datasets each had a size of 1,272 samples. A batch 
size of 32 was used. So, with rounding down, there were 39 
batches per epoch. The discriminator model was updated twice 
per batch, once with real samples and once with fake samples. 

Finally, the loss was reported per batch. The reason for this was 
that a crash in the discriminator loss is an indication that the 
generator has started generating rubbish examples which are 
easily classifiable by the discriminator. An epoch size of 500 
was used for this study.

Evaluating the DC-GAN

We subjectively evaluated the synthetic images for quality. This 
was achieved through three simultaneous activities, including 
periodically evaluating the classification accuracy of the 
discriminator on real and fake images, periodically generating 
images and saving them to file for further subjective review 
and periodically saving the generator model, all done every 10 
epochs. This resulted in 50 evaluations, 50 plots of generated 
images and 50 saved models.

Using the Final Generator Model

Upon selection of a final generator model, it was used in a 
standalone manner. This involved first loading the model from 
the file, and then using it to generate images. The generation 
of each image required a point in the latent space as input.

The Classifier Algorithm

We employed the general architectural principles of the VGG 
models since they achieved top performance in the 2014 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
competition (Simonyan & Zisserman, 2015) and their modular 
structure could be hitch-freely implemented. The VGG 
architecture involves stacking convolutional layers with small 
3 x 3 filters, followed by a max pooling layer. Together, these 
layers form a block, and these blocks can be repeated where 
the number of filters in each block is increased with the depth 
of the network such as 32, 64 and 128 for the first three blocks 
of the model. Padding is used in the convolutional layers to 
ensure that the height and width shapes of the input feature 
maps match the inputs.

Figure 6: 9 tomato images output by the untrained generator
Figure 7: The composite generator and discriminator model in the 
tomato GAN
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This architecture was explored in the binary classification 
problem (healthy leaves versus bacterial spot-infected leaves) 
using a 3-block visual geometry group (VGG) model. Each 
layer used the ReLU activation function and the He weight 
initialization. The model was fit with stochastic gradient 
descent, a learning rate of 0.001 and a momentum of 0.9. An 
output layer with one node and a sigmoid activation function 
was used. The model was optimized using the binary cross-
entropy loss function.

In order to provide more space for refinement to the three 
block VGG model during the implementation of dropout 
regularization, the number of training epochs was increased 
from 20 to 50. Dropout works by probabilistically removing, or 
dropping out, inputs to a layer. These inputs may consist of input 
variables in the data sample or activations from a previous layer. 
It has the effect of simulating a large number of networks with 
very different network structures and, in turn, making nodes in 

the network generally more robust to the inputs. A small amount 
of dropout was applied after each VGG block (20%), with more 
dropout applied to the fully connected layers near the output 
layer of the model (50%), as detailed by Brownlee (2019a).

It is noteworthy that the images were reset to a target size of 
200 x 200 pixels during the preparation of the training and 
testing datasets. Figure 8 details the architecture of the CNN 
used in this study.

RESULTS

Training Loss from the DC-GAN

Epoch 400 recorded the best performance for the healthy 
samples training subset while epoch 290 recorded the best 
performance for the bacterial spot training subset.

Figure 8: Architecture of the CNN used in this study
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Regarding epoch 400, the discriminator performed efficiently on 
the real healthy samples since it recorded no loss in 24 out of the 
39 steps. With respect to its performance on the generated healthy 
samples, it did not perform as well as it did on the real healthy 
samples. However, its performance on the real and generated 
healthy samples far outweighed its performance on the real and 
generated bacterial spot samples. Specifically, it recorded a zero 
loss in only 2 out of the 39 steps in the case of the real bacterial 
spot samples, and its maximum loss on the generated bacterial 
spot samples was a 0.143 score higher than its maximum loss on 
the generated healthy samples. The same trend was observed in 
the case of the generator loss, wherein it recorded an increased 
maximum performance on the bacterial spot discriminator 
(10.468) than on the healthy samples’ discriminator (7.823).

Regarding epoch 290, the maximum discriminator loss on the 
real bacterial spot examples occurred at step 1 (0.224) while 
the minimum discriminator loss occurred at step 22 (0.001). 
The maximum discriminator loss on the generated bacterial 
spot examples occurred at step 27 (0.189) while the minimum 
discriminator loss occurred at steps 35 and 36  (0.004). The 
maximum generator loss via the bacterial spot example 
discriminator occurred at step 35 (6.859) while the minimum 
generator loss occurred at step 12  (3.460). The maximum 
discriminator loss on the real healthy examples occurred at step 
5 (4.360) while the minimum discriminator loss occurred at step 
27 (0.000). The maximum discriminator loss on the generated 
healthy examples occurred at step 3 (4.586) while the minimum 
discriminator loss occurred at steps 1, 4, 5, 8, 16, 21, 24, 25, 31 
and 37 (0.000). The maximum generator loss via the healthy 
examples’ discriminator occurred at step 4 (51.737) while the 
minimum generator loss occurred at step 29 (8.120). For the 
bacterial spot results, the maximum discriminator loss on the 
real samples (0.230) surpassed the maximum discriminator 
loss on the generated samples (0.189) and the minimum 
discriminator loss on the real samples (0.001) surpassed the 
minimum discriminator loss on the generated samples (0.004 for 
steps 35 and 36). For the healthy samples results, the maximum 
discriminator loss on the generated samples (4.586) surpassed 
the maximum discriminator loss on the real samples (4.360) 
while the minimum discriminator loss on the real (step 31) and 
generated samples (steps 1, 4, 5, 8, 16, 21, 24, 25, 31 and 37) 
was the same (0.000). The maximum and minimum generator 
losses on the bacterial spot discriminator (6.859 and 3.460) 
were inferior and superior (respectively) to the maximum and 
minimum generator losses on the healthy sample’s discriminator 
(51.737 and 38.604). The discriminator loss extrema on the real 
healthy samples occurred much closer (one step difference) than 
those on the real bacterial spot samples (four step difference). 
The same trend was observed in the case of the discriminator 
losses on the generated healthy and bacterial spot samples. 
Tables 2 and 3 provide numerical details on the loss values from 
training the DC-GAN at both epochs 400 and 290.

Efficiency of Generator Models

The best generator model for the healthy samples was generator 
model 400, obtained after 400 training epochs (Figure  9). 

The best generator model for the bacterial spot samples was 
generator model 290, obtained after 290 training epochs 
(Figure 10). It is important to note that generator model 290 
(healthy, Figure 9) performed worse than generator model 290 
(bacterial spot, Figure 10). Also, generator model 430 (bacterial 
spot, Figure 10) performed worse than generator model 290 of 
the same training class.

Classification Results

When the CNN classifier algorithm was trained on the real 
(original) dataset containing 1,272 training examples per 
class, it achieved a classification accuracy of 76.447% on the 
test dataset. When the same algorithm was trained on the 
synthetic dataset containing 1,272 training examples per class, it 
achieved a classification accuracy of 60.629% on the test dataset. 
Again, after being trained on the synthetic dataset containing 
2,554 examples per class, it achieved a classification accuracy 
of 71.371% on the test dataset. Finally, after being trained on 
the synthetic dataset containing 3,816 examples per class, it 
achieved a classification accuracy of 77.088% on the test dataset, 
outperforming the classification accuracy of the model resulting 
from the real (original) dataset.

DISCUSSION

Efficiency of the Generator Models

Two noteworthy results stood out. Firstly, the bacterial spot 
generator model obtained after 430 training epochs was 
outperformed by the bacterial spot generator model obtained 
after 290 training epochs. This seemed to suggest that further 
training of a DC-GAN model does not always guarantee better 
results (given that the bacterial spot generator model obtained 
after 400 training epochs outperformed that generated after 10 
training epochs). Secondly, the healthy samples generator model 

Figure 9: Original and DC-GAN-synthesized healthy instances. CPU 
training hours for 10, 290 and 400 epochs are 6+, 143+ and 198+
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Figure 10: Original and DC-GAN-synthesized bacterial spot disease 
instances. CPU training hours for 10, 290 and 430 epochs are 5+, 
145+ and 215+

obtained after 290 training epochs performed significantly 
better than the bacterial spot generator model obtained after 
the same number of epochs. This strongly suggested that an 
observed benchmark in a given scenario may not necessarily 
indicate that it would hold a similar status in a very closely 
related scenario.

Significance of the Classification Results

The objective of this research was to investigate the application 
of an all GAN-synthesized training dataset to the improvement 
of plant disease classification accuracy. It was observed from the 
results that it required up to thrice the number of real (original) 
samples for the model built with synthetic data to surpass the 
model built with real samples. This can be explained on the 
basis of data quality, given that the synthetic data samples did 
not exactly replicate the original samples on a pixel-by-pixel 
basis, therefore requiring more instances in order to achieve 
superior performance.

This research and consequent findings introduce new 
thinking in the applications of generative adversarial networks 
(Goodfellow et al., 2014) to plant disease classifier accuracy 
improvement since the current applications involve mostly data 
augmentation and to a less extent, resolving the problem of class 
imbalance (Nazki et al., 2019) while this endeavor directs the 
focus (with success) to the complete replacement of the entire 
original dataset with GAN-synthesized versions which can be 
theoretically supplied in an unlimited manner, with the only 
real limitation being storage capacity.

The findings directly contrast a recently asserted claim by 
Deng et al. (2021) who, in their work, added continuous 
hidden variables at the input generator in order to continuously 
control the size of the generated area and supplement intra-

Table 2: Output of loss from training the DC‑GAN on the tomato 
training dataset: epoch 400
Step d1 Bacterial spot g d1 Healthy samples g

d2 d2

1/39 0.062 0.007 6.955 0.152 0.061 4.379
2/39 0.019 0.042 6.378 0.001 0.016 5.907
3/39 0.020 0.007 6.556 0.000 0.003 6.499
4/39 0.017 0.243 10.468 0.002 0.004 6.451
5/39 0.153 0.000 8.980 0.002 0.002 6.355
6/39 0.031 0.007 5.212 0.003 0.003 6.294
7/39 0.001 0.129 8.605 0.000 0.002 5.890
8/39 0.008 0.001 8.543 0.000 0.004 6.336
9/39 0.038 0.003 7.298 0.005 0.004 6.101
10/39 0.034 0.007 4.962 0.000 0.003 6.458
11/39 0.007 0.014 4.753 0.000 0.005 6.887
12/39 0.008 0.064 5.864 0.002 0.001 6.705
13/39 0.033 0.006 6.622 0.011 0.003 6.397
14/39 0.003 0.005 6.127 0.006 0.005 6.128
15/39 0.071 0.027 4.003 0.000 0.004 6.282
16/39 0.022 0.076 5.975 0.000 0.003 7.084
17/39 0.029 0.015 6.198 0.002 0.001 7.433
18/39 0.004 0.007 6.499 0.000 0.001 7.225
19/39 0.097 0.010 4.181 0.005 0.001 7.147
20/39 0.021 0.076 6.902 0.000 0.005 7.264
21/39 0.039 0.004 6.640 0.000 0.001 7.823
22/39 0.030 0.018 6.114 0.000 0.000 7.789
23/39 0.005 0.014 6.461 0.000 0.001 7.456
24/39 0.022 0.003 5.522 0.486 0.018 4.141
25/39 0.000 0.028 5.608 0.000 0.035 5.203
26/39 0.027 0.026 6.087 0.000 0.008 6.730
27/39 0.001 0.015 7.216 0.368 0.030 3.878
28/39 0.095 0.024 5.122 0.000 0.024 4.880
29/39 0.087 0.049 5.381 0.000 0.006 5.560
30/39 0.000 0.008 6.294 0.000 0.005 5.893
31/39 0.052 0.016 5.350 0.000 0.004 6.125
32/39 0.001 0.123 8.573 0.127 0.073 4.531
33/39 0.137 0.005 5.926 0.270 0.100 5.022
34/39 0.098 0.091 4.887 0.000 0.003 6.563
35/39 0.005 0.018 6.421 0.000 0.004 6.268
36/39 0.014 0.004 6.151 0.000 0.004 6.244
37/39 0.015 0.012 5.402 0.000 0.003 6.227
38/39 0.008 0.026 5.402 0.000 0.003 6.098
39/39 0.017 0.027 5.444 0.000 0.003 6.021

For this epoch, accuracy real was 99% (& 99%), fake 100% (& 100%). 
d1 represents discriminator loss on real examples; d2 represents 
discriminator loss on generated examples; g represents generator loss via 
the discriminator. 

class information. They also added a residual attention block 
to the generator in order to make it pay more attention to 
the area of interest. A  multiscale discriminator was finally 
used to enrich the detailed texture of the generated image. 
They commented that although adding data can improve the 
disease recognition performance of classifier models (AlexNet, 
VGGNet, GoogLeNet and ResNet in their case), adding too 
much synthetic data to the original training set can both damage 
the quality of the resulting training dataset and lead to classifier 
performance degradation. This was the only article we found to 
comment on the use of more synthetic data, even though they 
remained in the philosophy of data augmentation. It is worthy 
of note that Deng and collaborators were partially right, in the 
sense that in light of the findings of this research, it required a 
lot more synthetic data to achieve 0.641% superior classification 
performance in comparison with the original training data, 
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on the test dataset. Our results however challenged their 
assertion that the drop in classification performance could not 
be countered by the increase in the amount of synthetic data 
employed.

This new thinking, therefore, hopes to open the doorway to 
research endeavors which aim to demonstrate the achievability 
of a (near) perfect classification accuracy in every case, with the 
employment of a suitably large synthesized training dataset in 
replacement of the comparatively lower quantity original dataset.
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