
Research in Biotechnology 2023, 14: 1-11
doi: 10.25081/rib.2023.v14.8214
https://updatepublishing.com/journal/index.php/rib/

Res Biotechnol  •  2023  •  Vol 14		 1

INTRODUCTION

In supervised machine learning, a performance criterion
is optimized using historical data (Jiang et al., 2020). If
the performance criterion involves predicting a numerical
outcome, the task is said to be a regression (Castillo-Botón
et al., 2022). If the performance criterion involves predicting
a categorical outcome, the task is said to be a classification
(Howlader et al., 2022). If there are just two possible outcomes
in the latter scenario, the classification is specified as binary
(Naik & Purohit, 2017). If, however, there are more than two
possible outcomes, the classification is specified as multi-class
(Tabosa de Oliveira et al., 2022).

Supervised machine learning has been used in diverse
plant research endeavors. They include but are not limited
to salt stress tolerance assessment (Moghimi et al., 2018),
mitochondrially localized plant protein prediction (Zhang
et al., 2018), hyperspectral imagery-based grapevine variety
classification (Gutiérrez et al., 2018), gene regulatory network
prediction from transcriptomic datasets (Mochida et al.,
2018), determination of arbuscular mycorrhizal signature in

roots (Mohammadi-Dehcheshmeh et al., 2018), real-time fruit
detection within trees (Bresilla et al., 2019) and leaf-movement-
based growth prediction (Nagano et al., 2019).

Research involving plant disease identification usually requires
the introduction of data consisting of images of symptomatic
plant parts and images of asymptomatic plant parts into
appropriate machine learning algorithms, after which plant
disease classification models are returned. There are multiple
factors which can influence the performances of these models,
some of which include the type of algorithm employed, the
algorithm evaluation criteria, overfitting, underfitting, the
problem complexity and the learning complexity (Chaturvedi,
2008). However, arguably the most important factors are the
quantity and the quality of the datasets (Jain et al., 2020).

Provided sufficient quality data is supplied, even the best
algorithms may not offer much in terms of classification
accuracy. When it comes to obtaining and assembling high
quality crop image data, different factors may pose practical
hindrances. For example, the financial resources needed to
utilize the services of skilled personnel may not be readily
available and the image gathering process may be both error

Improvement of plant disease
classification accuracy with generative
model-synthesized training datasets
Enow Takang Achuo Albert*, Ngalle Hermine Bille,
Ngonkeu Mangaptche Eddy Leonard
Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Center Region,
Cameroon

ABSTRACT
Digitalization in agriculture requires critical research into applications of artificial intelligence to various specialization
domains. This work aimed at investigating the application of image synthesis technology to the mitigation of the data
volume constraint to digital plant disease phenotyping accuracy. We designed an experiment involving the use of a deep
convolutional generative adversarial network (DC-GAN) to synthesize photorealistic data for healthy and bacterial spot
disease-infected tomato leaves. The training dataset contained 1,272 instances per class. We further employed a 3-block
visual geometry group (VGG) convolutional neural network (CNN) model with dropout regularization and 1 epoch
to compare classification accuracies of the original dataset and various synthetic datasets. Our results showed that the
third DC-GAN synthesized training dataset containing 3,816 synthetic examples of both healthy and bacterial spot
infected tomato leaf classes outperformed the original training dataset containing 1,272 real examples of both tomato
leaf classes (77.088% accuracy with the former dataset on a 3-block VGG CNN model with dropout regularization and
1 epoch, as compared to 76.447% accuracy with the latter dataset on the same classifier).

KEYWORDS: Plant disease phenotyping, Generative adversarial networks, Classification accuracy improvement

Copyright: © The authors. This article is open access and licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose,
even commercially provided the work is properly cited. Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made.

Research Article

Received: November 23, 2022
Revised: February 06, 2023
Accepted: February 07, 2023
Published: February 13, 2023

*Corresponding Author:
Enow Takang Achuo Albert
E-mail: albert.enow@
facsciences-uy1.cm

ISSN: 2229-791X

Albert et al.

2	 Res Biotechnol  •  2023  •  Vol 14

prone and time consuming (Deng et al., 2021). Furthermore,
a small number of data annotations may exist, especially for
emerging plant diseases for which the time constraint hinders
the availability of large amounts of image data ground-truthed
with specialized knowledge (Lu et al., 2022).

To mitigate these, several researchers have employed generative
adversarial networks (GANs) as a method of augmenting
existing crop image datasets in order to improve both the
quantity and quality of the training dataset and ultimately
classification accuracy.

Giuffrida et al. (2017) developed the synthetic Arabidopsis
image generator called ARIGAN (Arabidopsis Rosette Image
Generator [through] Adversarial Network) to augment the
A1, A2 and A4 CVPPP 2017 LCC image dataset containing
Arabidopsis thaliana plants. Their approach resulted in a
reduction in Arabidopsis counting errors.

Shete et al. (2020) developed the TasselGAN for generating
field-based maize tassel data against sky backgrounds. Their
approach increased the classification accuracy of their k-NN
classifier.

Bin et al. (2020) augmented a dataset containing 4,062 images
of disease grape leaves obtained from the Plant-Village dataset
with their LeafGAN. Their LeafGAN outperformed both a
Deep Convolutional GAN (DC-GAN) and a Wasserstein
GAN (WGAN) on the basis of Fréchet Inception Distance
(FID) scores. Their LeafGAN augmented dataset was used to
develop classification models with the AlexNet, VGG, ResNet,
DenseNet, Xception, ResNext, SEResNet and EfficientNet
algorithms. Xception achieved a 98.70% classification accuracy
on the LeafGAN augmented dataset, up from 96.56% on the
initial dataset.

Deng et al. (2021) developed their RAHC_GAN to augment
tomato leaf disease image data. Their RAHC_GAN used
continuous hidden variables added to the generator input in
order to continuously control the size of the generated disease
area and to supplement intra-class information on the same
disease. A residual attention block was added to the generator
to make it pay more attention to the disease region of the image.
Their RAHC_GAN significantly improved the performances
of the AlexNet, VGGNet, GoogleNet and ResNet recognition
networks.

Finally, Xu et al. (2022) developed a SCIT (Style Consistent
Image Translator) which consisted of a Generator (G) for image
translation, a Discriminator (D) for the improvement of the G
and a VGG19 Deep Convolutional Neural Network (DCNN)
for class-unrelated extraction and style extraction. They used
their SCIT to augment a dataset containing 1,258 images of
tomato leaves collected in real farms with multiple variations,
including tomato type (such as healthy, leaf mold, canker, and
powdery), the distance between the camera and tomato leaf,
weather and illumination. Image classification models trained
with datasets which contained SCIT-synthesized images
outperformed models trained only with the original dataset.

Mindful of the trend of using GANs only as a means of data
augmentation, we decided to investigate the effect of using a
training dataset consisting entirely of GAN-synthesized plant
images on the classification accuracy of an image classifier
model. In essence, we sought to initiate research aiming at
testing the hypothesis that it is theoretically possible to have a
(near) perfect classifier model in every image classification task
by using a sufficiently large GAN-synthesized training dataset.

MATERIALS AND METHODS

Dataset

Two classes of tomato data – healthy and bacterial spot disease
– from the Plant-Village dataset (Plant Village, n.d.) were
used. In order to ensure a balanced setup, 1,590 instances were
selected per class, of which 1,272 instances (80%) and 318
instances (20%) were used for training and testing respectively.
The following figures show 9 randomly selected instances from
both the bacterial spot disease class (Figure 1) and the healthy
class (Figure 2).

System Specification

The scripts used for this research were written in Python 3 with
system specifications as follows: 64-bit operating system, x64-
based processor, 8GB RAM, intel CORE i7 processor. After the
results were obtained, both the scripts and the research dataset link
were pushed to a GitHub repository (GitHub-Enowtakang, n.d.).

Experimental Design

A Deep Convolutional Generative Adversarial Network
(DC-GAN) algorithm was designed and trained (with varying
epochs) on the original bacterial spot disease training dataset
(A) (Figure 3 and Table 1). The selected model was used to
generate three batches of synthetic bacterial spot disease

Figure 1: Nine instances from the bacterial spot disease class

Res Biotechnol  •  2023  •  Vol 14		 3

� Albert et al.

training datasets, namely D1, D2 and D3. Next, the same
DC-GAN algorithm was trained (also with varying epochs) on
the original healthy tomato training dataset (B) and the selected
model was used to generate three batches of synthetic healthy
tomato training datasets (D4, D5 and D6).

A stand-alone CNN classifier algorithm was then designed. It
was trained on the original bacterial spot and healthy tomato
training datasets (A and B) and also on the following pairs of
synthetic training datasets (containing different batches/batch
combinations of D1 through to D6) – E and F, G and H, I and
J. Using the original bacterial spot disease and healthy tomato
test datasets, the four trained classifiers (O, 1, 2 and 3) were
tested and scored on the basis of their classification accuracies.

The DC-GAN Discriminator

The inputs consisted of images with three color (RGB) channels
and 256 x 256 pixels. The output was a binary classification, the

likelihood that the sample is real or not. The model consisted
of a normal convolutional layer followed by three convolutional
layers using a stride of 2 x 2 to down sample the input image.
The model had no pooling layers and a single node in the output
layer with the sigmoid activation function to predict whether
the input sample was real or fake. The model was trained to
minimize the binary cross-entropy loss function, appropriate

Table 1: Description of dataset/variable codes used in Figure 3
Code Description

A Original training dataset containing 1,272 examples of
tomato leaves with bacterial spot symptoms

B Original training dataset containing 1,272 examples of
healthy tomato leaves

C Original testing dataset containing 318 examples of
tomato leaves with bacterial spot symptoms

D Original testing dataset containing 318 examples of
healthy tomato leaves

D1, D2, D3 Synthetic training datasets, each containing 1,272
different examples of tomato leaves with bacterial spot
symptoms

D4, D5, D6 Synthetic training datasets, each containing 1,272
different examples of healthy tomato leaves

E Synthetic training dataset containing 3,816
examples of tomato leaves with bacterial spot
symptoms (D1 +D2 + D3)

F Synthetic training dataset containing 3,816 examples
of healthy tomato leaves (D4 + D5 + D6)

G Synthetic training dataset containing 2,544
examples of tomato leaves with bacterial spot
symptoms (D1 +D2)

H Synthetic training dataset containing 2,544 examples
of healthy tomato leaves (D4 + D5)

I Synthetic training dataset containing 1,272 examples
of tomato leaves with bacterial spot symptoms (D1)

J Synthetic training dataset containing 1,272 examples
of healthy tomato leaves (D4)

DC‑GAN Deep Convolutional Generative Adversarial Network
algorithm

CNN 3‑block VGG Convolutional Neural Network algorithm
with dropout and one training epoch

CNNmodel O CNN model built with A, B, C and D
CNNmodel 1 CNN model built with I, J, C and D
CNNmodel 2 CNN model built with G, H, C and D
CNNmodel 3 CNN model built with E, F, C and DFigure 2: Nine instances from the healthy class

Figure 3: Graphic description of the experimental design

Albert et al.

4	 Res Biotechnol  •  2023  •  Vol 14

for binary classification. Dropout was used. LeakyReLU was
used instead of ReLU. The Adam version of stochastic gradient
descent with a learning rate of 0.0002 and a momentum of 0.5
was also used.

The aggressive 2 x 2 stride acted to down sample the input
image, first from 256 x 256 to 128 x 128, then to 64 x 64 and
more before the model made a prediction. This pattern was
designed expressly since pooling layers were not used and a large
stride was instead adopted to achieve a similar down sampling
effect, as detailed by Brownlee (2019b). Figure 4 graphically
represents the model plot.

The discriminator was trained with both real and generated
examples. The real examples were assigned a class label of 1

while the generated examples were assigned a class label of 0.
The pixel values were scaled from the range of unsigned integers
[0, 255] to the normalized range of [-1, 1]. It is noteworthy that
the generator model would later generate images with pixel
values [-1, 1] as it would use the Tanh activation function.

The discriminator was updated on batches, specifically with a
collection of real samples and a collection of generated samples.
On training, an epoch was defined as one pass through the
entire training dataset. While it was possible to systematically
enumerate all samples in the training dataset, good training via
stochastic gradient descent requires that the training dataset
be shuffled prior to each epoch. A simpler approach (which
was employed) was to select random samples of images from
the training dataset.

Figure 4: The DC-GAN discriminator

Res Biotechnol  •  2023  •  Vol 14		 5

� Albert et al.

Given that the generator model was not yet constructed (in
order to provide fake images to be used during the training
phase of the discriminator), images comprised of random pixel
values in the range [0, 1] were generated, then further scaled to
the range [-1, 1] in order to be normalized the same way as the
scaled real images. Their associated class label was 0.

Finally, training the discriminator involved repeatedly retrieving
samples of real images and samples of generated images and
updating the discriminator for a fixed number of iterations. The
idea of epochs was not employed at this stage. The discriminator
was fit for a fixed number of batches (batch size=128 images)
where per batch/iteration, 64 images were real and 64 images
were fake. The discriminator was updated separately for real
and fake examples so that the accuracy of the model on each
sample prior to an update was computed.

The DC-GAN Generator

The inputs consisted of a one-hundred-element vector. The
output was a two-dimensional square color image (3 channels)
of 256 x 256 pixels with pixel values in the range [-1, 1].
Developing the generator required the transformation of a
vector from a latent space with one hundred dimensions to a
two-dimensional array with 256 x 256 x 3, or 196,608 values. To
achieve this, a Dense layer with enough nodes to represent a low-
resolution version of the output image was used. Specifically,
an image half the size (one quarter the area) of the output
image would be 128 x 128 x 3, or 49,152 nodes, and an image

of one quarter the size (one eighth the area) would be 64 x 64
x 3, or 12,288 nodes. 32 x 32 x 3, or 3,072 nodes, was used. The
activations from the latter nodes were then reshaped into an
appropriate configuration, such as 256 different 32 x 32 feature
maps (32 x 32 x 256).

Next, the low-resolution image was upsampled to a higher
resolution version of the image. This deconvolution was achieved
using the Conv2DTranspose layer. The Conv2DTranspose layer
was configured with a (2 x 2) stride which served to quadruple the
area of the input feature maps by doubling their width and height
dimensions. A (4 x 4) kernel size which was double the stride
size was used in order to avoid the checkerboard pattern which
is sometimes observed during upsampling. Upsampling was
repeated twice in order to arrive at the required output image.

Just as with the generator, LeakyReLU with a default slope of
0.2 was used. The output layer of the model was a Conv2D
with three filters for the three required channels and a kernel
size of (3 x 3) and ‘same’ padding, designed to create a single
feature map and preserve its dimensions at 256 x 256 x 3 pixels.
A Tanh activation was used in order to restrict the output values
in the desired range of [-1, 1]. It is noteworthy that since the
generator is not trained directly, it was not compiled after its
creation and a loss function or optimization algorithm was not
specified. Figure 5 details the generator architecture.

Next, 9 examples of fake images were generated and visualized
on a single plot of 3 by 3 images. Since the model was yet

Figure 5: The DC-GAN Generator

Albert et al.

6	 Res Biotechnol  •  2023  •  Vol 14

untrained, the generated images were completely random pixel
values in [-1, 1], rescaled to [0, 1] (Figure 6).

The weights in the generator are updated based on the
performance of the discriminator. When the discriminator is
good at detecting fake samples, the generator is updated more.
When the discriminator is relatively poor or confused when
detecting fake samples, the generator is updated less. This
defines the zero-sum or adversarial relationship between these
two models (Brownlee, 2019b).

In order to implement the afore-mentioned principle, a GAN
model which combines both the generator and the discriminator
was created. The generator and discriminator were stacked such
that the generator received as random input points in the latent
space and generated samples which were directly fed into the
discriminator, classified, and the output of the GAN used to
update the model weights in the generator. Since the generator
is only concerned with the discriminator’s performance on fake
examples, all of the layers in the discriminator were marked as
not trainable when the discriminator was part of the GAN model
such that they could not be updated and overtrained on fake
samples. Additionally, another change was made when training
the generator in the GAN model – the generated samples were
labeled as real (class label of 1) in order to attempt to deceive
the discriminator into considering that the fake output samples
provided by the generator were in fact, real. The rationale was
that the discriminator would then classify the generated samples
as not real or have a low probability of being real. Once the
back-propagation process used to update the generator weights
noticed this, it would be considered as a large error and then will
update the generator weights to correct for this error, in turn
making the generator better at generating good fake samples.
Figure 7 details the architecture of the composite model.

The number of batches within an epoch is defined by how
many times the batch size divides into the training dataset.
The training datasets each had a size of 1,272 samples. A batch
size of 32 was used. So, with rounding down, there were 39
batches per epoch. The discriminator model was updated twice
per batch, once with real samples and once with fake samples.

Finally, the loss was reported per batch. The reason for this was
that a crash in the discriminator loss is an indication that the
generator has started generating rubbish examples which are
easily classifiable by the discriminator. An epoch size of 500
was used for this study.

Evaluating the DC-GAN

We subjectively evaluated the synthetic images for quality. This
was achieved through three simultaneous activities, including
periodically evaluating the classification accuracy of the
discriminator on real and fake images, periodically generating
images and saving them to file for further subjective review
and periodically saving the generator model, all done every 10
epochs. This resulted in 50 evaluations, 50 plots of generated
images and 50 saved models.

Using the Final Generator Model

Upon selection of a final generator model, it was used in a
standalone manner. This involved first loading the model from
the file, and then using it to generate images. The generation
of each image required a point in the latent space as input.

The Classifier Algorithm

We employed the general architectural principles of the VGG
models since they achieved top performance in the 2014
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
competition (Simonyan & Zisserman, 2015) and their modular
structure could be hitch-freely implemented. The VGG
architecture involves stacking convolutional layers with small
3 x 3 filters, followed by a max pooling layer. Together, these
layers form a block, and these blocks can be repeated where
the number of filters in each block is increased with the depth
of the network such as 32, 64 and 128 for the first three blocks
of the model. Padding is used in the convolutional layers to
ensure that the height and width shapes of the input feature
maps match the inputs.

Figure 6: 9 tomato images output by the untrained generator
Figure 7: The composite generator and discriminator model in the
tomato GAN

Res Biotechnol  •  2023  •  Vol 14		 7

� Albert et al.

This architecture was explored in the binary classification
problem (healthy leaves versus bacterial spot-infected leaves)
using a 3-block visual geometry group (VGG) model. Each
layer used the ReLU activation function and the He weight
initialization. The model was fit with stochastic gradient
descent, a learning rate of 0.001 and a momentum of 0.9. An
output layer with one node and a sigmoid activation function
was used. The model was optimized using the binary cross-
entropy loss function.

In order to provide more space for refinement to the three
block VGG model during the implementation of dropout
regularization, the number of training epochs was increased
from 20 to 50. Dropout works by probabilistically removing, or
dropping out, inputs to a layer. These inputs may consist of input
variables in the data sample or activations from a previous layer.
It has the effect of simulating a large number of networks with
very different network structures and, in turn, making nodes in

the network generally more robust to the inputs. A small amount
of dropout was applied after each VGG block (20%), with more
dropout applied to the fully connected layers near the output
layer of the model (50%), as detailed by Brownlee (2019a).

It is noteworthy that the images were reset to a target size of
200 x 200 pixels during the preparation of the training and
testing datasets. Figure 8 details the architecture of the CNN
used in this study.

RESULTS

Training Loss from the DC-GAN

Epoch 400 recorded the best performance for the healthy
samples training subset while epoch 290 recorded the best
performance for the bacterial spot training subset.

Figure 8: Architecture of the CNN used in this study

Albert et al.

8	 Res Biotechnol  •  2023  •  Vol 14

Regarding epoch 400, the discriminator performed efficiently on
the real healthy samples since it recorded no loss in 24 out of the
39 steps. With respect to its performance on the generated healthy
samples, it did not perform as well as it did on the real healthy
samples. However, its performance on the real and generated
healthy samples far outweighed its performance on the real and
generated bacterial spot samples. Specifically, it recorded a zero
loss in only 2 out of the 39 steps in the case of the real bacterial
spot samples, and its maximum loss on the generated bacterial
spot samples was a 0.143 score higher than its maximum loss on
the generated healthy samples. The same trend was observed in
the case of the generator loss, wherein it recorded an increased
maximum performance on the bacterial spot discriminator
(10.468) than on the healthy samples’ discriminator (7.823).

Regarding epoch 290, the maximum discriminator loss on the
real bacterial spot examples occurred at step 1 (0.224) while
the minimum discriminator loss occurred at step 22 (0.001).
The maximum discriminator loss on the generated bacterial
spot examples occurred at step 27 (0.189) while the minimum
discriminator loss occurred at steps 35 and 36 (0.004). The
maximum generator loss via the bacterial spot example
discriminator occurred at step 35 (6.859) while the minimum
generator loss occurred at step 12 (3.460). The maximum
discriminator loss on the real healthy examples occurred at step
5 (4.360) while the minimum discriminator loss occurred at step
27 (0.000). The maximum discriminator loss on the generated
healthy examples occurred at step 3 (4.586) while the minimum
discriminator loss occurred at steps 1, 4, 5, 8, 16, 21, 24, 25, 31
and 37 (0.000). The maximum generator loss via the healthy
examples’ discriminator occurred at step 4 (51.737) while the
minimum generator loss occurred at step 29 (8.120). For the
bacterial spot results, the maximum discriminator loss on the
real samples (0.230) surpassed the maximum discriminator
loss on the generated samples (0.189) and the minimum
discriminator loss on the real samples (0.001) surpassed the
minimum discriminator loss on the generated samples (0.004 for
steps 35 and 36). For the healthy samples results, the maximum
discriminator loss on the generated samples (4.586) surpassed
the maximum discriminator loss on the real samples (4.360)
while the minimum discriminator loss on the real (step 31) and
generated samples (steps 1, 4, 5, 8, 16, 21, 24, 25, 31 and 37)
was the same (0.000). The maximum and minimum generator
losses on the bacterial spot discriminator (6.859 and 3.460)
were inferior and superior (respectively) to the maximum and
minimum generator losses on the healthy sample’s discriminator
(51.737 and 38.604). The discriminator loss extrema on the real
healthy samples occurred much closer (one step difference) than
those on the real bacterial spot samples (four step difference).
The same trend was observed in the case of the discriminator
losses on the generated healthy and bacterial spot samples.
Tables 2 and 3 provide numerical details on the loss values from
training the DC-GAN at both epochs 400 and 290.

Efficiency of Generator Models

The best generator model for the healthy samples was generator
model 400, obtained after 400 training epochs (Figure 9).

The best generator model for the bacterial spot samples was
generator model 290, obtained after 290 training epochs
(Figure 10). It is important to note that generator model 290
(healthy, Figure 9) performed worse than generator model 290
(bacterial spot, Figure 10). Also, generator model 430 (bacterial
spot, Figure 10) performed worse than generator model 290 of
the same training class.

Classification Results

When the CNN classifier algorithm was trained on the real
(original) dataset containing 1,272 training examples per
class, it achieved a classification accuracy of 76.447% on the
test dataset. When the same algorithm was trained on the
synthetic dataset containing 1,272 training examples per class, it
achieved a classification accuracy of 60.629% on the test dataset.
Again, after being trained on the synthetic dataset containing
2,554 examples per class, it achieved a classification accuracy
of 71.371% on the test dataset. Finally, after being trained on
the synthetic dataset containing 3,816 examples per class, it
achieved a classification accuracy of 77.088% on the test dataset,
outperforming the classification accuracy of the model resulting
from the real (original) dataset.

DISCUSSION

Efficiency of the Generator Models

Two noteworthy results stood out. Firstly, the bacterial spot
generator model obtained after 430 training epochs was
outperformed by the bacterial spot generator model obtained
after 290 training epochs. This seemed to suggest that further
training of a DC-GAN model does not always guarantee better
results (given that the bacterial spot generator model obtained
after 400 training epochs outperformed that generated after 10
training epochs). Secondly, the healthy samples generator model

Figure 9: Original and DC-GAN-synthesized healthy instances. CPU
training hours for 10, 290 and 400 epochs are 6+, 143+ and 198+

Res Biotechnol  •  2023  •  Vol 14		 9

� Albert et al.

Figure 10: Original and DC-GAN-synthesized bacterial spot disease
instances. CPU training hours for 10, 290 and 430 epochs are 5+,
145+ and 215+

obtained after 290 training epochs performed significantly
better than the bacterial spot generator model obtained after
the same number of epochs. This strongly suggested that an
observed benchmark in a given scenario may not necessarily
indicate that it would hold a similar status in a very closely
related scenario.

Significance of the Classification Results

The objective of this research was to investigate the application
of an all GAN-synthesized training dataset to the improvement
of plant disease classification accuracy. It was observed from the
results that it required up to thrice the number of real (original)
samples for the model built with synthetic data to surpass the
model built with real samples. This can be explained on the
basis of data quality, given that the synthetic data samples did
not exactly replicate the original samples on a pixel-by-pixel
basis, therefore requiring more instances in order to achieve
superior performance.

This research and consequent findings introduce new
thinking in the applications of generative adversarial networks
(Goodfellow et al., 2014) to plant disease classifier accuracy
improvement since the current applications involve mostly data
augmentation and to a less extent, resolving the problem of class
imbalance (Nazki et al., 2019) while this endeavor directs the
focus (with success) to the complete replacement of the entire
original dataset with GAN-synthesized versions which can be
theoretically supplied in an unlimited manner, with the only
real limitation being storage capacity.

The findings directly contrast a recently asserted claim by
Deng et al. (2021) who, in their work, added continuous
hidden variables at the input generator in order to continuously
control the size of the generated area and supplement intra-

Table 2: Output of loss from training the DC‑GAN on the tomato
training dataset: epoch 400
Step d1 Bacterial spot g d1 Healthy samples g

d2 d2

1/39 0.062 0.007 6.955 0.152 0.061 4.379
2/39 0.019 0.042 6.378 0.001 0.016 5.907
3/39 0.020 0.007 6.556 0.000 0.003 6.499
4/39 0.017 0.243 10.468 0.002 0.004 6.451
5/39 0.153 0.000 8.980 0.002 0.002 6.355
6/39 0.031 0.007 5.212 0.003 0.003 6.294
7/39 0.001 0.129 8.605 0.000 0.002 5.890
8/39 0.008 0.001 8.543 0.000 0.004 6.336
9/39 0.038 0.003 7.298 0.005 0.004 6.101
10/39 0.034 0.007 4.962 0.000 0.003 6.458
11/39 0.007 0.014 4.753 0.000 0.005 6.887
12/39 0.008 0.064 5.864 0.002 0.001 6.705
13/39 0.033 0.006 6.622 0.011 0.003 6.397
14/39 0.003 0.005 6.127 0.006 0.005 6.128
15/39 0.071 0.027 4.003 0.000 0.004 6.282
16/39 0.022 0.076 5.975 0.000 0.003 7.084
17/39 0.029 0.015 6.198 0.002 0.001 7.433
18/39 0.004 0.007 6.499 0.000 0.001 7.225
19/39 0.097 0.010 4.181 0.005 0.001 7.147
20/39 0.021 0.076 6.902 0.000 0.005 7.264
21/39 0.039 0.004 6.640 0.000 0.001 7.823
22/39 0.030 0.018 6.114 0.000 0.000 7.789
23/39 0.005 0.014 6.461 0.000 0.001 7.456
24/39 0.022 0.003 5.522 0.486 0.018 4.141
25/39 0.000 0.028 5.608 0.000 0.035 5.203
26/39 0.027 0.026 6.087 0.000 0.008 6.730
27/39 0.001 0.015 7.216 0.368 0.030 3.878
28/39 0.095 0.024 5.122 0.000 0.024 4.880
29/39 0.087 0.049 5.381 0.000 0.006 5.560
30/39 0.000 0.008 6.294 0.000 0.005 5.893
31/39 0.052 0.016 5.350 0.000 0.004 6.125
32/39 0.001 0.123 8.573 0.127 0.073 4.531
33/39 0.137 0.005 5.926 0.270 0.100 5.022
34/39 0.098 0.091 4.887 0.000 0.003 6.563
35/39 0.005 0.018 6.421 0.000 0.004 6.268
36/39 0.014 0.004 6.151 0.000 0.004 6.244
37/39 0.015 0.012 5.402 0.000 0.003 6.227
38/39 0.008 0.026 5.402 0.000 0.003 6.098
39/39 0.017 0.027 5.444 0.000 0.003 6.021

For this epoch, accuracy real was 99% (& 99%), fake 100% (& 100%).
d1 represents discriminator loss on real examples; d2 represents
discriminator loss on generated examples; g represents generator loss via
the discriminator.

class information. They also added a residual attention block
to the generator in order to make it pay more attention to
the area of interest. A multiscale discriminator was finally
used to enrich the detailed texture of the generated image.
They commented that although adding data can improve the
disease recognition performance of classifier models (AlexNet,
VGGNet, GoogLeNet and ResNet in their case), adding too
much synthetic data to the original training set can both damage
the quality of the resulting training dataset and lead to classifier
performance degradation. This was the only article we found to
comment on the use of more synthetic data, even though they
remained in the philosophy of data augmentation. It is worthy
of note that Deng and collaborators were partially right, in the
sense that in light of the findings of this research, it required a
lot more synthetic data to achieve 0.641% superior classification
performance in comparison with the original training data,

Albert et al.

10	 Res Biotechnol  •  2023  •  Vol 14

on the test dataset. Our results however challenged their
assertion that the drop in classification performance could not
be countered by the increase in the amount of synthetic data
employed.

This new thinking, therefore, hopes to open the doorway to
research endeavors which aim to demonstrate the achievability
of a (near) perfect classification accuracy in every case, with the
employment of a suitably large synthesized training dataset in
replacement of the comparatively lower quantity original dataset.

REFERENCES

Bin, L., Cheng, T., Shuqin, L., Jinrong, H., & Hongyan, W. (2020). A Data
Augmentation Method Based on Generative Adversarial Networks for
Grape Leaf Disease Identification. IEEE Access, 8, 102188-102198.
https://doi.org/10.1109/ACCESS.2020.2998839

Bresilla, K., Perulli, G. D., Boini, A., Morandi, B., Grappadelli, L. C., &
Manfrini, L. (2019). Single-Shot Convolution Neural Networks for
Real-Time Fruit Detection Within the Tree. Frontiers in Plant Science,
10. https://doi.org/10.3389/fpls.2019.00611

Brownlee, J. (2019a). Deep Learning for Computer Vision: Image
Classification, Object Detection, and Face Recognition in Python.
Machine Learning Mastery.

Brownlee, J. (2019b). Generative Adversarial Networks with Python:
Deep Learning Generative Models for Image Synthesis and Image
Translation. Machine Learning Mastery.

Castillo-Botón, C., Casillas-Pérez, D., Casanova-Mateo, C., Ghimire, S.,
Cerro-Prada, E., Gutierrez, P. A., Deo, R. C., & Salcedo-Sanz, S. (2022).
Machine learning regression and classification methods for fog
events prediction. Atmospheric Research, 272, 106157. https://doi.
org/10.1016/j.atmosres.2022.106157

Chaturvedi, D. K. (2008). Factors Affecting the Performance of Artificial
Neural Network Models. In D. K. Chaturvedi (Ed.), Soft Computing:
Techniques and its Applications in Electrical Engineering (pp. 51-85)
Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-
77481-5_4

Deng, H., Luo, D., Chang, Z., Li, H., & Yang, X. (2021). RAHC_GAN: A Data
Augmentation Method for Tomato Leaf Disease Recognition.
Symmetry, 13(9), 9. https://doi.org/10.3390/sym13091597

GitHub-Enowtakang. (n.d.). 1-GANs-study. Retrieved from https://github.
com/Enowtakang/1-GANs-study

Giuffrida, M. V., Scharr, H., & Tsaftaris, S. A. (2017). ARIGAN: Synthetic
Arabidopsis Plants using Generative Adversarial Network (p. 184259).
bioRxiv. https://doi.org/10.1101/184259

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial
Networks (arXiv:1406.2661). arXiv. https://doi.org/10.48550/
arXiv.1406.2661

Gutiérrez, S., Fernández-Novales, J., Diago, M. P., & Tardaguila, J. (2018). On-
The-Go Hyperspectral Imaging Under Field Conditions and Machine
Learning for the Classification of Grapevine Varieties. Frontiers in Plant
Science, 0. https://doi.org/10.3389/fpls.2018.01102

Howlader, K. C., Satu, Md. S., Awal, Md. A., Islam, Md. R., Islam, S. M. S.,
Quinn, J. M. W., & Moni, M. A. (2022). Machine learning models for
classification and identification of significant attributes to detect
type 2 diabetes. Health Information Science and Systems, 10(1), 2.
https://doi.org/10.1007/s13755-021-00168-2

Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S.,
Mujumdar, S., Afzal, S., Sharma Mittal, R., & Munigala, V. (2020).
Overview and Importance of Data Quality for Machine Learning
Tasks. Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 3561-3562. https://doi.
org/10.1145/3394486.3406477

Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised Machine
Learning: A Brief Primer. Behavior Therapy, 51(5), 675-687. https://
doi.org/10.1016/j.beth.2020.05.002

Lu, Y., Chen, D., Olaniyi, E., & Huang, Y. (2022). Generative adversarial
networks (GANs) for image augmentation in agriculture: A systematic
review. Computers and Electronics in Agriculture, 200, 107208.
https://doi.org/10.1016/j.compag.2022.107208

Mochida, K., Koda, S., Inoue, K., & Nishii, R. (2018). Statistical and Machine
Learning Approaches to Predict Gene Regulatory Networks From
Transcriptome Datasets. Frontiers in Plant Science, 9, 1770. https://
doi.org/10.3389/fpls.2018.01770

Moghimi, A., Yang, C., Miller, M. E., Kianian, S. F., & Marchetto, P. M. (2018).
A Novel Approach to Assess Salt Stress Tolerance in Wheat Using
Hyperspectral Imaging. Frontiers in Plant Science, 10, 1182. https://
doi.org/10.3389/fpls.2018.01182

Mohammadi-Dehcheshmeh, M., Niazi, A., Ebrahimi, M., Tahsili, M.,
Nurollah, Z., Ebrahimi Khaksefid, R., Ebrahimi, M., & Ebrahimie, E.
(2018). Unified Transcriptomic Signature of Arbuscular Mycorrhiza
Colonization in Roots of Medicago truncatula by Integration of
Machine Learning, Promoter Analysis, and Direct Merging Meta-
Analysis. Frontiers in Plant Science, 9, 1550. https://doi.org/10.3389/
fpls.2018.01550

Nagano, S., Moriyuki, S., Wakamori, K., Mineno, H., & Fukuda, H. (2019).
Leaf-Movement-Based Growth Prediction Model Using Optical Flow
Analysis and Machine Learning in Plant Factory. Frontiers in Plant
Science, 10, 227. https://doi.org/10.3389/fpls.2019.00227

Naik, N., & Purohit, S. (2017). Comparative Study of Binary Classification

Table 3: Output of loss from training the DC‑GAN on the tomato
training dataset: epoch 290
Step d1 Bacterial spot g d1 Healthy samples g

d2 d2

1/39 0.224 0.009 5.816 0.434 0.000 32.125
2/39 0.005 0.018 4.964 1.129 0.017 9.084
3/39 0.023 0.026 4.146 0.001 4.586 38.604
4/39 0.095 0.103 4.442 0.674 0.000 51.737
5/39 0.009 0.079 6.530 4.360 0.000 24.655
6/39 0.107 0.012 5.069 0.302 1.808 22.963
7/39 0.008 0.013 5.094 0.100 2.202 30.834
8/39 0.026 0.042 4.515 1.171 0.000 20.557
9/39 0.119 0.043 4.699 0.578 0.267 13.464
10/39 0.123 0.155 4.960 0.040 0.028 11.564
11/39 0.130 0.028 5.463 0.005 0.336 13.057
12/39 0.073 0.019 3.460 0.037 0.036 12.990
13/39 0.002 0.082 5.427 0.245 0.681 20.704
14/39 0.011 0.017 6.493 1.852 0.039 11.607
15/39 0.143 0.047 4.085 0.007 0.574 20.044
16/39 0.021 0.152 6.687 0.024 0.000 24.451
17/39 0.230 0.006 5.512 0.328 0.044 17.761
18/39 0.056 0.016 3.984 0.400 0.743 15.331
19/39 0.005 0.079 5.153 0.008 0.001 12.652
20/39 0.015 0.008 5.280 0.258 0.600 23.974
21/39 0.049 0.025 4.504 0.508 0.000 22.449
22/39 0.001 0.027 4.925 0.771 0.032 12.363
23/39 0.059 0.042 4.110 0.008 2.963 30.246
24/39 0.042 0.042 3.994 1.450 0.000 33.168
25/39 0.017 0.038 4.803 0.248 0.000 20.735
26/39 0.017 0.014 5.253 0.437 0.075 10.913
27/39 0.115 0.189 5.529 0.000 0.933 13.891
28/39 0.145 0.025 5.228 0.003 0.001 15.784
29/39 0.009 0.041 5.388 0.039 0.068 8.120
30/39 0.114 0.031 4.194 0.205 1.789 23.610
31/39 0.018 0.071 5.172 2.127 0.000 18.557
32/39 0.021 0.013 6.464 0.527 0.502 9.622
33/39 0.116 0.023 4.250 0.141 0.685 16.463
34/39 0.043 0.171 6.306 0.527 0.004 13.334
35/39 0.039 0.004 6.859 1.065 1.143 14.240
36/39 0.049 0.004 5.891 0.310 0.257 22.673
37/39 0.076 0.037 4.169 0.181 0.000 23.200
38/39 0.002 0.034 4.265 0.378 0.001 12.214
39/39 0.003 0.063 5.330 0.003 1.026 25.270

For this epoch, accuracy real was 99% (& 91%), fake 100% (& 100%).
d1 represents discriminator loss on real examples; d2 represents
discriminator loss on generated examples; g represents generator loss via
the discriminator.

Res Biotechnol  •  2023  •  Vol 14		 11

� Albert et al.

Methods to Analyze a Massive Dataset on Virtual Machine. Procedia
Computer Science, 112, 1863-1870. https://doi.org/10.1016/j.
procs.2017.08.232

Nazki, H., Yoon, S., Fuentes, A., & Park, D. S. (2019). Unsupervised Image
Translation using Adversarial Networks for Improved Plant Disease
Recognition (arXiv:1909.11915). arXiv. https://doi.org/10.48550/
arXiv.1909.11915

Plant Village. (n.d.). GitHub. Retrieved from https://github.com/spMohanty/
PlantVillage-Dataset

Shete, S., Srinivasan, S., & Gonsalves, T. A. (2020). TasselGAN: An
Application of the Generative Adversarial Model for Creating Field-
Based Maize Tassel Data. Plant Phenomics (Washington, D.C.), 2020,
8309605. https://doi.org/10.34133/2020/8309605

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks
for Large-Scale Image Recognition (arXiv:1409.1556). arXiv. https://

doi.org/10.48550/arXiv.1409.1556
Tabosa de Oliveira, T., da Silva Neto, S. R., Teixeira, I. V., Aguiar de

Oliveira, S. B., de Almeida Rodrigues, M. G., Sampaio, V. S., &
Endo, P. T. (2022). A Comparative Study of Machine Learning
Techniques for Multi-Class Classification of Arboviral Diseases.
Frontiers in Tropical Diseases, 2, 769968. https://doi.org/10.3389/
fitd.2021.769968

Xu, M., Yoon, S., Fuentes, A., Yang, J., & Park, D. S. (2022). Style-Consistent
Image Translation: A Novel Data Augmentation Paradigm to Improve
Plant Disease Recognition. Frontiers in Plant Science, 12, 773142.
https://doi.org/10.3389/fpls.2021.773142

Zhang, N., Rao, R. S. P., Salvato, F., Havelund, J. F., Møller, I. M., Thelen, J. J.,
& Xu, D. (2018). MU-LOC: A Machine-Learning Method for Predicting
Mitochondrially Localized Proteins in Plants. Frontiers in Plant
Science, 9, 634. https://doi.org/10.3389/fpls.2018.00634

