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In the present study, a laccase producing fungus, Phellinus noxius hpF17 was isolated 

and studied for its laccase production in submerged culture conditions. The fungus showed 
laccase activity of 545.50±6.7U/l in the defined liquid medium. Initial screening of production 
parameters was performed using Plackett–Burman design and the variables with statistically 
significant effects on laccase production were identified. Variables such as glucose, 
ammonium tartarate and tween 80 were found to influence the laccase production 
significantly. These variables were selected for further optimization using Response Surface 
Methodology. Optimum values of tested variables for maximum laccase production are 
glucose (20g/l), ammonium tartarate (2.25g/l) and tween 80 (2.08ml/l). By using this optimal 
fermentation medium, the laccase yield was increased up to 780U/l, an approximate 1.4 fold 
improvement as compared to the previous yield with un-optimized medium.  

 
Key words: Phellinus noxius, Response Surface Methodology, Plackett–Burman Design, ABTS, 
tween 80. 
 

 
Laccase (EC 1.10.3.2) is a widespread 

copper containing enzyme able to oxidize 
various types of phenols and similar aromatic 
compounds through one-electron transfer 
mechanism. The enzyme has already found 
its way into the market as a biocatalyst. 
Because of its ability to be paired by electron 
mediators, the expectation for employing 
laccases in versatile processes is very high. 
Typically laccase mediated catalysis occurs 
with reduction of oxygen to water 
accompanied by oxidation of a substrate. 
Laccases can thus oxidize various 
polyphenols, methoxy-substituted phenols, 
aromatic diamines, and range of other 

compounds (Boubonnairth et al., 1990, 
Baldrian, 2006). 

Laccases find wide commercial 
applications due their broad substrate 
specificity. Such applications include 
detoxification of industrial effluents, mostly 
from the paper and pulp, textile and 
petrochemical industries, polymer synthesis, 
bioremediation of contaminated soils, wine 
and beverage stabilization. Laccases are also 
used as catalysts for the manufacture of anti-
cancer drugs and even as ingredients in 
cosmetics. Recently, the utility of laccases has 
also been applied to nanobiotechnology 
(Gianfreda et al., 1999, Couto and Herrera, 
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2006, Mayer and Staples, 2002, Desai and 
Nityananda,2011). 

Applications of laccase in 
biotechnological processes require its 
production in high amounts at low cost and 
hence current focus on laccase research is 
oriented towards the optimization of medium 
components by various statistical methods. 
Conventional optimization procedures 
involve altering one parameter at a time 
keeping all other parameters constant, which 
enables to assess the impact of those 
particular parameters on the process 
performance. These procedures are time 
consuming, cumbersome, require more 
experimental data sets and cannot provide 
information about the mutual interactions of 
the parameters (Desai and Nityananda,2011). 
To overcome these difficulties, statistical 
approaches such as response surface 
methodology can be used as alternative 
optimization tools. 

Most laccases reported thus far are of 
fungal origin, especially from white rot fungi 
such as Phlebia radiata, Pleurotus ostreatus and 
Tramates versicolor. Many of the Trichoderma 
species extensively studied as sources of 
cellulases also been reported as sources of 
laccases. T.atroviride, T. longibrachiatum, T. 
harzanium are some of those Trichoderma sp. 
studied as laccase sources. Beside these, 
Phanerochaete chrysosporium, Theliophora 
terrstrus, Stereum ostrea, Lenzitis betulina and 
Pycnoporus species are some of the important 
basidiomycetes which have been reported as 
the sources of laccases (Desai and 
Nityananda,2011). However, there is no 
information available in the literature with 
regard to production of laccase in Phellinus 
species. 

In the present study a 
basidiomycetous fungus, Phellinus noxius 
hpF17 was isolated and studied for its laccase 
production. The medium was optimized 
systematically for improving the production 

of laccase. Plackett-Burman design was 
adopted to determine the most important 
factors that affect enzyme production. Later 
Central Composite Design was used to 
optimize the levels of these controllable 
factors in order to formulate an optimal 
medium to increase the yield of laccase by 
Phellinus noxius-hpF17.  

MATERIALS AND METHODS 
Isolation, Screening and Production of 
laccase 

The microorganism was isolated from 
the decaying wood source from a village 
forest of Karnataka (Near Mangalore). The 
isolate was then screened for its laccase 
production on solid media containing 
guaiacol as an indicator (Reddy et al., 2008). 
Laccase positive reaction was observed based 
on the visualization of brown zones in the 
plates due to the oxidative polymerization of 
guaiacol by the laccase. The isolate was 
maintained as a slant in 2% malt extract agar 
at 40C and sub cultured every two weeks. The 
fungus was identified by morphological 
examination and partial sequencing of 18S 
rDNA and homology alignment as Phellinus 
noxius hpF17 (DDBJ Acc.No. AB639022). 
Mycelial agar plugs (4 plugs of 7mm 
diameter) from malt extract agar plates were 
used to inoculate 30ml of modified LMM 
medium (Dhouib et al., 2005) for the 
production of laccase in liquid culture. 
Composition of the medium was (g/l): 
glucose(10.0), ammonium 
tartarate(2.0),KH2PO4(1.0), MgSO4.7H2O(0.5), 
KCl(0.5), yeast extract(1.0), 
CuSO4.5H2O(150µM), and 10ml/l of trace 
elements containing per litre of distilled 
water: EDTA(0.5g), FeSO4(0.2g), 
ZnSO4.7H2O(0.01g), MnCl2.4H2O(0.003g), 
H3BO4(0.03g), CoCl2.6H2O(0.02g), 
CuCl2.2H2O(0.001g), Na2MoO4.2H2O(0.003g). 
The fungus was grown in 100ml Erlenmeyer 
flasks at 30oC on a rotary shaker (150 rpm). 
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The flasks were withdrawn in duplicates at an 
interval of every two days till fourteen days 
for the measurement of enzyme activities and 
biomass. 

Influence of Incubation temperature and 
medium pH 

Thirty milliliters of modified LMM 
medium was dispensed into 100ml 
Erlenmeyer flask, sterilized, and inoculated 
with four agar disc plugs (7mm) of the white-
rot fungus and incubated at 23°C to 37°C for 6 
days. To study the Influence of pH, twenty 
milliliters of the LMM medium was 
dispensed into 100ml Erlenmeyer flask and 
pH adjusted by using 0.1N HCl and 0.1N 
NaOH to 4.0, 5.0, 6.0, 7.0 and 8.0 and 
sterilized, then inoculated with three 7mm 
agar disc plug of the fungus and incubated at 
30°C for 6 days (Adejoye and Fasid,2009). 
Thereafter the culture mycelium was 
harvested and the mycelium free filtrate was 
used to determine laccase activity. 

Statistical optimization of Laccase 
Production 

The optimization of medium 
components for laccase production was 
accomplished in two stages 

Plackett-Burman design (PBD) 

The Plackett-Burman design was used 
to find the nutrient components significantly 
influencing laccase production by Phellinus 
noxius hpF17. Total 11 components (variable 
k=11) were selected for the study with each 
variable being represented at two levels: -1 for 
low and +1 for high levels. The selected 
variables for the present study were carbon 
sources (glucose, sucrose, cellobiose); 
nitrogen sources (ammonium tartarate, 
potassium nitrate, ammonium nitrate, yeast 
extract and urea); and inducers (copper 
sulfate, 2,5-xylidine and tween 80) (table1). 
These eleven variables were selected based on 
the previous experiments and were evaluated 
in 12 experiments. However, process 
parameters such as medium pH and 
incubation temperature were optimized 
initially and hence were not included in the 
design. All experiments were carried out in 
duplicate and the average of laccase activity 
was taken as response. From the pareto chart, 
the variables showing highest positive effect 
on each category were considered to have 
greater impact on laccase production and 
hence selected for further optimization using 
central composite design of response surface 
methodology (Palvannan and Sathishkumar, 
2010). 

Table.1. Variables showing medium components used in Plackett-Burman Design 

  Variables Code Low  
Level (-1) 

High  
Levels (+1) Effects 

Glucose  (g/l) A 5 10 818.4 
Sucrose   (g/l) B 5 10 -313.9 
Cellobiose (g/l) C 5 10 44.0 
Ammonium tartarate  (g/l) D 0.2 2 1142.6 
Potassium Nitrate  (g/l) E 0.2 2 -537.9 
Ammonium Nitrate  (g/l) F 0.2 2 -21.9 
Yeast Extract  (g/l) G 2.5 5 -537.9 
Urea  (g/l) H 2.5 5 527.8 
Copper sulphate (uM) J 300 600 63.4 
2,5-Xylidine (mM) K 0.2 2 220.6 
Tween 80 (%) L 0.1 0.5 647.8 
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Response Surface methodology (RSM) 

Response surface methodology was 
used to optimize the screened components for 
enhanced laccase production using Central 
Composite Design (CCD). The behavior of the 
system was explained by the following 
quadratic equation. 
 Y = β0 + Σ βi Xi + Σ βii Xi 2 + Σ βij XiXj      (1)
    Where Y represents response 
variable, βo is the interception coefficient, βi 
is coefficient of the linear effect, βii is the 
coefficient of quadratic effect and βij is the 
coefficient of interaction effect.  

A 23 factorial design augmented by 6 
axial points (α = 1.682) was implemented in 

17 experiments wherein the effect of each 
compound on laccase production was taken 
as a response. Design Expert Version 8.0 
(Statease) was used for multiple regression 
analysis and to construct the plots of the 
obtained data. The coded and uncoded values 
of the variables at various levels are given in 
table 2. The coded variables were glucose (A), 
ammonium tartarate (B) and tween 80(C). 
These values were converted into their actual 
values to find out the optimum range of 
variables for the production of laccase as 
described by Palvannan and Sathishkumar, 
2010. 

Table 2. Experimental range and levels of independent variables 
Codes Factors Unit Range and levels 

(-1.68) (-1) (0) (+1) (+1.68) 
A Glucose (g/l) 3.18 10 20 30 36.82 
B Ammonium tartarate  (g/l) 0.15 1 2.25 3.5 4.35 
C Tween 80 (ml/l) 0.32 1 2 3 3.68 
        
        

Analytical methods 
The biomass of the cultures was 

determined by filtering the mycelia contents 
through oven dried, pre weighed Whatman 
No.1 filter paper. The dry weight of the 
fungus was determined by the difference in 
weight after drying the filter paper at 60oC 
until a constant weight.  

Laccase assay 
Laccase activities were measured 

spectrophotometrically (GBC) using 2, 2’-
azino-bis(3-ethylbenzthiazoline-6-sulphonic 
acid (ABTS) (Sigma) as a substrate with an 
absorbance coefficient value of 36000/M/cm 
at 420nm. The reaction mixture consisted of 
1.5 ml acetate buffer (1mM, pH 5.0), 1.5 ml 
ABTS (50 mM) and 1.5 ml culture filtrate. One 
unit (U) of laccase activity was defined as the 
amount of enzyme catalyzing the production 

of one micromole of colored product per min 
per ml (Tian et al., 2008). 

RESULTS AND DISCUSSION 
In solid media, the organism 

produced reddish brown zone which is due to 
the oxidative polymerization of guaiacol in 
the presence of extracellular fungal laccase 
(Fig.1). Reddish brown zone appeared on the 
second day of incubation period which 
showed the ability of the fungus to produce 
extracellular laccase. 

 In LMM medium, the fungus showed 
extracellular laccase activity of 545.50±6.7U/l 

on 6th day. At this point the mycelial mass 
was at its maximum level of 7.60±0.7g/l and 
reached its stationary phase afterwards. On 
day 8, similar laccase activity of 
534.65±6.35U/l was obtained (fig.2). On 
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Response Surface Methodology (RSM) 

Based on the PB design, glucose, 
ammonium tartarate and tween 80 were 
selected for further optimization using RSM-
CCD. To examine the combined effect of 
these factors, a central composite design 
(CCD) was employed within a range of –α  (-
1.68) and +α (+1.68) in relation to the 
production of laccase. According to the 
design, 17 runs replicated three times at 
central points were performed and 
experimental and predicted responses were 
obtained (Table 5). Relationship between the 
variables was determined by fitting a second 
order polynomial equation to the data obtained 
from the 17 runs.  

The predicted and observed responses 
along with design matrix are presented in 
Table 4 and the results were analyzed by 
ANOVA. The second-order regression 
equation provided the levels of laccase 
activity as a function of glucose, ammonium 
tartarate and tween 80 which can be 
presented in terms of coded factors as in the 
following equation: 

Y (response) = +774.32-47.51A + 24.43B + 
67.64C - 26.39AB -89.12AC + 157.33BC - 
124.64A2 - 200.51B2 - 231.86C2 

Where Y is the laccase activity (U/l), A, B, 
and C are glucose, ammonium tartarate and 
tween 80, respectively. 

 
Table 4. Full factorial central composite design matrix and their observed response 

 
Run 
order 

A 
(g/l) 

B 
(g/l) 

C 
(ml/l) 

Laccase activity(U/l) Residual  Value 
Actual response Predicted response 

1 -1 -1 -1 213.33  214.295  -0.965  
2 +1 -1 -1 269.12  350.231  -81.111  
3 -1 +1 -1 1  0.855   0.145  
4 +1 +1 -1 10.96  31.251  -20.291  
5 -1 -1 +1 242.5  212.9  29.642  
6 +1 -1 +1 1.5  -7.705    9.205  
7 -1 +1 +1 720  629.538   90.462  
8 +1 +1 +1 313.75  303.434   10.316  
9 -1.68 0 0 435.83  502.326  -66.496  
10 +1.68 0 0 395.83  342.586   53.244  
11 0 -1.68 0 197.08  166.842   30.238  
12 0 +1.68 0 205.42  248.910  -43.490  
13 0 0 -1.68 70.83  5.478   65.352  
14 0 0 +1.68 154.3  232.904  -78.604  
15 0 0 0 787.5  774.215   13.285 
16 0 0 0 795.83  774.215   21.615  
17 0 0 0 741.67  774.215  -32.545  
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Table 5. Analysis of Variance (ANOVA) for response surface quadratic model for the production of 
laccase. 

Source Sum of 
Squares 

Df Mean 
Squares 

F Value p-value  
Prob>F 

 

Model 1199000 9 133200 24.27 0.0002 Significant 

 A-Glucose 30820.04 1 30820.04 5.61 0.0497  

B-Ammonium tartarate 8133.62 1 8133.62 1.48 0.2630  

C-Tween 80 62478.32 1 62478.32 11.38 0.0119  

 AB 5569.35 1 5569.35 1.01 0.3474  

 AC 63546.13 1 63546.13 11.57 0.0114  

BC 198500 1 198500 36.15 0.0005  

A2 175100 1 175100 31.89 0.0008  

B2 453200 1 453200 82.54 < 0.0001  

 C2 6.06100 1 606100 110.37 < 0.0001  

Residual 38437.10 7 5491.01 38437.10   

Lack of Fit 36736.08 5 7347.22 8.64 0.1070 Not significant 

Pure Error 1701.03 2 850.51    

Cor Total 1238000 16     

Model fitting 

                           C.V= 22.67%   R-Sq = 96.9%     R-Sq(adj) = 92.9% 
 

 
The statistical significance of equation 

1 was checked by F-test and the analysis of 
variance for response surface quadratic model 
is shown in table 5. ANNOVA of regression 
model demonstrates that the model is highly 
significant as it is evident from the Fischer 
test with very low probability value. The 
value of lack of fit, Model F and model P>F 
were found to be 8.64, 24.27 and <0.05 
respectively, indicating that model was 
significant. Fisher F-test with a very low 
probability value (Pmodel >F = 0.0002) and 
also lack of fit was insignificant demonstrates 
a very high significance for the regression 
model. The goodness of fit of the model was 
checked by the determination coefficient (R2). 
The coefficient of regression (R2) was 

calculated to be 0.969. The value of the 
adjusted regression coefficient (Adj R2 = 0.929) 
was also high, which advocates for  high 
significance of the model. At the same time 
relatively low coefficient variation 
(CV=22.67%) confirm the precision and 
reliability of the experiment performed. From 
the table 5, it can be seen that the factors with 
higher significance were A, C, AC, BC and 
squared terms of A2, B2 and C2. The 
interaction terms AB seems to be 
insignificant, which can be removed from the 
model without affecting the goodness of the 
model. 

The relationship between the actual 
and predicted laccase activity (response) is 
shown in Figure 6. The cluster of 
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CONCLUSION 

The effect of medium components on 
the production of laccase by P. noxius hpF17 
was studied using Pb design.  Medium 
components such as glucose, ammonium 
tartarate and tween 80 were found to 
influence the laccase production significantly. 
These variables were selected for further 
optimization studies using RSM. Optimum 
values of tested variables for maximum 
laccase production are glucose (20g/l), 
ammonium tartarate (2.25g/l) and tween 80 
(2.08ml/l). By using this optimal fermentation 
medium, the laccase yield was increased up 
to 780U/l. Our result shows that we could 
achieve an approximate 1.4 fold improvement 
of laccase yield over the previous yield with 
un-optimized medium in P. noxius hpF17. 
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