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Genomics, structural biology, and bioinformatics deal with identification, 

cataloguing and characterization of the components that make up a cell.  The focus on 
individual genes and proteins, which has proven so powerful for the molecular genetics 
in the past century, is in itself inadequate to describe the dynamic processes involving 
interactions among tens, hundreds and even thousands of components. Cell function, 
including growth, differentiation, division, and apoptosis, are temporal processes and we 
will only be able to understand them if we treat them as dynamic systems. There is a 
general agreement that systems approach is necessary to understand the causal and 
functional relationships that generate the dynamics of biological networks and pathways. 

 
 

 Reductionism, which has dominated 
last century biological research in molecular 
biology, has provided a wealth of 
knowledge about the components of the cell 
to describe its structural organization and 
their functions. Despite its enormous 
success, it is increasingly clear that a discrete 
biological function can only rarely be 
attributed to an individual molecule. 
Instead, most biological characteristics arise 
from complex interactions between the cell’s 
numerous constituents, such as proteins, 
DNA, RNA and small molecules. Therefore, 
a key challenge for biology in the twenty-
first century is to understand the structure 
and the dynamics of the complex 
intercellular web of interactions that 
contribute to the structure and function of a 
living cell (Sontag., 2005; Mesarovic and 
Sreenath., 2006; Wolkenhauer., 2003). 
Complex systems display properties, often 
called “emergent properties,” that are not 

demonstrated by their individual 
components and cannot be predicted even 
with full understanding of the components 
alone. A comprehensive understanding of 
such emergent properties requires systems-
level perspectives and cannot be gleaned 
from simple reductionist approaches (Bhalla 
and  Iyengar., 1999). 
 
Molecular Networks are Dynamical 
Systems 
 
 The capacity of a cell to change in 
space and time is crucial to survival and 
reproduction. The dynamic properties of a 
cell are implicit in the topology of the 
metabolic, signaling and transcription-
regulatory networks (Dibrov et al., 1982; 
Dibrov et al., 1982; Lauffenburger, 2000). 
These networks of interacting molecules are 
intrinsically dynamic: they describe how a 
cell changes in space and time to respond to 
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stimuli, grow and reproduce, differentiate, 
and do all the other  remarkable tricks that 
are necessary to stay alive and perpetuate 
the species (Olaf Wolkenhauer and Mihailo 
Mesarovia 2005). In the past year, many 
prominent molecular biologists have pointed 
out the pressing need for theoretical and 
computational tools to show the spatial and 
temporal organization implicit in the way 
that macromolecules are ‘wired together’ to 
create a living cell. The wiring diagram of 
molecular networks implies a set of dynamic 
relationships among its components and, 
therefore, demands to be converted into a set 
of mathematical equations that describe the 
temporal and spatial evolution of the system 
(Wolkenhauer et al., 2005; Cho and 
Walkenhauer., 2003).  
 
Mathematical Modeling as Central 
Component in Systems Biology 
 
Human minds are incapable of inferring the 
emergent properties of a system from 
thousands of data points, but we have 
evolved to intelligently interpret an 
enormous amount of visual information. The 
data is therefore transferred to visualization 
programs. Formulation of detailed graphical 
or mathematical models, allows us to 
formalize and integrate existing knowledge 
in a precise way, providing formal methods 
of analysis, and therefore forms a central 
component in systems biology (Heinrich et 
al., 2002). 
 
 There are two main modeling 
approaches in systems biology. One is 
construction of large-scale models, 
incorporating as many details as have been 
uncovered experimentally on a given 
pathway or signaling system and on a 
detailed cartography of various networks, 
another useful approach in systems biology 
is construction of small-scale models of 
limited complexity, containing a reduced 
number of variables (2 to 20), and aiming at 

addressing specific questions (Hlavacek et 
al., 2006). From these small-scale models, one 
can often derive conclusions of more general 
significance, e.g. concerning cellular 
rhythms, cell signaling and cell cycle 
dynamics, especially when including 
dynamic phenomena: multi- stability, 
oscillations, spatial and spatio-temporal 
patterns (e.g. in morphogenesis and cell to 
cell communication) (Lauffenburger, 2000; 
Tindall et al., 2008). Both approaches have 
merits and limitations, and they can 
converge by putting small-scale models 
(modules) into a common framework. Model 
standardization is vital, but should not be 
used to suppress creative approaches. 
Models should also be closely tied with 
existing and new experimental data 
(Eungdamrong and Iyengar, 2004).  
 
Differential Equations to Study the 
Dynamics of Biochemical Networks 
 
 Differential equations have been one of 
the most widely used mathematical 
modeling techniques in systems biology 
(Dibrov et al., 1982). In this approach, the 
state of the biochemical networks is 
expressed in terms of concentrations of its 
molecular species, which are positive real 
numbers. Mathematical model representing 
temporal dynamics of the biological system 
is obtained using mass balance. The 
differential equations represent the growth / 
decay of the concentrations of various 
species with respect to time (Wolkenhauer et 
al., 2005). The solution of differential 
equation is obtained using appropriate 
initial conditions giving the concentrations 
of molecules at any given point in time. 
Models employing differential equations can 
be grouped into three subgroups:  
 
• Pure chemical kinetics systems 

completely disregarding any spatial 
aspect  
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• Compartmental models couple a set of 
non-spatial systems in order to achieve a 
coarse grained spatial resolution 

• Diffusion-reaction systems exploit fine - 
grained spatial information  
 

If the system under consideration can be 
assumed as a well-stirred reactor, one can 
ignore spatial aspects and use ODEs only. 
The basic dynamic equation describing the 
change in concentration C of a molecular 
species is obtained as 
 

 ( ) ( )dC generation consumption
dt

= −                                                           

 
The term on the right hand side sums up all 
effects of reactions producing C minus the 
effect of all reactions consuming C. Such 
equations are developed for each component 
(molecular species) of the system. Generally, 
the system of equations so obtained is 
coupled and nonlinear. Analytical solution 
of a nonlinear coupled system of ordinary 
differential equations with suitable initial 
conditions is not possible always. Numerical 
techniques are used to solve the differential 
equations (Olaf Wolkenhauer and Mihailo 
Mesarovia, 2005; Sundaramurthy P and 
Sunita G, 2010). The ODE formulation from a 
biological context is relatively easy and 
numerical methods for solving them are well 
developed. Therefore, ODE models are 
heavily used in modeling biochemical 
networks (Cho and Wolkenhauer, 2003).  
 
 In the second approach, cell is divided 
into several compartments. For each 
compartment, a set of ODE are developed to 
describe the dynamics in the compartment of 
the cell. Fluxes across various compartments 
are then specified. In this framework, the 
state variables are still functions of time only 
and issues related with space can be coarsely 
resolved using compartments keeping the 
computational advantages of the non-spatial 
approach (Suresh Babu et al., 2006).  

 In contrast, partial differential 
equations (PDEs) address spatial variations 
explicitly. The concentration now depends 
on both time and space, where movement in 
space is separated into diffusion and 
convection: 
 

2

2 ( ) ( )dC C CD v generation consumption
dt x x

∂ ∂
= − + −

∂ ∂
                          

 
This framework allows to model phenomena 
like wave propagation and pattern 
formation, but it heavily increases the 
computational effort required for solving the 
equations. In the context of biochemical 
networks, PDEs are currently used only to 
model spatial processes explicitly. 
 
Stochastic Modeling 
 
Due to the small number of molecules 
involved in some biochemical networks, 
their approximation as continuous processes 
via differential equations cannot always be 
valid. In contrast to analytical approach, 
stochastic models explicitly account for the 
uncertainty that is involved in molecular 
processes, and allow making predictions not 
only about the average behavior of a system, 
but also about its standard deviation from 
that behavior (Steven et al., 2004). However, 
this knowledge comes at a cost: stochastic 
processes tend to be more expensive to 
simulate on a computer, and their 
mathematical analysis is usually not 
straightforward.  
 
 In stochastic modeling, two fields can 
be distinguished. On one hand, stochastic 
simulation algorithms (SSA) have been 
developed in which reactions have 
associated kinetic rates depending on the 
concentration of their substrates, similar to 
ODE models (Ullah and Wolkenhauer., 
2009). Here, the kinetic rate of reaction is 
interpreted as the probability of its reaction 
taking place in a certain time interval. On the 
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other hand, biochemical systems have been 
interpreted as Markov chains, in which the 
state of the chain is represented by the 
number of molecules present, and reactions 
are modeled as transitions between these 
states (Dominic et al., 2006). As long as there 
is no feedback in the system, the analysis of 
Markov chains is well developed and 
information can be gained on the steady 
state probability distribution of the process. 
Feedback, which is an inherent feature of 
many biochemical networks, poses problems 
for the analysis since a steady-state 
distribution of the system does not have to 
exist in this case (Steven et al., 2004). 
 
Scope, Limitation and Conclusion 
 

Systems biology is a comprehensive 
quantitative analysis of the manner in which 
all the components of a biological system 
interact functionally over time. Impressive 
advances have been made in modeling a 
number of individual processes in 
immunology, physiology, development, and 
neurobiology. Increasingly however, 
modeling of molecular processes, involving 
most or all genes, gene products and 
metabolites is being used to understand 
complex disease processes. Knowledge of 
disease-perturbed networks will facilitate 
drug discovery, and pharmacological 
intervention will focus on preventing 
disease-mediated transitions. This predictive 
and preventive medicine will lead naturally 
to personalized medicine, in which 
therapeutic strategies will be tailored to 
individual needs. In this sense, systems 
biology will fundamentally transform 
society. 

 
While during these genomics and 

bioinformatics tasks we indeed encounter 
“large volumes of data”, in systems biology 
and particularly cell signaling, it is often the 
lack of quantitative, sufficiently rich time 
course datasets that is a, if not the major, 

problem (Harsharani et al., 2005). 
Parameters such as enzyme concentrations 
and reaction rates vary from cell to cell, even 
among cells of the same type. Some of the 
parameters available in the literature are 
based on rough guesses or on data from 
different and perhaps inconsistent sources, 
and usually are obtained from in vitro 
experiments. In cell modeling, models 
should not depend on tight values for 
parameters. One should avoid “pseudo-
exactness,” which is meaningless in that 
context. Only models that display desired 
behaviors over relatively large ranges of 
parameters can be valid.  
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