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INTRODUCTION

Understanding farmers’ knowledge and perceptions of cassava 
diseases and their management is crucial for several reasons: 
(1) Cassava is a staple food crop that provides a major source of 
calories for many rural and urban households in Africa (Burns 
et al., 2010; Morgan & Choct, 2016; Szyniszewska, 2020; Tize 
et al., 2021; Alves et al., 2022; Okike et al., 2022; Adebayo, 2023; 
Mohidin et al., 2023). However, the crop is plagued by various 
pests and diseases that can significantly reduce yields and 
income for farming families. Diseases such as cassava mosaic 
disease (Otim-Nape & Thresh, 1998; Legg, 2008; Ndunguru 
et al., 2016; Rey & Vanderschuren, 2017; Doungous et al., 2022; 
Uke et al., 2022; Hareesh et al., 2023; Niño-Jimenez et al., 2024), 
root rot (Ekundayo & Daniel, 1973; Onyeka et al., 2005; Brito 
et al., 2017; Nakatumba-Nabende et al., 2020; Pham & Tran, 
2021; Sangpueak et al., 2023; Wang et al., 2023a; da Silva et al., 
2024; Hohenfeld et al., 2024; Thepbandit et al., 2024), and viral, 
bacterial (Fanou et al., 2017; McCallum et al., 2017a; Sedano 
et al., 2017; Yoodee et al., 2018; Mustarichie et al., 2020; Toure 
et al., 2020; Teixeira et al., 2021; Zárate-Chaves et al., 2021; 
Pérez et al., 2022; Wydra & Verdier, 2002; Veley et al., 2023), 
and fungal infections (Bartkowski et al., 1988; Makambila, 1994; 
Elliot et al., 2002; McCallum et al., 2017b; Chavez et al., 2022; 
Alleyne et al., 2023; Fathima et al., 2023; Leiva et al., 2023; 

Owomugisha et al., 2023; Pardo et al., 2023; Thepbandit et al., 
2024) can have devastating impacts if not properly managed. 
(2) Farmers’ knowledge and perceptions of these diseases are 
critical, as they are the primary decision-makers when it comes 
to managing pests and diseases on their farms (Van den Berg 
& Jiggins, 2007; Milne et al., 2015; Bottrell & Schoenly, 2018; 
Miyittah et al., 2022; Taramuel-Taramuel et al., 2023; Bloom 
et al., 2024; Phung & Dao, 2024). If farmers lack awareness 
or have an inaccurate understanding of the diseases affecting 
their crops, they are less likely to implement effective control 
measures. This can lead to the persistence and spread of 
diseases, further exacerbating yield losses and food insecurity. 
(3) By understanding farmers’ existing knowledge, attitudes, 
and practices towards cassava disease management, researchers 
and extension agents can develop targeted interventions to 
address knowledge gaps and promote more effective disease 
control strategies. This may include improving access to 
disease-resistant planting materials, providing training on 
integrated pest and disease management, and strengthening 
linkages between farmers and agricultural extension services 
(Van den Berg & Jiggins, 2007; Milne et al., 2015; Brévault & 
Clouvel, 2019; Laizer et al., 2019; Taramuel-Taramuel et al., 
2023; Phung & Dao, 2024). Therefore, this study aimed to 
examine farmers’ understanding and views on Cassava diseases 
and control methods.
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MATERIALS AND METHODS

Dataset

Recall that the two-fold objectives of this work were to study 
(1) farmers’ knowledge and (2) farmers’ perceptions of Cassava 
diseases and management technologies. The dataset had 508 
entries corresponding to 508 respondents from four regions of 
Cameroon – Adamawa, Center, East and South. It had a total 
of 52 variables (Tables 1 & 2), partitioned as follows – 27 binary 
(0=No/1=Yes) categorical variables used to assess farmers’ 
knowledge of Cassava diseases and management technologies 
(Table 1), and 25 variables used to assess farmers’ perceptions of 
Cassava diseases and management technologies (Table 2). The 
27 variables used to study farmers’ knowledge were subdivided 
into 5 groups – group one aimed to assess farmers’ knowledge 
about various pests and diseases which they observed in their 
Cassava farms. Group two aimed to assess farmers’ knowledge 
about the causes of Cassava Mosaic Disease (CMD)-related 
symptoms. Group three aimed to assess farmers’ knowledge 
about the impact of the appearance of CMD-related symptoms 
on Cassava plants. Group four aimed to assess farmers’ reactions 
to CMD-related symptoms. Finally, group five aimed to assess 
farmers’ knowledge about CMD prevention and management.

Data Analysis

Farmers’ knowledge of cassava diseases and management 
technologies

For each section of the group of variables used to study farmers’ 
knowledge of Cassava diseases and management technologies 
(Table  1), response patterns were computed and visualized 
using both k-means clustering (to determine the number 
of unique response patterns) and Principal Component 
Analysis (PCA) (to reduce the dimensionality of the resulting 
response patterns and visualize them using the first 2 principal 
components). Also, the variable-wise characteristics for each 
response pattern were visualized as an annotated heatmap for 
each of the 5 sections.

k-means clustering

k-means clustering is a widely used unsupervised machine 
learning algorithm that partitions a set of data points into K 
clusters based on their similarities and dissimilarities (Capó 
et al., 2018; Bateni et al., 2024). The algorithm is particularly 
useful for identifying patterns and structures within large 
datasets where the number of clusters is unknown or difficult 
to determine (Kim et al., 2024). It is often used in various fields 
such as data mining, image processing, and bioinformatics to 
group similar data points together and to identify outliers or 
anomalies (Garst & Reinders, 2024).

The k-means clustering algorithm begins by randomly selecting 
K initial centroids, which are the mean values of the data points 
in each cluster (Vardakas & Likas, 2023; Yfantis et al., 2023). 
These centroids serve as the starting points for the clustering 

Table 1: Description and codes of variables used to study farmers’ 
knowledge of cassava diseases and management technologies
S. No. Code Variable Description

Identification of pests and diseases
What diseases and pests do you frequently see in your 

cassava fields?

1 V339 Fungal
2 V340 Bacterial
3 V341 Viral (CMD, CBSD)
4 V342 Mite damage and cassava pests
5 V343 Whiteflies

Causes of symptoms
What is the cause of the symptoms seen in the second 

photo?

1 V352 A virus
2 V353 The whitefly
3 V354 The use of infected cuttings
4 V355 Lack of rain
5 V356 Soil moisture
6 V357 Mineral deficiency

Impact of CMD on Cassava plants
What is the impact of the appearance of these symptoms 

(CMD) on cassava plants/yield?

1 V370 Poor plant growth
2 V371 Decrease in yield
3 V372 Lack of healthy plant material
4 V373 Other (None of the above)

Reactions to CMD symptoms
How do you react when your cassava plants show the 

symptoms shown in photo 2?

1 V377 Removal of infected plants
2 V378 Destruction of infected plants
3 V379 Replacement of infected plants by healthy cuttings
4 V380 Analysis of the plants concerned with the Nuru application
5 V381 Consultation with agricultural agents
6 V382 Use of inputs
7 V383 I do nothing

CMD Prevention
What do you think can be done to prevent or combat the 

onset of these symptoms/disease?

1 V387 Use of healthy plant material
2 V388 Regular monitoring of fields (removal, destruction, and 

replacement of infected plants)
3 V389 Regular cleaning of the fields
4 V390 Respect of the planting density 
5 V391 Other (None of the above)

process (Mussabayev et al., 2023). The algorithm then iteratively 
assigns each data point to the cluster with the closest centroid, 
and updates the centroids to be the mean of all data points in 
each cluster (Zhu et al., 2021). This process is repeated until 
the centroids no longer change significantly, indicating that the 
clusters have converged (Miao et al., 2023).

One of the key advantages of k-means clustering is its simplicity 
and efficiency. The algorithm is relatively easy to implement 
and can handle large datasets with high-dimensional features 
(Ergun et al., 2022; Mohammadi et al., 2022; Poggiali et al., 
2024). Additionally, k-means clustering is robust to noise and 
outliers, as it is based on the mean of the data points in each 
cluster, which makes it less sensitive to extreme values (Chen 
& Witten, 2022; Clum et al., 2022).
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However, k-means clustering also has some limitations. For 
instance, the algorithm is sensitive to the initial placement 
of the centroids, which can affect the final clustering results. 
Additionally, k-means clustering assumes that the clusters are 
spherical and well-separated, which may not always be the case 
in real-world datasets (Dorabiala et al., 2024). Furthermore, 
the algorithm can be computationally expensive for large 
datasets, especially when the number of clusters is high. To 
address these limitations, various extensions and modifications 
of the k-means clustering algorithm have been proposed. For 
example, k-means++ is a variant of the algorithm that uses 
a more sophisticated method to select the initial centroids, 
which can improve the clustering results (Zhuang et al., 2024). 
Another extension is the k-medoids algorithm, which uses 
medoids (objects that are representative of their cluster) instead 
of centroids, which can be more robust to noise and outliers 
(Schubert, 2023).

Principal component analysis (PCA)

Principal Component Analysis (PCA) is a widely used 
dimensionality reduction technique that simplifies a large 
dataset into a smaller set while preserving significant patterns 
and trends (Maćkiewicz & Ratajczak, 1993; Demšar et al., 2013; 
Jolliffe & Cadima, 2016). It is a linear method that transforms 
the data onto a new coordinate system where the directions 
(principal components) capturing the largest variation in the 
data can be easily identified. These directions are orthogonal and 
constitute an orthonormal basis in which different individual 
dimensions of the data are linearly uncorrelated (Jolliffe, 2011; 
Elhaik, 2022).

The process of PCA involves several steps. First, the data is 
standardized to ensure that each variable has a mean of 0 and a 
standard deviation of 1 (Chen et al., 2024; Shlens, 2014; Wang 
et al., 2024). This is done to prevent variables with large ranges 
from dominating the analysis. Next, the covariance matrix is 
computed to identify correlations between the variables. The 
eigenvectors and eigenvalues of this covariance matrix are then 
calculated to identify the principal components (Soto-Quiros 
& Torokhti, 2021; Dorabiala et al., 2023; Lee et al., 2023; 
Leroux et al., 2023; Hope et al., 2024). The eigenvectors are the 
directions of the new axes, and the eigenvalues represent the 
amount of variance explained by each component. The principal 
components are ordered in decreasing order of importance, with 
the first component capturing the most variation in the data 
(Gniazdowski, 2017; Tang & Allen, 2021; Hurwitz & Hahn, 
2023). The second component captures the maximum variance 
that is orthogonal to the first component, and so on (Gewers 
et al., 2018; Suzen et al., 2020; Marzban et al., 2024). This process 
continues until all the variance in the data is explained. The total 
variance captured by all the principal components is equal to the 
total variance in the original dataset (van Elst, 2021).

PCA is particularly useful when many of the variables are 
highly correlated with each other and it is desirable to reduce 
their number to an independent set. It can be used for data 
visualization, feature selection, and data compression. In data 
visualization, PCA can be used to plot high-dimensional data in 
two or three dimensions, making it easier to interpret. In feature 
selection, PCA can be used to identify the most important 
variables in a dataset (Guo et al., 2002; Song et al., 2010; 
Mishra et al., 2011; Zhang, 2019; Rahmat et al., 2024). In data 
compression, PCA can be used to reduce the size of a dataset 
without losing important information. One of the key advantages 
of PCA is its ability to deal with multicollinearity, which is a 
common problem in regression analysis where two or more 
independent variables are highly correlated. PCA can help identify 
the underlying structure in the data and create new, uncorrelated 
variables that can be used in the regression model. Additionally, 
PCA can be used to reduce the noise in data by removing the 
principal components with low variance, which are assumed to 
represent noise (Statheropoulos et al., 1999; Razifar et al., 2009; 
Bailey, 2012; Du et al., 2015; Ling-Qun et al., 2015; Li, 2018).

However, PCA also has some limitations. The principal 
components created by PCA are linear combinations of the 

Table 2: Description and codes of variables used to study farmers’ 
perceptions of cassava diseases and management technologies
S. 
No.

Code Variable Description

Farmers’ Perceptions of Cassava Viral Diseases and 
Management

1 V412 Cassava viral diseases are caused by poor hygiene on the 
field

2 V413 Viral symptoms observed on cassava leaves result from 
the application of herbicides.

3 V414 Older plants are more attacked by cassava viral diseases
4 V415 Late planting can lead to cassava viral diseases
5 V416 Drought and high temperatures can lead to cassava viral 

diseases.
6 V417 Planting in muddy or waterlogged soils causes infections.
7 V418 Poor aeration promotes cassava viral diseases
8 V419 A late harvest can lead to cassava viral diseases.
9 V420 Cassava viral diseases are caused by the use of 

poor‑quality planting
10 V421 Cassava viral diseases can be managed by breaking the 

affected part
11 V422 The management practices can easily be integrated into 

the traditional farming system
12 V423 The management practices taught by the agricultural 

officers are complex to understand
13 V424 The use of integrated approaches to viral diseases control 

in cassava is more expensive than using chemicals.
14 V425 Chemicals are effective in controlling cassava viral 

diseases
15 V426 No cassava variety is resistant to viral diseases
16 V427 There is no control for cassava viral diseases
17 V428 The plant infected by cassava viral diseases always 

recovers at the beginning of the rains
18 V429 The management practices of cassava viral diseases are 

not culturally accepted in my community
19 V430 The use of cassava diseases management technologies 

helps to reduce the incidence of cassava viral diseases.
20 V431 The use of cassava disease management technologies 

increases productivity
21 V432 The management technologies are accessible at all times
22 V433 Cassava viral diseases prevent rooting
23 V434 Whenever cassava plants are attacked by viral diseases, it 

results in poor quality tubers
24 V435 Viral diseases of cassava can lead to 100% yield loss if 

left untreated.
25 V436 Cassava viral diseases result in loss of planting material
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original variables, and it can be difficult to interpret them in 
terms of the original variables (Johnstone & Lu, 2009; Lee, 2011; 
Wang et al., 2023b). This can make it challenging to explain 
the results of PCA to others. Additionally, PCA is sensitive to 
the scale of the data, and if the data is not properly scaled, then 
PCA may not work well (Görtler et al., 2020).

Farmers’ perceptions of cassava diseases and management 
technologies

This was analyzed descriptively by generating 25 annotated bar 
plots corresponding to each of the 25 variables used to study 
farmers’ perceptions of Cassava diseases and management 
technologies (Table 2).

RESULTS AND DISCUSSION

Farmers’ Knowledge of Cassava Diseases and 
Management Technologies

Farmers’ response patterns relating to survey questions on 
identification of pests and diseases in their Cassava farms

Within the 508 individual responses, k-means analysis identified 
28 distinct response patterns. However, with PCA-aided 
visualization, some of these response patterns were observed 
to be closely related (Figure 1a) – (5, 8, 21); (6, 7, 22); (16, 24, 
25); (15, 18); (19, 20); (1, 27); (3, 17), inter alia – and others 
appeared to be actually unique – 0, 2, 4, 9, 10, 11, 23, inter alia.

Response pattern 0 (Figure 1b) was characterized by farmers 
who identified bacterial and viral diseases as those with the 
highest incidences on their farms. Response pattern 1 was 
characterized by farmers who identified viral diseases, mite 
damage, cassava pests and white flies as those with the highest 
incidences on their farms. Response pattern 2 was characterized 
by farmers who identified no pests or diseases on their farms 
as serious enough to take note of. Response pattern 3 was 
characterized by farmers who identified only viral diseases as 
those with the highest incidences on their farms. Response 
pattern 4 was characterized by farmers who identified all 4 
categories of pests and diseases as equally having the highest 
incidences on their farms. Response pattern 5 was characterized 
by farmers who identified only mite damage and cassava pests 
as those with the highest incidences on their farms.

Response pattern 6 was characterized by farmers who identified 
viral diseases and whiteflies as those with the highest incidences 
on their farms. Response pattern 7 was characterized by farmers 
who identified viral diseases, mite damage and cassava pests 
as those with the highest incidences on their farms. Response 
pattern 8 was characterized by farmers who identified only 
whiteflies as those with the highest incidences on their 
farms. Response pattern 9 was characterized by farmers who 
identified fungal diseases and viral diseases as those with the 
highest incidences on their farms. Response pattern 10 was 
characterized by farmers who identified only fungal diseases as 
those with the highest incidences on their farms.

Response pattern 11 was characterized by farmers who identified 
mite damage, cassava pests and whiteflies as those with the 
highest incidences on their farms. Response pattern 12 was 
characterized by farmers who identified all 4 categories of 
pests and diseases except fungal diseases, as having the highest 
incidences on their farms. Response pattern 13 was characterized 
by farmers who identified fungal diseases, bacterial diseases and 
viral diseases as those with the highest incidences on their farms. 
Response pattern 14 was characterized by farmers who identified 
all 4 categories of pests and diseases except bacterial diseases, as 
having the highest incidences on their farms. Response pattern 
15 was characterized by farmers who identified all 4 categories 
of pests and diseases except whiteflies, as having the highest 
incidences on their farms.

Response pattern 16 was characterized by farmers who identified 
fungal diseases, viral diseases and whiteflies as those with the 
highest incidences on their farms. Response pattern 17 was 
characterized by farmers who identified only bacterial diseases 
as those with the highest incidences on their farms. Response 
pattern 18 was characterized by farmers who identified all 
4 categories of pests and diseases except mite damage and 
cassava pests, as having the highest incidences on their farms. 
Response pattern 19 was characterized by farmers who identified 
bacterial diseases, viral diseases and whiteflies as those with the 
highest incidences on their farms. Response pattern 20 was 
characterized by farmers who identified bacterial diseases, viral 
diseases and mite damage and cassava pests as those with the 
highest incidences on their farms.

Response pattern 21 was characterized by farmers who identified 
fungal diseases and mite damage and cassava pests as those 
with the highest incidences on their farms. Response pattern 22 
was characterized by farmers who identified bacterial diseases 
and whiteflies as those with the highest incidences on their 
farms. Response pattern 23 was characterized by farmers who 
identified fungal diseases, mite damage and cassava pests, 
and whiteflies as those with the highest incidences on their 
farms. Response pattern 24 was characterized by farmers who 
identified fungal diseases, bacterial diseases and whiteflies as 
those with the highest incidences on their farms. Response 
pattern 25 was characterized by farmers who identified fungal 
diseases, viral diseases and mite damage and cassava pests, as 
those with the highest incidences on their farms. Response 
pattern 26 was characterized by farmers who identified all 4 
categories of pests and diseases except viral diseases, as having 
the highest incidences on their farms. Response pattern 27 
was characterized by farmers who identified bacterial diseases, 
mite damage and cassava pests, and whiteflies as those with the 
highest incidences on their farms.

Farmers’ response patterns relating to survey questions on 
causes of CMD-related symptoms

Within the 508 individual responses, k-means analysis identified 
22 distinct response patterns (Figure  2a). Response pattern 
0 (Figure  2b) was characterized by farmers who responded 
positive for a virus, negative for the whitefly, positive for the 
use of infected cuttings, positive for lack of rain, negative for 
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soil moisture and negative for mineral deficiency. Response 
pattern 1 was characterized by farmers who did not believe 
that any of the alternatives caused CMD-related symptoms. 

Response pattern 2 was characterized by farmers who believed 
that only the use of infected cuttings caused CMD-related 
symptoms. Response pattern 3 was characterized by farmers 

Figure 1: Farmers’ response patterns relating to survey questions on identification of pests and diseases in their cassava farms. a) PCA plot 
showing response patters and b) heatmap showing variable-wise pattern characteristics.

a

b
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who believed that a virus, the whitefly and the use of infected 
cuttings caused CMD-related symptoms. Response pattern 
4 was characterized by farmers who believed that only the 

whitefly caused CMD-related symptoms. Response pattern 
5 was characterized by farmers who believed that a virus and 
the use of infected cuttings caused CMD-related symptoms. 

Figure 2: Farmers’ response patterns relating to survey questions on causes of CMD-related symptoms. a) PCA plot showing response patters 
and b) heatmap showing variable-wise pattern characteristics. 
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Response pattern 6 was characterized by farmers who believed 
that only a virus caused CMD-related symptoms.

Response pattern 7 was characterized by farmers who believed 
that a virus and the whitefly caused CMD-related symptoms. 
Response pattern 8 was characterized by farmers who believed 
that the whitefly and the use of infected cuttings caused CMD-
related symptoms. Response pattern 9 was characterized by 
farmers who believed that the use of infected cuttings, lack of 
rain and mineral deficiency caused CMD-related symptoms. 
Response pattern 10 was characterized by farmers who believed 
that the use of infected cuttings and lack of rain caused CMD-
related symptoms. Response pattern 11 was characterized by 
farmers who believed that all of the alternatives except moisture 
and mineral deficiency caused CMD-related symptoms. 
Response pattern 12 was characterized by farmers who believed 
that a virus, the use of infected cuttings and mineral deficiency 
caused CMD-related symptoms. Response pattern 13 was 
characterized by farmers who believed that all of the alternatives 
except a virus caused CMD-related symptoms.

Response pattern 14 was characterized by farmers who 
believed that all of the alternatives except the whitefly and 
mineral deficiency caused CMD-related symptoms. Response 
pattern 15 was characterized by farmers who believed that all 
of the alternatives except soil moisture caused CMD-related 
symptoms. Response pattern 16 was characterized by farmers 
who believed that a virus, the whitefly and lack of rain caused 
CMD-related symptoms. Response pattern 17 was characterized 
by farmers who believed that all of the alternatives except the 
whitefly and soil moisture caused CMD-related symptoms. 
Response pattern 18 was characterized by farmers who believed 
that the whitefly, the use of infected cuttings and lack of rain 
caused CMD-related symptoms. Response pattern 19 was 
characterized by farmers who believed that all of the alternatives 
except mineral deficiency caused CMD-related symptoms. 
Response pattern 20 was characterized by farmers who believed 
that a virus and lack of rain caused CMD-related symptoms. 
Response pattern 21 was characterized by farmers who believed 
that only a lack of rain caused CMD-related symptoms.

Worthy of note is the fact that 11 of the 22 response patterns 
did not associate a virus with CMD-related symptoms – response 
patterns 1, 2, 4, 8, 9, 10, 13, 14, 15, 18, 21. Only one response 
pattern uniquely associated a virus, the whitefly and the use 
of infected cuttings with CMD-related symptoms – response 
pattern 3. This suggests that the farmers are not knowledgeable 
on the viral diseases of Cassava.

Farmers’ response patterns relating to survey questions on the 
impact of CMD on Cassava plants

Within the 508 individual responses, k-means analysis identified 
9 distinct response patterns (Figure 3a). Response pattern 0 
(Figure  3b) was characterized by farmers who believed that 
poor plant growth and decrease in yield were among the 
impacts of CMD on Cassava plants. Response pattern 1 was 
characterized by farmers who believed that neither poor plant 
growth, decrease in yield nor lack of healthy plant material 

were among the impacts of CMD on Cassava plants. Response 
pattern 2 was characterized by farmers who believed that only 
poor plant growth, decrease in yield and lack of healthy plant 
material were among the impacts of CMD on Cassava plants. 
Response pattern 3 was characterized by farmers who believed 
that only poor plant growth and decrease in yield were among 
the impacts of CMD on Cassava plants. Response pattern 4 
was characterized by farmers who believed that only poor plant 
growth was among the impacts of CMD on Cassava plants. 
Response pattern 5 was characterized by farmers who believed 
that only a decrease in yield was among the impacts of CMD on 
Cassava plants. Response pattern 6 was characterized by farmers 
who believed that only poor plant growth and a lack of healthy 
plant material were among the impacts of CMD on Cassava 
plants. Response pattern 7 was characterized by farmers who 
believed that only lack of healthy plant material was among the 
impacts of CMD on Cassava plants. Response pattern 8 was 
characterized by farmers who believed that only a decrease in 
yield and lack of healthy plant material was among the impacts 
of CMD on Cassava plants. Only response pattern 1 associated 
neither poor plant growth, decrease in yield or lack of healthy 
plant material with the impacts of CMD on Cassava plants.

Farmers’ response patterns relating to survey questions on 
farmers’ reactions to CMD-related symptoms

Within the 508 individual responses, k-means analysis identified 
32 distinct response patterns (Figure 4a). Response pattern 0 
(Figure 4b) was characterized by farmers who mitigated CMD-
related symptoms on their farms through the replacement 
of infected plants by healthy cuttings, analysis of the plants 
concerned with the Nuru application and consultation with 
agricultural agents. Response patterns 1 and 6 were characterized 
by farmers who did not mitigate CMD-related symptoms on 
their farms. Response pattern 2 was characterized by farmers 
who mitigated CMD-related symptoms on their farms through 
the removal of infected plants, destruction of infected plants 
and replacement of infected plants by healthy cuttings. 
Response pattern 3 was characterized by farmers who mitigated 
CMD-related symptoms on their farms through the removal of 
infected plants and destruction of infected plants. Response 
pattern 4 was characterized by farmers who mitigated CMD-
related symptoms on their farms only through the removal of 
infected plants. Response pattern 5 was characterized by farmers 
who mitigated CMD-related symptoms on their farms through 
the removal of infected plants and the replacement of infected 
plants by healthy cuttings. Response pattern 7 was characterized 
by farmers who mitigated CMD-related symptoms on their 
farms only through the replacement of infected plants by 
healthy cuttings. Response pattern 8 was characterized by 
farmers who mitigated CMD-related symptoms on their farms 
through the removal of infected plants, destruction of infected 
plants and consultation with agricultural agents.

Response pattern 9 was characterized by farmers who 
mitigated CMD-related symptoms on their farms only 
through the destruction of infected plants. Response pattern 
10 was characterized by farmers who mitigated CMD-related 
symptoms on their farms through the removal of infected 



Claudette and Roger

22	 J Sci Agric  •  2024  •  Vol 8

Figure 3: Farmers’ response patterns relating to survey questions on the impact of CMD on cassava plants. a) PCA plot showing response 
patters and b) heatmap showing variable-wise pattern characteristics.

plants, destruction of infected plants and analysis of the plants 
concerned with the NURU application. Response pattern 11 
was characterized by farmers who mitigated CMD-related 

symptoms on their farms through the replacement of infected 
plants by healthy cuttings, consultation with agricultural agents 
and the use of inputs. Response pattern 12 was characterized by 

a
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farmers who mitigated CMD-related symptoms on their farms 
through the removal of infected plants and consultation with 

agricultural agents. Response pattern 13 was characterized by 
farmers who mitigated CMD-related symptoms on their farms 

Figure 4: Farmers’ response patterns relating to survey questions on farmers’ reactions to CMD-related symptoms. a) PCA plot showing response 
patters and b) heatmap showing variable-wise pattern characteristics.
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through the destruction of infected plants and the replacement 
of infected plants by healthy cuttings. Response pattern 14 
was characterized by farmers who mitigated CMD-related 
symptoms on their farms through the removal of infected plants, 
replacement of infected plants by healthy cuttings and analysis 
of the plants concerned with the NURU application. Response 
pattern 15 was characterized by farmers who mitigated CMD-
related symptoms on their farms only through consultation 
with agricultural agents.

Response pattern 16 was characterized by farmers who mitigated 
CMD-related symptoms on their farms only through the 
analysis of the plants concerned with the NURU application. 
Response pattern 17 was characterized by farmers who mitigated 
CMD-related symptoms on their farms through the removal of 
infected plants, destruction of infected plants, and replacement 
of infected plants by healthy cuttings and analysis of the plants 
concerned with the NURU application. Response pattern 18 
was characterized by farmers who mitigated CMD-related 
symptoms on their farms through the destruction of infected 
plants and analysis of the plants concerned with the NURU 
application. Response pattern 19 was characterized by farmers 
who mitigated CMD-related symptoms on their farms through 
the destruction of infected plants and consultation with 
agricultural agents. Response pattern 20 was characterized by 
farmers who mitigated CMD-related symptoms on their farms 
through the destruction of infected plants, analysis of the plants 
concerned with the NURU application and consultation with 
agricultural agents. Response pattern 21 was characterized by 
farmers who mitigated CMD-related symptoms on their farms 
through the removal of infected plants and consultation with 
agricultural agents. Response pattern 22 was characterized 
by farmers who mitigated CMD-related symptoms on their 
farms through the replacement of infected plants by healthy 
cuttings and analysis of the plants concerned with the NURU 
application. Response pattern 23 was characterized by farmers 
who mitigated CMD-related symptoms on their farms through 
the removal of infected plants, replacement of infected plants 
by healthy cuttings and consultation with agricultural agents.

Response pattern 24 was characterized by farmers who 
mitigated CMD-related symptoms on their farms through the 
analysis of the plants concerned with the NURU application 
and consultation with agricultural agents. Response pattern 
25 was characterized by farmers who mitigated CMD-related 
symptoms on their farms through the destruction of infected 
plants, and replacement of infected plants by healthy cuttings 
and consultation with agricultural agents. Response pattern 
26 was characterized by farmers who mitigated CMD-related 
symptoms on their farms through the destruction of infected 
plants, replacement of infected plants by healthy cuttings and 
analysis of the plants concerned with the NURU application. 
Response pattern 27 was characterized by farmers who mitigated 
CMD-related symptoms on their farms using all of the six action 
categories except the use of inputs. Response pattern 28 was 
characterized by farmers who mitigated CMD-related symptoms 
on their farms only through consultation with agricultural 
agents. Response pattern 29 was characterized by farmers who 
mitigated CMD-related symptoms on their farms using all of the 

six action categories except the replacement of infected plants 
by healthy cuttings and the use of inputs. Response pattern 
30 was characterized by farmers who mitigated CMD-related 
symptoms on their farms only through the removal of infected 
plants. Response pattern 31 was characterized by farmers who 
mitigated CMD-related symptoms on their farms only through 
the replacement of infected plants by healthy cuttings. Only 
response patterns 1 and 6 did not mitigate CMD-related 
symptoms on their farms.

Farmers’ response patterns relating to survey questions on 
CMD prevention

Within the 508 individual responses, k-means analysis identified 
16 distinct response patterns (Figure  5a). Response pattern 
0 (Figure  5b) was characterized by farmers who indicated 
that CMD could be prevented through regular monitoring 
of fields (removal, destruction, and replacement of infected 
plants) and regular cleaning of the fields. Response pattern 
1 was characterized by farmers who indicated that CMD 
could be prevented only through the use of healthy plant 
material. Response pattern 2 was characterized by farmers 
who indicated that CMD could be prevented using all of the 
five action categories. Response pattern 3 was characterized by 
farmers who indicated not knowing how to combat or prevent 
the onset of CMD. Response pattern 4 was characterized by 
farmers who indicated that CMD could be prevented through 
the use of healthy plant material and regular monitoring of 
fields (removal, destruction, and replacement of infected 
plants). Response pattern 5 was characterized by farmers who 
indicated that CMD could be prevented through the use of 
healthy plant material, regular monitoring of fields (removal, 
destruction, and replacement of infected plants) and regular 
cleaning of the fields. Response pattern 6 was characterized by 
farmers who indicated that CMD could be prevented through 
the use of healthy plant material and regular cleaning of the 
fields. Response pattern 7 was characterized by farmers who 
indicated that CMD could be prevented only through regular 
cleaning of the fields.

Response pattern 8 was characterized by farmers who indicated 
that CMD could be prevented through the use of healthy 
plant material, regular cleaning of the fields and respect of 
the planting density. Response pattern 9 was characterized 
by farmers who indicated that CMD could be prevented only 
through regular monitoring of fields (removal, destruction, 
and replacement of infected plants). Response pattern 10 
was characterized by farmers who indicated that CMD could 
be prevented through the use of healthy plant material and 
respect of the planting density. Response pattern 11 was 
characterized by farmers who indicated that CMD could be 
prevented through the use of healthy plant material, regular 
monitoring of fields (removal, destruction, and replacement of 
infected plants) and respect of the planting density. Response 
pattern 12 was characterized by farmers who indicated that 
CMD could be prevented through regular monitoring of fields 
(removal, destruction, and replacement of infected plants), 
regular cleaning of the fields and respect of the planting density. 
Response pattern 13 was characterized by farmers who indicated 
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that CMD could be prevented through regular monitoring 
of fields (removal, destruction, and replacement of infected 
plants) and regular cleaning of the fields. Response pattern 14 

was characterized by farmers who indicated that CMD could be 
prevented through the use of healthy plant material and regular 
monitoring of fields (removal, destruction, and replacement 

Figure 5: Farmers’ response patterns relating to survey questions on CMD prevention. a) PCA plot showing response patters and b) heatmap 
showing variable-wise pattern characteristics. 
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of infected plants). Response pattern 15 was characterized by 
farmers who indicated other means (not amongst the action 
categories) by which CMD could be prevented. Only response 
pattern 3 reported not knowing how to combat or prevent the 
onset of CMD.

Farmers’ perceptions of cassava diseases and management 
technologies

Table 3 and Figure 6 numerically and graphically summarize 
farmers’ perceptions of CMD and management technologies, 
respectively.

39.76% of respondents did not believe that cassava viral diseases 
are caused by poor hygiene on the field, while 37.80% were 
unsure and 22.44% agreed. 49.80% of respondents did not 
believe that viral symptoms observed on cassava leaves result 
from the application of herbicides, while 34.45% were unsure 
and 15.75% agreed. 45.87% of respondents did not believe 
that older plants are more attacked by cassava viral diseases, 
while 43.11% were unsure and 11.02% agreed. 40.16% of 
respondents did not believe that late planting can lead to cassava 
viral diseases, while 35.63% were unsure and 24.21% agreed. 
37.40% of respondents did not believe that drought and high 
temperatures can lead to cassava viral diseases, while 35.24% 
were unsure and 27.36% agreed.

45.28% of respondents did not believe that planting in muddy 
or waterlogged soils causes infections, while 32.28% were unsure 
and 22.24% agreed. 43.70% of respondents did not believe that 
poor aeration promotes cassava viral diseases, while 34.84% 

were unsure and 21.46% agreed. 48.62% of respondents did not 
believe that a late harvest can lead to cassava viral diseases, while 
37.99% were unsure and 13.39% agreed. 54.72% of respondents 
did not believe that cassava viral diseases are caused by the use 
of poor-quality planting, while 39.57% were unsure and 5.71% 
agreed. 55.51% of respondents did not believe that cassava viral 
diseases can be managed by breaking the affected part, while 
34.45% were unsure and 10.04% agreed.

41.34% of respondents did not believe that the management 
practices can easily be integrated into the traditional farming 
system, while 31.30% were unsure and 27.36% agreed. 52.56% 
of respondents did not believe that the management practices 
taught by the agricultural officers are complex to understand, 
while 25.39% were unsure and 22.05% agreed. 42.91% of 
respondents did not believe that the use of integrated 
approaches to viral disease control in cassava is more expensive 
than using chemicals, while 29.13% were unsure and 27.95% 
agreed. 47.64% of respondents did not believe that chemicals 
are effective in controlling cassava viral diseases, while 31.69% 
were unsure and 20.67% agreed. 44.69% of respondents did not 
believe that no cassava variety is resistant to viral diseases, while 
31.50% were unsure and 23.82% agreed.

42.32% of respondents did not believe that there is no control 
for cassava viral diseases, while 38.39% were unsure and 19.29% 
agreed. 42.72% of respondents did not believe that the plant 
infected by cassava viral diseases always recovers at the beginning 
of the rains, while 33.07% were unsure and 24.21% agreed. 
51.38% of respondents did not believe that the management 
practices of cassava viral diseases are not culturally accepted 
in my community, while 25.59% were unsure and 23.03% 

Table 3: Farmers’ perceptions of CMD and its management
Variable Description % Disagree % Don’t know % Agree

V412 cassava viral diseases are caused by poor hygiene on the field 39.76 37.80 22.44
V413 viral symptoms observed on cassava leaves result from the application of herbicides 49.80 34.45 15.75
V414 older plants are more attacked by cassava viral diseases 45.87 43.11 11.02
V415 late planting can lead to cassava viral diseases 40.16 35.63 24.21
V416 drought and high temperatures can lead to cassava viral diseases 37.40 35.24 27.36
V417 planting in muddy or waterlogged soils causes infections 45.28 32.28 22.24
V418 poor aeration promotes cassava viral diseases 43.70 34.84 21.46
V419 a late harvest can lead to cassava viral diseases 48.62 37.99 13.39
V420 cassava viral diseases are caused by the use of poor‑quality planting 54.72 39.57 5.71
V421 cassava viral diseases can be managed by breaking the affected part 55.51 34.45 10.04
V422 the management practices can easily be integrated into the traditional farming system 41.34 31.30 27.36
V423 the management practices taught by the agricultural officers are complex to understand 52.56 25.39 22.05
V424 the use of integrated approaches to viral diseases control in cassava is more expensive than 

using chemicals
42.91 29.13 27.95

V425 chemicals are effective in controlling cassava viral diseases 47.64 31.69 20.67
V426 no cassava variety is resistant to viral diseases 44.69 31.50 23.82
V427 there is no control for cassava viral diseases 42.32 38.39 19.29
V428 the plant infected by cassava viral diseases always recovers at the beginning of the rains 42.72 33.07 24.21
V429 the management practices of cassava viral diseases are not culturally accepted in my community 51.38 25.59 23.03
V430 the use of cassava diseases management technologies helps to reduce the incidence of cassava 

viral diseases
50.20 32.28 17.52

V431 the use of cassava disease management technologies increases productivity 48.81 41.73 9.45
V432 the management technologies are accessible at all times 37.40 37.20 25.39
V433 cassava viral diseases prevent rooting 45.28 31.89 22.83
V434 whenever cassava plants are attacked by viral diseases, it results in poor quality tubers 53.74 40.55 5.71
V435 viral diseases of cassava can lead to 100% yield loss if left untreated 40.16 32.68 27.17
V436 cassava viral diseases result in loss of planting material 58.27 39.57 2.17
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Figure 6: Farmers’ perceptions of CMD and its management. 1-Disagree, 2-Don’t know and 3-Agree.

agreed. 50.20% of respondents did not believe that the use of 
cassava diseases management technologies helps to reduce the 
incidence of cassava viral diseases., while 32.28% were unsure 
and 17.52% agreed. 48.81% of respondents did not believe that 
the use of cassava disease management technologies increases 
productivity, while 41.73% were unsure and 9.45% agreed.

37.40% of respondents did not believe that the management 
technologies are accessible at all times, while 37.20% were 
unsure and 25.39% agreed. 45.28% of respondents did not 
believe that cassava viral diseases prevent rooting, while 31.89% 
were unsure and 22.83% agreed. 53.74% of respondents did 

not believe that whenever cassava plants are attacked by viral 
diseases, it results in poor quality tubers, while 40.55% were 
unsure and 5.71% agreed. 40.16% of respondents did not believe 
that viral diseases of cassava can lead to 100% yield loss if left 
untreated, while 32.68% were unsure and 27.17% agreed. 58.27% 
of respondents did not believe that cassava viral diseases result 
in loss of planting material, while 39.57% were unsure and 
2.17% agreed.

Overall, 18.88% of farmers (or 96 out of 508 farmers) know 
about cassava diseases and management technologies. This 
finding highlights a significant gap in agricultural education 
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and extension services. This low level of awareness could 
lead to ineffective disease control, reduced crop yields, and 
economic losses, considering cassava’s importance as a staple 
food and income source in Cameroon. It suggests an urgent 
need for improved dissemination of information and training 
for farmers to enhance their capacity to manage cassava diseases 
effectively, which could ultimately contribute to food security 
and sustainable agricultural practices in the region.

CONCLUSION

This study has highlighted the urgency of the critical need 
for agricultural extension services to provide education and 
resources to farmers, ensuring they are equipped with the 
necessary skills and knowledge to protect their crops and 
livelihoods effectively.
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