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INTRODUCTION

Green gram is one of the pulse crops that are important for 
food and income generation in the arid and semiarid lands 
(ASALs) of Kenya. The crop has been cultivated in these areas 
for decades. Predicted climate change scenarios in the future 
may cause adverse effects on the habitat suitability for green 
gram production in some areas.

Climate change is likely to affect the high potential and 
low potential agricultural areas making them unsuitable for 
crop production. Habitat/climate suitability analysis helps to 
determine areas that are suitable for species survival and find out 
if they will remain suitable in the future (Halder, 2013). Research 
on climate suitability is important in adapting to and mitigating 
the effects of climate change. Green gram is cultivated in more 
than six million hectares in the warmer locations of the world. 

It is also adapted to a wide range of agroecological climates and 
requires low inputs during production (Nair et al., 2012). A study 
by Mugo et al. (2020), found Kenya to be suitable for green gram 
production whereas Kitui, Makueni and West Pokot Counties 
were highly suitable for green gram production.

Species distribution models (SDMs) are currently the most 
commonly used tools for predictions of species habitat 
suitability (Jarvie & Svenning, 2018). SDMs can have some 
degree of uncertainties related to inherent variability of natural 
systems (Gould et al., 2014; Noce et al., 2019). However, 
ensemble forecasting has been revealed as an effective method 
of modelling to reduce variability of SDMs. The ensemble 
forecasting employs more than one model and therefore it 
combines several sources of uncertainty to improve the accuracy 
of climate change forecasts (Buisson et al., 2010; Taleshi et al., 
2019). SDMs can be combined with Global circulation models 
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and Greenhouse Gas (GHG) emission concentration 
pathways (RCPs) to quantify projections in climate change 
studies (Vieilledent et al., 2013; Zhang et al., 2015; Noce et al., 
2017). RCPs are dependent trajectories of concentrations of 
GHGs and other environmental pollutants resulting from 
human activities (AR5) (IPCC, 2014). The RCP 4.5 stabilizes 
radiative forcing at 4.5 w/m2 in the year 2100 when strategies 
and technologies to reduce GHG emissions are employed. 
RCP 8.5 is characterized by increasing GHG emissions and 
high concentration levels in the atmosphere. The increasing 
emissions present a rising radiative forcing pathway leading to 
8.5 w/m2 in 2100 approximately 1370 ppm equivalent (Noce 
et al., 2017; del Río et al., 2021).

Studies on green gram production and climate change have been 
carried out in Kenya (Mugo et al., 2016, 2020).The effects of 
climate change on habitat suitability have been analyzed from 
different forms of view (Kufa et al., 2022). To our knowledge, 
no study has been conducted in Kibwezi East Sub County using 
ensemble-forecasting models combining standard bioclimatic 
variables and biogeographic predictors to model habitat 
suitability of green grams production under present and future 
climate scenarios.

Therefore, this study analyzed the habitat suitability situation 
for green gram in Kibwezi East subcounty, Kenya. It was carried 
under the present (1970-2000) and the future climate scenarios 
in the 2050s (2041-2060) under RCP 4.5 and RCP 8.5 climate 
scenarios using the Species Distribution Modelling (del Río 
et al., 2021). The study combined an ensemble of species 
distribution models applied to Global circulation models driven 
by two representative concentration pathways.

MATERIALS AND METHODS

Study Location

This study was carried out in Kibwezi East Sub County in 
Makueni County, Kenya (Figure 1). Kibwezi East Sub County 
is approximately 200km south east of Nairobi and lies between 
longitude 37°58’4.25” E and latitude 2°24’37.89” S. Makueni 
County is approximately 8,034.7 Km2 (GoK, 2013). It is divided 
into six sub-counties namely: Kaiti, Kilome and Mbooni, which 
are situated in the upper parts of the county while Makueni, 
Kibwezi East and Kibwezi West are situated in the middle and 
lower parts of the county. Kibwezi East Sub County has four 
wards namely; Thange, Mtito Andei, Ivingoni/Nzambani and 
Masongaleni.

Data Collection

World species presence data for green grams was obtained from 
the Global Biodiversity Information Facility (GBIF) using dismo 
package in R statistical software (R) (Fick & Hijmans, 2017). 
Using raster package in R, historical/present data from 1970-
2000 that was released in 2020 was accessed from the Worldclim 
version 2 database. A total of 19 standard Worldclim bioclimatic 
variables were downloaded at a resolution of 30 seconds which 

Figure 1: Map of Makueni County. Source: Author (2023)

is about an area of 1km2 per pixel. More information about 
the standard bioclimatic variables is found on https://www.
worldclim.org/data/bioclim.html. Bioclimatic variables with 
multicollinearity were identified and removed using usdm 
package in R (Chan et al., 2022). The remaining nine standard 
bioclimatic variables were used in this study (Table 1).

Future bioclimatic data was downloaded from Worldclim 
version 2 at a resolution of 30 seconds for the year 2050s, which 
are the years between 2041 and 2060 using raster package in R. 
This was downloaded from Coupled Model Intercomparison 
Project Phase 5 (CMIP5) downscaled data for future climate 
projections for the IPCC5 climate projections and global 
climate models (GCMs) for two representative concentration 
pathways (RCPs) i.e., RCP 4.5 and RCP 8.5. The Greenhouse 
Gas emission pathways provide a time and space dependent 
trajectory of concentrations of GHGs.

Other data included elevation, soil type and soil pH. Soil type 
and pH were obtained from (International Soil Reference and 
Information Centre (ISRIC) at a resolution of 250 m per pixel 
while elevation was obtained from Worldclim (Fick & Hijmans, 
2017) at a resolution of 30 seconds. These were kept constant 
for the three simulations; current, RCP 4.5 and RCP 8.5 climate 
scenarios.

Development of green gram habitat suitability model

Using sdm package in R, six models namely; generalized linear 
model (glm), support vector machine (Svm), random forest 
(rf), boost regression tree (brt), multivariate adaptive regression 
splines (mars) and maximum entropy (maxent) were trained. 
The choice of these models was based on previous studies which 
stated their importance in providing robust predictions (Hastie 
et al., 2009; Latif et al., 2013). The algorithms were combined 
into an ensemble. The procedure was carried out using ten 
bootstrap replicate run types.
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Table  1: Standard bioclimatic variables used for model 
development
Variable Description

BIO2 Mean Diurnal Range (Mean of monthly (max temp ‑ min temp)
BIO3 Isothermality (BIO2/BIO7) (×100)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter

BIO=Bioclimatic variable

Model Evaluation

The prediction quality of the six models were evaluated using 
area under the curve of receiver operating characteristic plot 
(AUCROC) (Hosmer & Lemeshow, 2013), Pearsons’s correlation 
between predicted and observed species presence-absence data 
(COR), true skills statistics (TSS) (Allouche et al., 2006) and 
deviance (Lobo et al., 2008). This was important in evaluating 
the model specificity and sensitivity. Specificity is the ability of 
a model to predict absence in a location while sensitivity is the 
ability of a model to predict presence in a location (Zurell, 2020).

Green Gram Habitat Suitability Predictions

The ensemble of the developed models was used for predicting 
green gram habitat suitability under present scenario, RCP 
4.5 and RCP 8.5 climate scenarios. This was carried out with 
the assumption that the species are at equilibrium with the 
environment and that they should also respond dynamically 
to global change show transient dynamics (Urban et al., 2016; 
Zurell, 2017). To make predictions for Kibwezi East, bioclimatic 
datasets from the predicted future data were cropped to scale 
down to Kibwezi East boundary coordinates accessed from 
Global Administrative Areas (GADM) version 4.1 (www.gadm.
org). Green gram habitat suitability predictions were carried out 
using ensemble function of sdm package in R. These predictions 
were visualized using plots plotted from the predicted results 
using ggplot2 package in R. Three final suitability maps were 
presented under the present scenario, RCP 4.5 and RCP 8.5 
climate scenarios as proposed by the IPCC AR5 (Mastrandrea 
et al., 2011; Noce et al., 2017). Percentage suitability change 
was computed in R.

RESULTS

Green gram distribution and presence data across the world 
indicated that the crop is majorly grown in the Asian countries 
and Australia (Figure 2). The green gram presence data used 
for modelling covered all global geographic areas suitable for its 
growth. The use of global green gram presence data increases 
environmental variability which enhances the reliability of the 
developed model. Species can only survive in geographic areas 
where both the abiotic and biotic conditions allow positive plant 
population growth of that particular species (Zurell, 2020).

Relative variable importance averaged over the six models was 
used to make an ensemble is shown in Figure 3. Out of nine 
bioclimatic variables, four had the highest contribution to 
the ensemble (Figure 3). Among these variables, bio9 (Mean 
Temperature of Driest Quarter) had the highest mean relative 
variable importance in the development of green gram habitat 
suitability ensemble model. This bioclimatic variable provides 
the mean temperature during the driest three months of the 
year. The second highest mean relative important variable in 
this study was bio3 (Isothermality) while bio14 (Precipitation 
of Driest Month) had the lowest mean relative variable 
importance.

Validation statistics showed that all models that were developed 
were robust (Table 2). Based on AUCROC values, the least was 
0.87 for glm and highest was 0.98 for rf model. The highest COR 
values were (0.89) for the rf model while the least value was 
(0.65) for glm model. Trues Skill Statistic (TSS) values ranged 
from 0.59 for glm to 0.88 for rf. The Deviance values ranged 
from 0.29 for rf model to 0.94 for maxent model.

The AUCROC plots show AUC means for training and testing 
sets (Figure 4). From these plots, the training and testing AUC 
values for all models fitted well. The highest values were for 
the rf model where training set AUC value was 1 and testing 
AUC value was 0.98. The least values were in glm model with 
training set AUC value of 0.87 and testing AUC value of 0.87.

Figure 5 shows green gram habitat suitability plot for the present 
climatic scenario. This figure was plotted from results predicted 
using the developed ensemble model. The results showed that 
green gram habitat suitability was high in Ivingoni/Nzambani, 
Thange and Masongaleni wards. However, the western parts 
of Ivingoni/Nzambani and Thange wards had medium habitat 
suitability for green gram. A greater part of Mtito Andei ward 
had medium green gram habitat suitability with a small section 
of its southern part having very low habitat suitability.

In the year 2050s under RCP 4.5 climate scenario, the results 
(Figure 6) revealed loss in habitat suitability compared to present 
climatic scenario as shown in Figure 5. The habitat suitability 
for growing green grams in the western parts of Ivingoni/
Nzambani and Thange wards greatly reduced from relatively 

Figure 2: Plot of green gram presence across the world
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Figure 3: Relative variable importance averaged over six models

Table 2: Model evaluation Statistics
Models AUCROC COR TSS Deviance

GLM 0.87 0.65 0.59 0.71
SVM 0.95 0.81 0.8 0.45
RF 0.98 0.89 0.88 0.29
BRT 0.91 0.71 0.67 0.75
MARS 0.9 0.71 0.66 0.61
MAXENT 0.91 0.7 0.67 0.94

high to medium and low. In Mtito Andei ward, there was loss 
of suitability making it unsuitable for green gram production. 
Habitat suitability for green gram production increased from 
medium to high in the central parts of the study area.

Predicted climate data for the 2050s showed that green gram 
habitat suitability reduced greatly under RCP 8.5 compared to 
RCP 4.5 climate scenario (Figure 7). This was evident in Mtito 

Figure 4: ROC curves with AUC values for training and testing sets
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Andei and the eastern parts of Masongaleni wards. Green gram 
habitat suitability in the western parts of Ivingoni/Nzambani 
and Thange wards was predicted to reduce from Medium to 
low. In (Figure  7), suitability in the central part of the sub 
county appears to decrease from high to medium. Overall, the 
predictions in the 2050s under RCP 8.5 climate scenario show 
that about 50% of the study location will have low habitat 
suitability for green gram production, about 25% will have 

medium suitability and the remaining 25% will have high habitat 
suitability for green gram production.

Table  3 shows the predicted habitat suitability change in 
percentage. The results show that the habitat suitability will 
change by 10.24% from the present climatic scenario to RCP 
4.5 scenario in the 2050s. However, under the RCP 8.5 climatic 
scenario the suitability will change by 18.8% from the present 
scenario.

DISCUSSION

An ensemble of six species distribution models was developed 
and used to predict future green gram habitat suitability under 
RCP 4.5 and RCP 8.5 climate scenarios. In model development, 
variable importance is used to indicate the degree at which 
that variable affects the response value (Inglis et al., 2022). 
Among the standard bioclimatic (bio) variables used, bio9 had 
the highest variable importance averaged across the 6 models 
while bio14 had the lowest. Therefore, bio9 which contains 
the mean temperature of driest quarter significantly varied 
across geographical regions and consequently, it had the 
highest contribution to the model (Xie & Zhang, 2023). The 
developed model had 6 out of 9 predictors with high variable 
importance. This implied that the model was robust. This 
result on relative variable importance revealed the relative 
importance of each environmental factor in affecting species 
distributions (O’Donnell & Ignizio, 2012). Based on this result, 
it was concluded that the mean temperature during the driest 
three months of the year (bio9) contributes most to green gram 
habitat suitability.

Model validation results revealed that all models in the ensemble 
were robust in predicting green gram habitat suitability. The 
model validation statistics showed that the least robust model 
had AUCROC = 0.85. Validity of a model can be effectively 
measured using its sensitivity and specificity components 
(Kumar & Indrayan, 2011). This method relies on receiver 
operating characteristic curve (ROC) and depicts the trade-
off between sensitivity and (1-specificity) across a series of 
points (Gajowniczek et al., 2014). A high AUCROC value was an 
indication that the developed model was robust to use in the 
prediction of habitat suitability (Kumar & Indrayan, 2011). 
Based on AUCROC statistics, all models were reliable. The COR 
statistics is the Pearson’s correlation between the predicted and 
observed species presence-absence data. A model is more robust 
when the COR values approaches one and less robust when this 
value approaches zero (Han & Liu, 2017). High COR values 
indicates that the models fitted the predicted and observed 
values well (Smith & Santos, 2020). In the developed models, 
the COR values ranged between 0.65 and 0.89 indicating that 
the models were robust.

Another metric used for model evaluation is True Skill Statistic 
(TSS). This is the most effective metric that is employed in 
validating species distribution models (Yoon & Lee, 2023). 
Calculation of TSS involves a confusion matrix composed of 
number of correct and incorrect predictions of species presence-

Figure  6: Green gram suitability in Kibwezi East under RCP 4.5 
scenario

Figure 5: Green gram habitat suitability in Kibwezi East under historical 
/near present climate scenario

Figure  7: Green gram suitability in Kibwezi East under RCP 8.5 
scenario
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absence data (Allouche et al., 2006). This method accounts for 
sensitivity, specificity and accuracy and therefore, it is the most 
practical metric. In this study, the results show that the TSS 
values ranged between 0.59 and 0.88 and therefore, the models 
were reliable for habitat suitability prediction. The last metric 
used to evaluate the models was Deviance. Deviance is a 
measure of error and therefore, lower values means that the 
model fits well (Di Mari et al., 2023). In the results, out of the 
six models, four had Deviance values of more than 0.60. Based 
on this metric, the individual models did not perform well. It 
is on this premise that ensemble of models becomes helpful. 
An ensemble combines all sources of error from the various 
models and works on it to improve the accuracy of prediction 
(Buisson et al., 2010; Taleshi et al., 2019). Therefore, based on 
high accuracy of developed models and the use of the ensemble 
of the six models to fix uncertainties, the final ensemble model 
was highly reliable to predict green gram habitat suitability 
in Kibwezi East and other regions with similar agro climatic 
conditions. This accuracy is attributed to the use of predictors 
from wide geographical regions across the world and the 
application of an ensemble of models.

This research shows that climate change will have a great impact 
on green gram habitat suitability in Kibwezi East sub-county. 
Effects of climate change will significantly contribute to green 
gram habitat suitability loss. The result shows that habitat 
suitability will reduce by 18.8% in RCP 8.5 and 10.24% in 
RCP4.5. High habitat suitability loss in RCP 8.5 compared to 
RCP 8.5 scenario is due to high emissions of greenhouse gas from 
anthropogenic sources. This leads to increased temperatures in 
RCP 8.5 climate scenario compared to RCP 4.5 scenario. Green 
gram habitat suitability will greatly reduce in Mtito Andei and 
the western part of Ivingoni/Nzambani and Thange.

Habitat suitability models assess the environmental conditions 
and factors that influence the growth and development of 
crops. These models can identify areas with the most favorable 
conditions for crop cultivation. This information is invaluable 
for farmers in selecting suitable sites for planting, maximizing 
crop yield potential and minimizing risks associated with 
environmental constraints and climate change. They also aid 
in land use planning and management, helping to allocate 
resources efficiently and sustainably (Dastres et al., 2023).

The models facilitate risk assessment by identifying potential 
yield-limiting factors and guiding adaptation strategies to adapt 
to their impacts (James et al., 2017).

Applying habitat suitability models in green gram farming is 
essential for optimizing production, ensuring sustainability, 
and building resilience against risks associated with climate 

change. These models empower farmers with valuable insights 
into site suitability, crop performance and adaptation strategies, 
ultimately contributing to improved livelihoods and food 
security in green gram-producing regions.

CONCLUSION

The results indicated that the habitat suitability for green gram 
production in Kibwezi East was well described by the selected 
predictors. Based on the evaluation statistics, all single models 
were included in the final ensemble forecasting model. The 
model that was developed will provide information on the 
current situation in green gram production and prediction on 
future performance of the crop under the various climate change 
scenarios and emission trajectories. It is a very important tool for 
decision making on green gram cropping management systems 
in the arid and semiarid lands as well as in development of 
climate change mitigation and adaptation strategies. Climate 
change effects are experienced differently in different places. 
The analysis for Kibwezi east Sub County predicts a decline in 
habitat suitability. This calls for adaptation strategies as well as 
climate mitigation strategies. Joint efforts by all stakeholders 
are needed to devise the strategies because green gram is a 
major crop in this location. The study presents the importance 
of conducting the analysis at the biogeographic level since the 
effects of climate change are experienced differently in every 
area and require engagement and conservation policies at the 
local level.
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