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INTRODUCTION

Soil salinization is one of the most severe plant growth, 
agricultural yield and finally ecological problems 
(Hasegawa, 2013). Al-Sadi et al. (2010) reported that 
just about 400 million per hectare of land is affected as a 
result of salinity. Soil salt affects plant growth mainly by 
the action of some ions, such as Na+ and Cl− (Jamil et al., 
2012). Ions taken up by roots not only accumulate at high 
concentrations in plant tissues, but may also reduce the 
uptake of other ions, like nutrient elements (Dong, 2012; 
Radhakrishnan and Kumari, 2012). Salt tolerance can be 
achieved by salt exclusion or salt inclusion, specifically, salt 
excluders exhibit water deficit that reduces plant growth 
and requires a mechanism for prevention of and internal 
water deficit. In this sense, its hypothetical salt tolerance 
by salt inclusion requires either high tissue tolerance to 
Na+ and Cl− or avoidance of high tissue concentration 
(Patel et al., 2010).

Three most important factors contribute to salinization 
in agricultural areas: (i) poor irrigation management and 
lack of suitable drainage; (ii) irrigation with saline water; 
and (iii) rising groundwater tables because of vegetation 
changes (Rewald et al., 2012). Salinity causes numerous 
challenges for plants, including water stress, mal-
nutrition and accumulation of excess ions to toxic levels 
(Rewald et al., 2011). Plants are subjected to a number of 
environmental stresses that harmfully affect plant growth, 
metabolism and biological yield (Lawlor and Cornic, 
2002, Kheybari et al., 2013). The environmental stresses 
such as drought, air pollution, temperature, salinity, heavy 
metals, pesticides, and soil pH are major factors limiting 
agricultural crop production because, they affect almost all 
plant functions (Hern-Ndez et al., 2001; Yue et al., 2011).

Plants have both enzymatic and non-enzymatic mechanisms 
for scavenging reactive oxygen species. The enzymatic 
antioxidants include superoxide dismutase, catalase, guaiacol 
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peroxidase, and the enzymes of ascorbate glutathione (AsA-
GSH) cycle such as AsA peroxidase, dehydro AsA reductase 
(DHAR), mono DHAR, and GSH reductase. AsA, GSH, 
phenolics, carotenoids, and tocopherols, which act as potent 
non-enzymic antioxidant inside the cell (Sharma et al., 
2012). All reactive oxygen species are extremely harmful to 
organisms at high concentrations. When the level of reactive 
oxygen species is higher than the tolerance level, a cell is 
subjected to “oxidative stress.” The improved production 
of reactive oxygen species during environmental stresses 
can adversely affect the cellular activities by causing the 
oxidation of proteins, peroxidation of lipids, and preventing 
the activity of enzymes, which eventually results in cellular 
deactivation (Sharma et al., 2012).

Halophytes are remarkable plants able to tolerate salt 
concentrations that kill 99% of other species (Flower and 
Colmer, 2008). Halophytes show growth, development and 
survival under saline conditions and the effect of salinity 
on growth varies among species (Flower and Colmer, 
2008) in addition to genotypes or clones and, based upon 
the tolerance capacity of plants, halophytes are broadly 
categorized into “salt accumulator” and “salt excluder.” 
Salinity stresses both categories of plant in two ways, high 
concentrations of salts in the soil make it harder for the 
roots to extract water and create toxicity to the cytoplasm 
within the plant (Munns and Tester, 2008; Lokhande and 
Suprasanna, 2012). Osmotic adjustment under saline 
conditions can occur in plants by the uptake of inorganic 
ions from the medium, compartmentalizing ions in the cell 
vacuole and balancing osmotic potential in vacuoles by the 
synthesis of compatible organic solutes in the cytoplasm 
(Ashraf and Harris, 2004; Abdel Latef et al., 2009).

Above one mechanism is operating in salt tolerant plants 
against salinity, yet it is therefore important to study the 
mechanism operating at each level in full detail so as 
to develop a complete understanding of salt stress and 
utilizing this knowledge improvement of crops against salt 
stress. Halophytes can be very helpful under such situations 
they can be used for industrial, ecological and agricultural 
purposes (Koyro et al., 2011).

The objective of the present investigation was to study 
the effects of salinity stress on compatible solutes and 
antioxidant enzymes of Clerodendron inerme.

MATERIALS AND METHODS

Plant Material

The mature stem cuttings were collected from salt 
marshes in the mangrove area of Pichavaram, on the east 

coast of Tamil Nadu, India about 10 km East of Annamalai 
University Campus.

Growth Conditions

The stem cuttings of C. inerme (3 cm long with one node 
and two opposite leaves) were planted individually in 
polythene bags (7"×5") filled with homogenous mixture 
of garden soil containing red earth, sand and farm yard 
manure (1:2:1). The cuttings were irrigated with tap 
water and maintained in the botanical garden, Annamalai 
University.

Salt Treatment and Experimental Design

One-month-old and well-established cuttings were 
selected and treated with varying concentrations of NaCl 
(100-1000 mM). The stem cutting grown above 500 mM 
NaCl concentrations did not survive after 10 days of 
treatment, the experimental plant treated with NaCl up 
to 500 mM were alone maintained in the experimental 
site. The experimental yard was roofed with transparent 
polythene sheet at a height of 3 m from the ground in 
order to protect the plants from the rain.

Samples were collected randomly on 60th; 90th and 
120th day after treatment. The seedlings were separated 
into leaves, stem and root and used for analyses.

Determination of Compatible Solutes

Determination of proline (PRO) content
PRO was extracted and estimated by following the method 
of Bates et al. (1973).

Extraction
Five hundred milligram of fresh plant material was 
homogenized in a mortar and pestle with 10 ml of 3% 
aqueous sulfosalicylic acid. Then the homogenate was 
filtered through Whatman No. 1 filter paper. The residue 
was re-extracted and pooled, and the filtrate was made up 
to 20 ml with aqueous sulfosalicylic acid, and this extract 
was used for the estimation of PRO.

Estimation
To 2 ml of PRO extract, 2 ml of acid ninhydrin and 2 ml of 
glacial acetic acid were added. The mixture was incubated 
for an hour at 100°C in a boiling water bath. Then the 
test tubes containing mixture were transferred to an 
ice bath to terminate the reaction. Then 4 ml of toluene 
was added and mixed vigorously using a test tube stirrer 
for 20 s and the toluene containing the chromophore 
was separated from the aqueous phase with the help of 
a separating funnel and the absorbance was measured at 
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520 nm in a spectrophotometer using a reagent blank. 
The PRO content was determined from a standard curve 
with PRO, and the results were expressed in milligram 
per gram dry weight.

Preparation reagent
Acid-ninhydrin reagent
To 1.25 g of ninhydrin, 30 ml warm glacial acetic acid, 
20 ml of 6 M phosphoric acid were added with agitation.

Determination of glycine betaine (GB) content
GB activity was assayed by the method of (Grieve and 
Grattan, 1983).

Extraction
Five hundred mg of finely ground dried plant samples 
was mechanically shaken with 20 ml of de-ionized water 
for 24 h at 25°C. The time required for this step was 
determined by extracting the plant samples for 1, 4, 16, 
24 and 48 h. The samples were then filtered, and filtrates 
were stored in the freezer for analysis.

Estimation
Thawed extracts were diluted with 2N H2SO4 (1:1). The 
acid potassium triiodide solution for total QACs were 
prepared by dissolving 7.5 g resublimed iodine and 10 g 
potassium iodide in 1 M HCI and filtered (Speed and 
Richardson, 1968). Precisely, 0.2 ml of acid potassium 
triiodide reagent was added to an aliquot of a sample 
containing between 10 and 15 μg of QACs in water. The 
mixture was shaken and left for at least 90 min in an ice 
bath with intermittent shaking. Two ml of ice-cold water 
was added rapidly to the mixture to reduce the absorbance 
of the blank and to improve replication. This was quickly 
followed by 10 ml of 1, 2-dichloroethene in ice, and the 
2 layers mixed well and kept at 4°C (Storey and Wyn 
Jones, 1977). The absorbance of the lower organic layer 
was measured at 365 nm in a spectrophotometer. The 
results are expressed as GB equivalent by using GB for 
standard value.

Determination of total soluble sugar content
Soluble sugars (reducing and non-reducing) were 
estimated by the modified method of Nelson (1944).

Extraction
Non-reducing sugars were hydrolyzed to reducing sugar, 
and total sugars were estimated.

Hydrolysis
One ml of the extract was evaporated to dryness in a 
boiling water bath. To the residue, 1 ml of distilled water 
and 1 ml of 6 N sulphuric acid were added. The mixture 

was hydrolyzed by incubating in a water bath at 50°C for 
an hour. The solution was neutralized with 1 N sodium 
hydroxide and made up to 10 ml with distilled water and 
used for the estimation of total sugars.

Estimation
A volume of 1 ml fresh copper reagent and 1 ml of an 
extract (prepared by mixing copper tartrate solution and 
copper sulphate solution [25:1 v/v]) were added. The 
mixture was heated in a Folin-Wu-tube with its mouth 
covered with a marble in a boiling water bath for 20 min, 
then cooled and 1 ml of arsenomolybdate reagent was 
added. The final volume was made up to 20 ml with 
distilled water. The resultant blue color was read at 520 nm 
in a spectrophotometer against the appropriate blank. The 
sugar content was expressed in milligram per gram dry 
weight. The content of the sugar was calculated from the 
standard graph prepared with glucose.

Reagent - copper tartrate solution
To 25 g of sodium carbonate (anhydrous), 25 g of sodium 
potassium tartrate, 20 g of sodium bicarbonate and 200 g of 
sodium sulfate (anhydrous) were dissolved in 800 ml distilled 
water, filtered and made up to 1000 ml with distilled water 
and stored in a brown bottle at room temperature.

Copper sulfate solution
To 15 g of copper sulfate and two drops of concentrated 
sulphuric acid were added to 100 ml of distilled water.

Arsenomolybdate reagent
In 450 ml of distilled water, 25 g of ammonium molybdate, 
21 ml of concentrated sulphuric acid and 3 g of sodium 
arsenate dissolved in 25 ml of distilled water were added 
and the mixture was kept in an incubator at 37°C for 
48 h and filtered. The reagent was stored in a brown bottle 
at room temperature.

Determination of Enzymes

Determination of ascorbic acid (AA) content
AA was extracted and estimated by the method of Omaye 
et al. (1979).

Extraction
One gram of plant tissue was homogenized in a pestle 
and mortar with 5 ml of 10% trichloroacetic acid (TCA) 
and centrifuged at 3500 g for 20 min. The pellet was re-
extracted twice with 10% TCA and supernatant was made 
to 10 ml and used as an extract.

Estimation
To one ml of dinitrophenylhydrazine; thiourea and copper 
sulfate reagents were added to 0.5 ml of extract and 
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mixed thoroughly. Then the tube was incubated at 37°C 
for 3 h and to this 0.75 ml of ice-cold 65% sulphuric acid 
was added. The tubes were then allowed to stand at 30°C 
for 30 min. The resulting color was read at 520 nm in a 
spectrophotometer (U-2001–Hitachi). The AA content 
was determined using a standard curve prepared with AA 
and the results were expressed in mg per gram dry weight.

Preparation of reagent
DTC reagent
To 3 g of 2, 4-dinitrophenylhydrazine (DNPH), 0.4 g 
of thiourea and 0.05 g of copper sulfate were added 
and dissolved in 100 ml of 9 N sulphuric acid. Standard 
solution 10 mg/100 ml 10% TCA.

Determination of α-tocopherol (α-toc)
α-Tocopherol activity was assayed as described by Backer 
et al. (1980).

Extraction
Five hundred milligram of fresh tissue was homogenized 
with 10 ml of a mixture of petroleum ether and ethanol 
(2:1.6 v/v) and the extract was centrifuged at 10,000 rpm 
for 20 min and the supernatant was used for the estimation 
of α-tocopherol.

Estimation
To 1 ml of extract, 0.2 ml of 2% 2, 2-dipyridyl in ethanol 
was added and mixed thoroughly and kept in dark for 
5 min. The resulting red color was diluted with 4 ml of 
distilled water and mixed well. The resulting color in the 
aqueous layer was measured at 520 nm. The α-tocopherol 
content was calculated using a standard graph made with 
the known amount of α-tocopherol.

Statistical Analysis

Data were analyzed for significance using one-way analysis 
of variance and the differences contrasted using a Duncan’s 
multiple range test at P ≤ 0.05. All statistical analyses were 
performed using the Statistical Package for Social Sciences 
(SPSS, version 16).

RESULTS

The PRO, GB content in the three different plant tissues 
increased with increase in NaCl concentrations up to the 
extreme level on all the sampling days (Figures 1 and 2), 
respectively. Total sugar content decreased in the leaf, 
stem and root with increase in NaCl up to optimum level 
and at higher concentrations, salinity gradually increased 
the total sugar content up to the extreme level of NaCl 
concentration when compared to control (Figure 3). The 

leaf had more PRO, GB and total sugar when compared 
to stem and root in all the sampling days. There was a 
considerable increase in the AA and α-tocopherol content 
of leaves up to the extreme level of NaCl concentration 
when compared to control (Figures 4 and 5), respectively.

DISCUSSION

Compatible solutes play a role in plant osmotolerance by 
different ways, protecting enzymes from denaturation, 
stabilizing membrane or macromolecules or playing 
adaptive roles in mediating osmotic adjustment (Ashraf 
and Foolad, 2007). The function of the compatible solutes 
is not limited to osmotic balance. Compatible solutes are 
typically hydrophilic, and possibly capable to replace water 
at the surface of proteins or membranes, thus acting as low 
molecular weight chaperones (Hasegawa et al., 2000). These 

Figure 1: Accumulations of proline (PRO) content in Clerodendron 
inerme under different concentrations of NaCl stress after 60th, 90th 
and 120th days. Values are given as mean ± SD of fi ve replicates

Figure 2: Accumulations of glycine betaine (GB) content in 
Clerodendron inerme under different concentrations of NaCl stress 
after 60th, 90th and 120th days. Values are given as mean ± SD of fi ve 
replicates

Figure 3: Accumulations of sugar content in Clerodendron inerme 
under different concentrations of NaCl stress after 60th, 90th and 120th 
days. Values are given as mean ± SD of fi ve replicates
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solutes also function to protect cellular structures through 
scavenging reactive oxygen species (ROS) (Hasegawa et al., 
2000; Zhu, 2001). Compatible solutes are small molecules, 
water soluble and uniformly neutral with respect to the 
perturbation of cellular functions, even when present 
at high concentrations (Sakamoto and Murata, 2002; 
Yancey et al., 1982). They comprise nitrogen-containing 
compounds such as amino acids, amines and betaines, but 
also organic acids, sugars and polyols (Mansour, 2000).

The accumulation of PRO was more in the leaf tissues 
than in the stem and root tissues of NaCl treated plants. 
The higher accumulation of PRO was observed at 
500 mM concentration. Recent studies indicate that 
adaptation to salinity is closely associated with PRO 
accumulation. A significant increase in PRO content was 
found only at high salinity (Wang et al., 2006). This is 
consistent with finding reported on Suaeda physophora and 
Haloxylon persicum (Song et al., 2006) and Sorghum bicolor 
(Lacerda et al., 2003). Compatible solutes appear to have 
additional functions during the stress response acting as 
“osmoprotectants” either by direct stabilization of protein 
and membrane structures under dehydration conditions or 
by protecting the cell against oxidative stress as scavengers 
of reactive oxygen species (Zhu 2001; Maggio et al., 2002; 
Marcum, 2006).

PRO accumulation normally occurs in the cytosol where 
it contributes substantially to the cytoplasmic osmotic 

adjustment (Ketchum et al., 1991; Turanl et al., 2009; 
Thippeswamy et al., 2010). Generally salt stress induces 
PRO accumulation in many halophytes (Brown et al., 2006; 
Koyro, 2006; Song et al., 2006). The present observations 
are in accordance with several studies that PRO content 
progressively increased with high levels of salinity in 
Thellungiella halophila (Inan et al., 2004); Sesuvium (Ramani 
et al., 2006) and Odyssea paucinervis (Naidoo et al., 2008). 
Our result is supporting the findings in barley (Sadeghi, 
2009), Morus alba (Kumar et al., 2003), (Ahmad et al., 
2007), wheat (Karmous et al., 2013), rapeseed (Farhoudi, 
2011) and pepper (Chookhampaeng, 2011) where salt 
stress resulted in extensive PRO accumulation.

GB, an amphoteric quaternary amine plays an important 
role as a compatible solute in plants under various stresses 
particularly low temperature and drought (Sakamoto and 
Murata, 2002). The molecular features of GB allow it to 
interact with macromolecules, stabilizing the structures 
and activities of enzymes and protein complexes (Xing 
and Rajashekar, 2001). GB is a compatible solute, and this 
suggested that salt probably appears to be concentrated in 
vacuole and GB accumulated in the cytoplasm (Takemura 
et al., 2000). Metabolic engineering of GB biosynthesis 
by the insertion of foreign genes from plants or microbes 
in plants not naturally accumulating it improved their 
tolerance to salt, drought and extreme temperature 
stresses, despite the very low amounts of GB accumulated 
by these plants (Sakamoto and Murata 2002; Sulpice et al., 
2003; Chen and Murata 2008; Ashraf and Akram 2009).

An increase in sugar content and a corresponding decrease 
in the starch at higher salinities has been reported in 
several halophytes (Joshi et al., 2002). Singh (2004) 
proved that a greater accumulation of sugars lowers the 
osmotic potential of cells and reduces the loss of turgidity 
in tolerant genotypes. This trend is confirmed in our 
results which proved a greater increase in soluble sugars 
content in leaves of coriander with the increase of NaCl 
concentration. Our finding agrees with researchers done 
on rice (Siringam et al., 2011), sorghum (Gill et al., 2003), 
sugar beet (Khavari-Nejad et al., 2008), potato (Farhad 
et al., 2011) and pistachio (Abbaspour et al., 2012). An 
increase in sugar and starch content with the increasing 
NaCl salinity at an optimum level has been reported in 
Avicennia offi cinalis (Ranganathan et al., 2001).

The antioxidant resistance mechanism may provide a 
strategy to improve salt tolerance and processes underlying 
antioxidant responses to salt stress be obliged to be clearly 
understood. Earlier studies have suggested a pivotal role 
for subcellular compartmentation in antioxidant defense 

Figure 4: Effect of NaCl on ascorbic acids content of leaves of 
Clerodendron inerme on 60th, 90th and 120th day after the treatment

Figure 5: Effect of NaCl on α-tocopherol contentof leaves of 
Clerodendron inerme on 60th, 90th and 120th day after the treatment
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mechanism under stress conditions and NaCl stress 
(Gomez et al., 1999). Recently, a correlation between 
the antioxidant capacity and salt tolerance has been found 
in different halophytic plant species, including Centaurea 
tuzgoluensis (Yildiztugay et al., 2011). Plantago maritima 
(Sekmen et al., 2007) and Cakila maritima (Amor et al., 
2006).

AA is the majority abundant, influential and water soluble 
antioxidant acts to prevent or in minimizing the damage 
caused by ROS in plants (Smirnoff, 2005; Athar et al., 
2008). Increased AA contents in Hordeum vulgare plants 
irrigated with saline water has also been recorded by 
Sarwat and El-Sherif (2007). A 30 per cent increase in AA 
content in tomato fruits grown under saline conditions 
has been reported by Kim et al. (2008). The increase in 
AA, when wheat seeds were presoaked with gibberellic 
acid and salicylic acid under saline conditions, has been 
reported (Seth et al., 2007). Azooz and Al-Fredan 
(2009) recorded an increased content of endogenous 
AA under saline conditions when plants were treated 
with exogenous AA in Vicia faba. According to them, AA 
plays an inductive role in overcoming the detrimental 
effects of seawater salinity. Similarly, in the leaves Cicer 
arietinum cv. Abrodhi, the AA content has been reported 
to increase with increasing NaCl concentration (Mishra 
et al., 2009). According to them, AA plays an inductive role 
in overcoming the detrimental effects of seawater salinity. 
Khan et al. (2010) also reported reduced uptake of sodium 
in AA treated Brassica when grown under saline conditions. 
In accordance with them, AA can mitigate the harmful 
effects of salinity when applied as a seed soaking agent.

Sodium chloride treatments increased the α-tocopherol 
content in C. inerme. Tocopherols are considered as a 
major antioxidant in biomembranes, where they play both 
antioxidant and non-antioxidant functions. Tocopherols 
are considered general antioxidants for the protection of 
membrane stability, including quenching or scavenging 
ROS like 1O

2
. Tocopherols are localized in plants in the 

thylakoid membrane of chloroplasts. Of four isomers of 
tocopherols (α-, β-, γ-, δ-) found in plants, α-tocopherol 
has the highest antioxidative activity due to the presence 
of three methyl groups in its molecular structure (Kamal-
Eldin and Appelqvist, 1996). Recently, it has been found 
that oxidative stress activates the expression of genes 
responsible for the synthesis of tocopherols in higher 
plants (Wu et al., 2007). Increased levels of α-tocopherol 
and ASH have been found in tomato following trizole 
treatment which may help in protecting membranes 
from oxidative damage and thus chilling tolerance in 
tomato plants (Shao et al., 2007). Increase in tocopherol 

during water stress in plants has also been reported by 
many workers (Wu et al., 2007; Shao et al., 2007). Being 
the major antioxidant species in plants, the AA, GSH 
and α-tocopherol contents vary in different subcellular 
compartments, according to the intensity of stress (Gaspar 
et al., 2002).

CONCLUSION

The present study shows that C. inerme is a moderately 
salt tolerant species. Sodium chloride salinity stimulated 
its, organic constituents and certain key enzymes up to 
the extreme concentration of 500 mM NaCl. Hence, it 
is concluded that this species could be recommended for 
cultivation in salt affected soils to reduce the soil salinity 
level.
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