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INTRODUCTION

The world population is expected to reach approximately 9.8 
billion people in 2050 (Beltran-Peña et al., 2020). As a result, 
agricultural production systems must evolve to satisfy the 
increasing demand for food in the future (Godfray et al., 2010; 
Holt-Giménez et al., 2012). Therefore, there is an important need 
for advanced agricultural models to identify suitable solutions 
(e.g., the most effective farming practices) for challenges facing 
the agriculture sector, such as, soil degradation, groundwater 
pollution, and the declining yields of crops (Chisanga et al., 2017; 
Zaman & Maitra, 2018). In response to that need, substantial 
improvements have been made in agricultural models to promote 
a better understanding of the current and future effects of critical 
global issues (e.g., global warming, food security) (Ammar et al., 
2022; Tyczewska et al., 2023).

One such model is the Agricultural Production Systems 
Simulator (APSIM). It has been recently recognized as an 

effective system for simulating farming systems, especially 
when there is a need for more understanding of the ecological 
outcomes of agricultural practices (Boote et al., 2010; 
Holzworth et al., 2014). It is a software that was developed 
by the Agricultural Production Systems Research Unit in 
Australia to satisfy the need for simulating agroecosystems with 
sufficient sensitivity (McCown et al., 1996). Improvements to 
the simulator over the years have allowed modellers to produce 
a more accurate representation of the responses of soil to the 
different interactions between climate and farming practices by 
using its interconnected modules (Keating et al., 2003; Brown 
et al., 2018). Globally, there is an extensive literature on the 
description of these modules (Probert et al., 1998; Hammer 
et al., 2010). The broad range of topics to which they have been 
applied is well described in the literature, such as conservation 
agriculture (Yang et al., 2018; Bahri et al., 2019; Chaki et al., 
2022), genotype-environment interactions (Bustos-Korts et al., 
2019), agroecosystem services (Luo et al., 2011) and climate 
change adaptation (Bai et al., 2022; Li et al., 2022).

Calibration and validation of APSIM- 
Wheat Model in Mediterranean areas
Meryem Ibnmrhar1*, Abelhak Bouabdli1, Bouamar Baghdad2,  
Rachid Moussadek3,4

1Ibn Tofail University, Geosciences and Application Laboratory, Kenitra, Morocco, 2Ecole d’Architecture et de 
Paysage de Casablanca, Morocco, 3National Institute for Agricultural Research, Rabat, Morocco, 4International 
Center for Agricultural Research in the Dry Areas (ICARDA), Morocco

Copyright: © The authors. This article is open access and licensed under the terms of the Creative Commons Attribution License  
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, 
even commercially provided the work is properly cited. Attribution — You must give appropriate credit, provide a link to the license, and indicate if 
changes were made.

Review Article

ABSTRACT
The Agricultural Production Systems sIMulator-Wheat (APSIM-Wheat) model is one of the most widely used 
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the calibration validation of APSIM-Wheat that could be applied in areas with a Mediterranean climate similar to that 
of WA. Therefore, this study aims to examine crop simulations reported in published articles and to provide a detailed 
description of input data and statistical assessment, which represent the two main components of the calibration-
validation protocols. The PRISMA (PREFERRED Reporting Items for Systematic Reviews and Meta-Analyses) 
method was used to identify and select relevant papers for this review. Following the analysis of 31 calibration protocols 
extracted from selected eligible articles, it was found that regardless of the objective of using APSIM-Wheat, the 
same category of data is required for calibration. As far as meteorological data is concerned, the information essential 
to this study was daily maximum and minimum air temperatures, rainfall (mm), and solar radiation. In the case of 
soil data, information about the texture and hydraulic characteristics, especially PAWC, DUL and LL was required. 
Regarding agricultural management data, this pertains to cultivated crops, Nitrogen fertilization (rate and time of 
application) and sowing (date and density). For the statistical evaluation, it was observed that 90 percent of studies 
analyzed in this review revealed the use of RMSE.
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The considerable expansion of APSIM applications and 
features, resulting in reliable simulations, is the result of a 
robust calibration process implemented by users (Hao et al., 
2021). Calibration is the most important part of the procedure 
undertaken to test the performance of all process-based models, 
including agricultural models (Wimalasiri et al., 2021). The 
process of calibration involves the adjustment of model 
parameters to minimize the difference between simulated 
and observed values for different variables under assessment 
(Wallach et al., 2021). In other words, the calibration approach is 
based on two main steps: 1) integrating measured data collected 
from field experiments and other estimated data into the model 
and 2) assessing the fit of predicted values to experimental 
values by calculating performance indicators (e.g., Root Mean 
Square Error and Mean Bias Error) (Kersebaum et al., 2015).

The APSIM Model has been widely calibrated and tested in 
diverse locations around the world, for instance, in Asia (Gaydon 
et al., 2017), China (Zeng et al., 2016), Africa (Carcedo et al., 
2023) and Spain (Kamali et al., 2022). Also for various crops 
including wheat (Kouadio et al., 2015; Asseng et al., 2002; Kheir 
et al., 2021), rice (Gaydon et al., 2012), Maize (Lobell et al., 
2013; Peake et al., 2013) and soybean (Archontoulis et al., 2014). 
APSIM has also been extensively used in Australia, especially in 
the Mediterranean climate of Western Australia, for modelling 
the wheat crop (Chen et al., 2020), with demonstrated 
robustness to simulate important agricultural indicators such as 
crop yield and crop phenology under climate change scenarios 
(Anwar et al., 2015). However, there is no compilation of 
calibration protocols from past studies conducted in this region 
that can serve as suitable guidelines for APSIM-Wheat model 
validation. Indeed, there remains a lack of papers that provide 
a description of standard calibration approaches that can be 
applicable and replicated in areas around the world that are 
characterized by the same climate conditions as the Western 
Australia, such as some regions belonging to many countries 
in the world like Morocco, Tunisia, the United States, Spain, 
Portugal, and Italy.

Against this background, the main objective of this study is to 
review and critically examine the existing datasets and statistical 
assessment methods that were adopted by users in Western 
Australia to calibrate and validate the APSIM-Wheat model. 
To attain this goal, a comprehensive literature research of peer-
reviewed publications related to the APSIM-Wheat simulations 
of experiments in Western Australia is conducted. This review 
provides a valuable reference that can help future users of this 
model in enhancing its reliability and accuracy.

MATERIAL AND METHODS

Literature Research

A literature search was conducted in May 2023 through two 
electronic databases: ScienceDirect and Scopus. In order to 
limit our search to APSIM-Wheat simulation studies conducted 
in Western Australia, the following combination of keywords: 
“APSIM-Wheat” NOT “APSIM” AND “Australia” OR “Western 

Australia” AND “Mediterranean” AND “Wheat” was used. The 
initial search through the Scopus database yielded 21 articles, 
while 93 articles were extracted from the second database 
(ScienceDirect). After merging results from the two databases, 
eight book chapters and five duplicate articles were eliminated, 
giving a total of 101 articles. The first screening of these articles, 
by title, resulted in 36 articles being removed. The second 
screening, based on abstracts and keywords, resulted in 33 
articles being removed (Figure 1 shows details of the screening 
steps), reducing the sample to 32 articles.

Selection Criteria

32 articles were read in full and selected if the following criteria 
were met:
•	 Only peer-reviewed articles that reported the description of 

the calibration process
•	 The comparison between simulated and observed values 

was well-described
•	 The statistical calibration metrics were reported

Papers were excluded if they:
•	 Provided an incomplete list of experimental data or 

measurements used for calibration
•	 Provided an incomplete list of estimated data used for 

calibration

After screening the full texts of the articles according to the 
above selection criteria, 18 articles were eliminated due to the 
lack of a detailed description of the calibration process. These 
18 articles reported that the calibration process had been 
conducted previously and that this model was well-calibrated 
and tested in various locations across Western Australia (WA). 
However, the most cited author is Asseng, and the most cited 
reference is Asseng et al. (1998). Overall, 14 eligible articles 
were considered which yielded 31 datasets of APSIM-Wheat 
calibration processes.

RESULTS AND DISCUSSION

Overview of the APSIM-Wheat Model

The Agricultural Production Systems Simulator for Wheat 
(APSIM-Wheat) is one of the five key modules implemented 
within the APSIM Model (Meinke et al., 1997; Chen et al., 
2023). It simulates the growth and development of wheat 
crops on a daily time step (Ludwig & Asseng, 2006). The 
modelling process is based on daily weather data (temperature 
and solar radiation), soil moisture and soil nutrients, as well as 
management practices (Tang et al., 2003). According to Ahmed 
et al. (2016), APSIM-Wheat comprises 11 phases that describe 
the phenology development (sowing, germination, emergence, 
etc.). These phases (except from sowing to germination) are 
determined by the accumulation of thermal time and other 
factors such as photoperiod and vernalisation (Brown et al., 
2018). Apart from simulating wheat growth and phenology, 
APSIM-Wheat can also assist with, for example, leaf area 
expansion, soil water available to crop, nitrogen uptake and 
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Figure 1: Flow Diagram of the paper selection process according to PRISMA Methodology

biomass partitioning in the four main parts of wheat: root, heat, 
leaf and stem (Holzworth et al., 2018).

Overall Description of the General Results

Through an extensive examination of published studies, we 
sought to identify common approaches utilized by modelers 
in calibrating the APSIM-Wheat model, with a specific focus 
on the input data and statistical metrics employed. The final 
database included 14 articles, published between 1998 and 2015, 
yielding 31 calibration datasets collected from diverse locations 
around Western Australia (WA) (Table 1). Field experiments 
included in the present study occurred at 11 locations (Table 1), 
representing four regions across WA: Wheatbelt, South West, 
Goldfields and Midwest, as shown in Table 1. Wheatbelt is the 
most represented region with 23 datasets (Table 1). However, 
the most representative locations are Wongan Hills, Esperance, 
Moora and Buntine with seven, five, four and four calibration 
protocols respectively.

Building upon these observations, our examination of the 
calibration datasets further revealed the utilization of seven 

distinct types of variables for testing the validation of the 
model calibration (Table 1). Yield is the most tested variable 
(68%), and other variables comprise Biomass, Phenology, grain 
protein, N uptake, soil water content and Plant Available 
Water Capacity (PAWC). A significant portion of the papers 
reviewed (42.8%) cover topics related to water use efficiency, 
28.5 percent of those articles are dedicated to the evaluation 
of the performance of APSIM-Wheat, 14.3 percent deal with 
topics related to Nitrogen management and 14.3 percent are 
focused on ecosystem services (Table 1).

Input Data Description

The success of the applicability of a novel model in a 
new geographic region requires the identification and 
implementation of appropriate and reliable data (Aggarwal, 
1995). As highlighted by Klepper and Rouse (1991), the 
quality of input data affects the model outcomes. The input 
interface of the APSIM Wheat model is composed of three 
main categories of data: daily weather records, soil properties 
and crop management information (Archontoulis et al., 2014). 
In this review, we analyzed datasets from Western Australia to 
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identify important information used by modelers as input data 
when the APSIM model is successfully calibrated and performed 
optimally, delivering reliable results.

Meteorological data

The first major group of model input data concerns the climate. 
These data represent an essential pillar for building model 
simulations and understanding the dynamics of agroecosystems 
(Hoffmann et al., 2015). In this review, the evaluation of 31 
datasets shows the use of the same weather data for model 
inputs (Table 2) relating to the daily maximum and minimum 
air temperature, rainfall (mm), and solar radiation. Usually, 
these data are recorded by weather stations close to the field 

experiments. Additionally, in some very limited cases, the 
evapotranspiration parameter is given (Bryan et al., 2014).

Soil data

The second major group of model parameters concerns the 
edaphic data. Soil characteristics are fundamental to initiate 
crucial functions in the model that rely on the information 
related to important properties such as soil texture, soil water 
retention and plant available water (Cichota et al., 2021). Soil 
type is the parameter we find in all datasets. Depending on 
the model used, detailed information about soil type, such as 
color and texture is provided. The second main category of soil 
properties is the soil hydraulic characteristics, which include 

Table 1: List of datasets extracted from selected papers used in this study
Dataset 
No.

Region Location Variable to test APSIM Use References

1 Wheatbelt Moora Yield Water and nitrogen use efficiency   Asseng et al., 2001
2 Wheatbelt Wongan Hills Yield Water and nitrogen use efficiency   Asseng et al., 2001
3 Wheatbelt Merredin Yield Water and nitrogen use efficiency   Asseng et al., 2001
4 Not Specified WA Yield Sustainable intensification, 

ecosystem services, food security
Bryan et al., 2014

5 Wheatbelt Buntine Biomass and yield Sacrificing a wheat crop for 
grazing rather than harvesting it 
for grain

Bell et al., 2009

6 Wheatbelt Moora Soil water content Water use efficiency Dolling et al., 2006
7 Wheatbelt Wongan Hills Soil water content Water use efficiency Dolling et al., 2006
8 South West Katanning Soil water content Water use efficiency Dolling et al., 2006
9 Wheatbelt Buntine Yield Water use efficiency Lawes et al., 2009
10 Wheatbelt Buntine Yield Water use efficiency Lawes et al., 2009
11 Wheatbelt Bodallin Yield Water use efficiency Oliver & Robertson, 2013
12 Goldfields Neridup Soil water content Water use efficiency Robertson et al., 2005
13 Goldfields Mt Madden Soil water content Water use efficiency Robertson et al., 2005
14 Goldfields Wittenoom Hills Soil water content Water use efficiency Robertson et al., 2005
15 Goldfields Scaddan Soil water content Water use efficiency Robertson et al., 2005
16 Goldfields Esperance Downs 

Research Station
Soil water content Water use efficiency Robertson et al., 2005

17 Wheatbelt Wongan Hills Yield Nitrogen Managment Monjardino et al., 2015
18 Wheatbelt Buntine Yield, PAWC Water use efficiency Oliver et al., 2006
19 Wheatbelt Beverley Biomass and yield Evaluation of the performance of 

APSIM‑Wheat
Asseng et al., 1998

20 Wheatbelt Merredin Biomass and yield Evaluation of the performance of 
APSIM‑Wheat

Asseng et al., 1998

21 Wheatbelt Moora Biomass and yield Evaluation of the performance of 
APSIM‑Wheat

Asseng et al., 1998

22 Wheatbelt Wongan Hills Biomass and yield Evaluation of the performance of 
APSIM‑Wheat

Asseng et al., 1998

23 Wheatbelt Cunderdin Grain protein Evaluation of the performance of 
APSIM‑Wheat

Asseng et al., 2002

24 Wheatbelt Wongan Hills Grain protein Evaluation of the performance of 
APSIM‑Wheat

Asseng et al., 2002

25 Wheatbelt Cunderdin Phenology, biomass 
and yield

Evaluation of the performance of 
APSIM‑Wheat

Asseng et al., 2004

26 Wheatbelt Wongan Hills Phenology, biomass 
and yield

Evaluation of the performance of 
APSIM‑Wheat

Asseng et al., 2004

27 Wheatbelt Beverley Biomass, yield and N 
uptake

Evaluation of the performance of 
APSIM‑Wheat

Wang et al., 2003b

28 Wheatbelt Merredin Biomass, yield and N 
uptake

Evaluation of the performance of 
APSIM‑Wheat

Wang et al., 2003b

29 Wheatbelt Moora Biomass, yield and N 
uptake

Evaluation of the performance of 
APSIM‑Wheat

Wang et al., 2003b

30 Wheatbelt Wongan Hills Biomass, yield and N 
uptake

Evaluation of the performance of 
APSIM‑Wheat

Wang et al., 2003b

31 Mid West Three Springs Yield Water use efficiency Wong & Asseng, 2006
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Table 2: Description of input data used in calibration protocols extracted from selected papers
Number of 
dataset

Soil data Climate data Management data References

3 Soil type/LL, DUL/PAWC Historical daily weather data (T, 
rain and radiation)

Sowing date, sowing depth, plant density, 
cultivars, N fertilizer applications

Asseng et al., 2001

1 Soil type/soil water holding 
capacity

Historical daily weather data (T, 
rain and radiation)

Fertilization and residue management Bryan et al., 2014

1 Soil type/PAWC Historical daily weather data (T, 
rain and radiation)

Sowing date, sowing depth, plant density, row 
spacing, cultivars, N fertilizer applications, 
SOM 

Bell et al., 2009

3 Soil type/volumetric soil water 
fraction (θv)/LL/DUL

Historical daily weather data (T, 
rain and radiation)

Sowing date/N fertilization Dolling et al., 2006

2 Soil type/pH, EC, NO3, NH4, 
P, K and S, CLL, DUL/PAWC

Historical daily weather data (T, 
rain and radiation)

Sowing date/Applied N (Kg/ha)/crops 
cultivated 

Lawes et al., 2009

1 Soil type/ph, Nh4, No3, 
PAWC

historical daily weather data (T, 
rain and radiation)

Sowing date/Applied N (Kg/ha)/crops 
cultivated/cultivars

Oliver & Robertson, 2013

5 Soil type/DUL/PAWC/CLL/
SAT

Historical daily weather data (T, 
rain and radiation)

Crop sequences/cultivars/sowing date/density/
fertilizer applied (N: P: K)

Robertson et al., 2005

1 Stype/soil water holding 
capacity

Historical daily weather data (T, 
rain and radiation)

Sowing date/sowing density/Applied N (Kg/
ha)

Monjardino et al., 2015

1 Soil type/PAWC/CLL/DUL Historical daily weather data (T, 
rain and radiation)

Applied N (Kg/ha) Oliver et al., 2006

4 Soil type/LL, DUL/OC (organic 
matter)

Historical daily weather data (T, 
rain and radiation)

Applied N (Kg/ha)/sowing date/sowing 
density/deep ripping.

Asseng et al., 1998

2 Soil type/RD/PAW Historical daily weather data (T, 
rain and radiation)

Applied N (Kg/ha)/irrigation/sowing date/
plant density

Asseng et al., 2002

2 Not specified Not specified	 Not specified Asseng et al., 2004
4 Not specified Not specified Not specified Wang et al., 2003b
1 Soil type/PAWC/Root depth/

maximum soil electrical 
conductivity

Historical daily weather data (T, 
rain and radiation)

Crop sequences/cultivars/sowing date/density/
applied N (Kg/ha)

Wong & Asseng, 2006

these essential parameters: plant available water capacity 
(PAWC) which indicates the maximum amount of water that 
can be used by a plant, at the lower limit (LL) and the drained 
upper limit (DUL) of soil water availability.

These two categories of soil data are included in 100 percent 
of datasets. The final category of soil data included other 
parameters such as bulk density, organic matter, pH, soil 
Nitrogen (e.g., NO3, NH4) and soil’s electrical conductivity. 
These data are used less often by the modelers, which indicates 
they are less important data for calibration.

Agricultural management data

The final major group of model parameters concerns crop 
management. Data for these parameters includes information 
about crop growth such as tillage, irrigation and nutrient supply 
(Wolday & Hruy, 2015). These data have an important impact 
on some critical model outputs such as the yield variations. For 
management practices, in all datasets we noticed that the major 
inputs are cultivated crops, the Nitrogen fertilization (rate and 
time of application) and the sowing date. Other data, such as 
cultivars, row spacing, and sowing depth, are mentioned less.

Statistical Metrics for Model Performance Assessment

The statistical evaluation of the model performance is an 
important part of the calibration protocol (Yang et al., 2014). 
This evaluation involves the quantitative checking of the model 
by comparing simulated and observed values through the 
calculation of different statistical scores (Seidel et al., 2018). 
It is a vital step in the calibration process as it guarantees that 

the simulation results align with the observed values (Bellocchi 
et al., 2011). Statistical scores utilized in the present review are 
indicated in Table 3. The indicators identified are the regression 
function; Spearman’s non-parametric correlation test with 
bootstrapping; cumulative distribution function, the root-mean-
squared error (RMSE), the root-mean-square deviation (RMSD) 
and R2. Among the six indicators identified, we noticed that in 
90 percent of the calibration protocols (26 datasets) (Table 3) 
modellers used the Root Mean Square (RMS) to calculate 
the magnitude of errors in simulation between estimates or 
predicted values, and measurements or observed values.

Accordingly, statistical assessment of the outputs reliability 
is recognized as an essential and fundamental step in the 
calibration process of any simulator including APSIM (Wallach 
et al., 2022). However, there is no consensus on the exact 
number and the type of metrics that should be implemented. 
Yang et al. (2014) highlighted that quantitative analysis of 
data is an integral part of the tuning procedure, but there is no 
standard guide on how many, and which, statistics should be 
used. In the case of the application of the APSIM-Wheat, our 
review shows that the RMS is preferred by the modellers and it 
can be applied in association with other parameters, such as R2. 
These findings are in line with previous research, since they used 
the APSIM-wheat model to simulate different wheat variables 
(e.g. phenology, Nitrogen Uptake, yield) and they evaluated the 
model performance using the RMS in addition to other metrics 
such as R2. Moreover, it has been proven that this metric is 
applicable when evaluating the performance of the model to 
deliver reliable simulation outcomes in very specific topics such 
as the impact of the environment on the wheat Kernel Weight 
(Wang et al., 2023b).
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Table 3: Summary of statistical indices used for the validation of the calibration process
References Number of 

datasets
Statistic metrics Appreciation of model performance

Asseng et al., 2001 3 Regression function APSIM‑Wheat is able to markedly predict potential yields
Bryan et al., 2014 1 Spearman’s non‑parametric 

correlation test with bootstrapping
Not informed

Bell et al., 2009 1 RMSD APSIM‑Wheat simulated wheat biomass and grain yield well
Dolling et al., 2006 3 RMSD Not informed
Lawes et al., 2009 2 RMSE, R2 Generally, the model performed well across multiple years and soil 

types
Oliver & Robertson, 2013 1 RMSE Not informed
Robertson et al., 2005 5 Cumulative distribution function Increased confidence has been gained in the use of simulation 

models such as APSIM‑Wheat as a means to evaluate effects on 
cropping system performance.

Monjardino et al., 2015 1 RMSE The model explained 65% of the variation in yield, RMSE=0.6 t/
ha

Oliver et al., 2006 1 RMSD RMSD=0.5 t/ha
Asseng et al., 1998 4 RMSD/R2 The overall performance of the APSIM‑Wheat 

model was good
Asseng et al., 2002 2 RMSD The improved model is robust enough to be used for specific 

simulation experiments to study grain protein interactions with 
management, soil types and environments in different climatic 
zones.

Asseng et al., 2004 2 RMSD/R2 APSIM‑Wheat reproduced observed phenology, biomass growth 
and yield adequately.

Wang et al., 2003a 4 RMSD APSIM‑Wheat is able to explain>65% of the biomass and yield 
variation, and it is able to explain>75% of variation in total N 
uptake

Wong & Asseng, 2006 1 RMSE APSIM model adequately simulates yield variability across the 
field

Based on the results of the statistical analysis from all calibration 
protocols reviewed (Table  3), all simulations of different 
variables were performed with a high level of accuracy. In other 
words, the reliability of model outcomes was proven in all studies 
(Table 3), regardless of the objective of the use and application 
of APSIM-Wheat. Given its demonstrated performance in 
WA, our review highlights that the APSIM-Wheat model is 
recognized as a robust model which can be applied and adapted 
confidently in other regions that are characterized by similar 
climatic conditions, particularly Mediterranean areas (Asseng et 
al., 2002). In the literature, numerous publications that covered 
various studies conducted in regions outside Western Australia 
indicate RMS as a statistical tool for evaluating the goodness of 
the APSIM model (Briak & Kebede, 2021; Tahir et al., 2021). 
In line with this, in a study conducted in Pakistan addressing 
the impact of cropping systems on the yield gaps of the rice-
wheat system, (Khaliq et al., 2019) used RMSE to validate the 
model applied.

CONCLUSION

The extent to which agricultural models contribute to the 
increase and improvement of scientific knowledge, as well as 
the degree to which their outcomes can be considered reliable 
and accepted by users, essentially depends on the calibration 
and validation step. Although the APSIM model has been widely 
used to advance knowledge on agricultural and environmental 
issues, similar to other crop models, its performance depends 
on the quality of the calibration validation process, the dataset 
incorporated into the model, and the statistical assessment 
adopted to validate the model. This review provides a case study 

focussing on the APSIM-Wheat model in Western Australia. It 
analyses 31 protocols of calibration, highlighting the minimum 
required data and the most used statistical metrics to verify 
the goodness of APSIM-Wheat. In addition, the study shows 
that meteorological data (daily maximum and minimum air 
temperatures, rainfall (mm), and solar radiation), soil data 
(information about the texture and hydraulic characteristics) 
and agricultural management data (cultivated crops and 
Nitrogen fertilization) are reported in all datasets. For the 
statistical evaluation, it was observed that among the six 
indicators identified, 90 percent of studies analyzed in this 
review revealed the use of RMSE as a statistical metric to 
evaluate to which degree observed results fit the simulated 
ones, therefore the modelers validate the performance of the 
model and use it confidentially to analyse and study different 
scenario. These findings are in line with other studies conducted 
around the world, not only in Western Australia which reported 
the use of RMSE for testing and validating the performance of 
the APSIM model. The results of this synthesis can serve as a 
guide for future users of the APSIM-Wheat model, especially 
in areas characterised by the same climate and soil conditions 
as WA to ensure the success of the calibration validation step.
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