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INTRODUCTION

Plants show a wide variety of responses to different environmental 
factors (Ncube et al., 2012). They occur nearly everywhere 
and must therefore live under a wide range of dynamic 
environmental conditions. Climate change affects agricultural 
production in many other ways and the most important of 
which is that it gives rise to poor productivity of crops (Cline, 
2007). Therefore, appropriate conditions should be provided 
for a long period without affecting their physical and chemical 
needs. During environmental changes, the plant body tries to 
defend itself with several defense mechanisms. One of the most 
effective mechanisms is the adaptability of the physiological 
tissues to resist continuous variation it by expressing tolerance 
(Hasanuzzaman et al., 2013). Toleration or resistance is the 
reaction of plant tissues to changes in the atmosphere. Secondary 
metabolites or phenolic compounds or pigment productions are 
natural defense mechanisms (Isah, 2019). These are formed by 

the plant tissues in response to the external climatic conditions. 
There are various types of agents that can induce physiological 
responses. Some phenolic compounds produced by the plants 
induce the tolerance ability (Lin et al., 2016).

It should be remembered that the atmospheric CO2 
concentration difference might show some impact on 
atmospheric temperature variation. A combination of two more 
factors such as fossil fuel combustion and deforestation are 
involved in increasing the atmospheric concentration of CO2. 
Previous reports indicated that the CO2 in the atmosphere was 
280 ppm. But, a recent study demonstrated the presence of 
415.13 ppm during April 2021. According to Ainsworth and 
Long (2005) and Warren et al. (2014), the down regulation of 
photosynthesis might be due to long-term exposure to eCO2 
on plants. As it was evident from previous studies, eCO2 is 
responsible for the development of tolerance of plants to high 
sugar concentrations and antioxidants (Huang & Xu, 2015) and 
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the atmospheric temperature variable provides considerable 
information as the dependent variable involved. The highest 
vapour which is generally followed by changes in temperature 
from warm to warmer air temperature conditions (Novick et al., 
2016). The ill effects of eCO2 which is also evident from the 
varying composition of proteins (Broberg et al., 2017) vitamins, 
macro and micro elements in plants (Myers et al., 2014).

The depletion of ozone has a direct impact of UVB on earth. 
Previous studies have reported that UVB has an intensity of 
<315 nm is found to have a disastrous influence on the majority 
of crops. The observed level of ozone depletion assessed during 
2002-2005 showed about 3% and 6% in the northern and 
southern hemispheres respectively (WMO, 2008). The UVB 
radiation of the sun gets into earth directly by many causes. The 
depletion of ozone in the stratosphere is one cause. The ability of 
plants to do photosynthesis depends upon the exposure of plants 
to sunlight. When UV radiations are exposed to plants, they 
cause adaptability of the plant system and resolve the damages. 
The degree and time required for complete adaptations of 
plants to UV radiations depend upon the type of crop variety. 
Changes in the reproductive and vegetative structures, thickness 
of mesophyll, palisade and epidermal layers can be tested on 
the plants exposed under UVB radiation.

Quinoa is widely present in European countries, United 
States, Kenya and India. They are also present in Bolivia and 
Peru. The plant has wide variability in their genotype and 
phenotype and they are viable to adapt to any adverse hot 
arid to subtropical environments. Due to its high nutritive 
values it has increased interest throughout the world, since it 
can be consumed directly or after processing. This crop can 
be considered an alternative to rice due rich protein content. 
Studies showed that Quinoa has a protein content which is 
two times higher than wheat (Ceccato et al., 2011). Quinoa 
is an adaptive plant and resistant to various stresses (Jacobsen 
et al., 2009). However, the present climate change factors such 
as elevated level of CO2 and UVB radiation has a potential 
impact on the growth of Quinoa plants. In the present study, 
selected varieties were studied for the effect of climate change 
factors such as eCO2 and UVB radiation.

MATERIAL AND METHODS

Experimental Site and Chenopodium Quinoa Cultivars

The present study was carried out in Al-Foah Experimental 
Farm [24°21′31.139″N 55°47′57.239″ E (Altitude 303 M)], 
College Agriculture and Vet. Medicine, UAEU, Al Ain. Selected 
Chenopodium quinoa varieties i.e., KAUST-05403/ICBA-Q3 
(V1), and KAUST-05399/PI-614888 (V2) were used for the 
present study.

Open Top Chambers Facility

The effect salt tolerant Quinoa varieties response to future 
climatic scenarios such as high atmospheric CO2 and enhanced 
UVB radiation was studied in an Open Top Chambers facility. 

The chambers are fabricated with a Galvanized steel squire 
tube with a size of 3×3×3 m dimension. The OTCs are 
covered with 80 to 85% transparent polycarbonate sheets 
with open top to maintain the near-natural conditions of 
temperature and relative humidity. Also, the plenum at the 
base chambers provides CO2 circulation in the chambers. 
Commercial grade CO2 gas (95.5%) was used for the CO2 
enrichment through a manifold fitted with copper tubing. 
CO2 was maintained at set levels using manifold gas regulators, 
solenoid valves, CO2 analyzer PC linked Program Logic 
Control (PLC) and Supervisory Control and Data Acquisition 
(SCADA). For UV-B treatment, fluorescent (UV-313) lamps 
(Q-Panel, OH, USA) were used to emit radiation between 
280 and 320 nm.

eCO2 and UV-B Treatments

The effect of eCO2 and enhanced UVB on selected Quinoa 
varieties was studied by the completely randomized design 
method which includes four treatments as follows Chamber 1: 
Control (Ambient), Chamber 2: Elevated level CO2 (550 ppm), 
Chamber 3: Enhanced UV-B radiation (9.50 kJ d-1 m-2) and 
Chamber 4: eCO2 (550 ppm) + UV-B radiation (9.50 kJ d-1 m-2). 
Three replicates were maintained in each treatment. Samples 
were taken for photosynthetic pigments, biochemical contents, 
proline metabolizing enzymes, non-enzymatic and enzymatic 
antioxidants analysis after 45 days of treatment with eCO2, 
UV-B and eCO2+UV-B for 8 h/day.

Proline Metabolizing Enzymes

Estimation of γ – glutamyl kinase activity

The γ – glutamyl kinase activity of Quinoa leaves after eCO2 
and UV-B radiation treatment was assessed by the method of 
Hayzer and Leisinger (1980). The plant sample (1 gm) was 
extracted with 50 mM Tris-HCl buffer (10 mL; pH 7.2) using 
a vortex homogenizer and centrifuged for 20 min at 10000 rpm. 
Again, it was washed with the same buffer and stored at – 20 °C. 
The sample was suspended in 50 mM Tris–HCl buffer (7 mL) 
with 7.2 pH which contains 1 mM 1, 4-dithiothreitol. A French 
press at 38.5 MPa was used to affect the Cellular disruption 
and the sample was centrifuged for 30 min at 20000 rpm to 
remove the cell debris. Finally, γ – glutamyl kinase activity 
was measured by the crude extract. For enzyme assay, 2.5 mL 
of enzyme extract was desalted with a SephadaxG-25 column 
equilibrated with Tri-HCl buffer (50 mM) which contains 1 mM 
1, 4-dithiothreitol. The Final volume (2 mL) of the enzyme 
a mixture contains ATP (50 mM), L-glutamate (0.25 mL), 
MgCl2 (10 mM), Tris base 50 mM (pH 7.0), Hydroxylamine 
HCl (20 mM) and 100 µL of desalted extract. The reaction 
was initiated by adding the enzyme extract and it was stopped 
after 30 min by a solution contains trichloroacetic acid (6% w/v) 
and FeCl3.3H2O (2.5% w/v). The sample was centrifuged at 
10000 rpm to remove the precipitated protein and absorbance 
was read at 535 nm. The activity of one unit of γ-glutamyl 
kinase can be defined as µg of γ-glutamyl hydroxamate formed 
per minute per mg protein.
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Estimation of proline oxidase activity

Huang and Cavalieri (1979) method was adopted to determine 
the Proline oxidase activity of the Quinoa leaves after the 
treatment. 1 gm of plant sample was homogenized in a pre-
chilled pestle and mortar using 5 mL of homogenizing medium 
and it was filtered using two layers of muslin cloth. The filtrate 
was centrifuged for 10 min at 10000 rpm and supernatant was 
collected and it was centrifuged for 25 min at 20000 rpm. The 
obtained pellet was mixed with 5 mM Tricine – KOH buffer 
(1 mL) and used for the estimation of proline oxidase activity. 
The enzyme reaction was monitored by reading the absorbance 
at 600 nm. For the enzyme activity determination, the reduction 
rate of DCPIP was used and the results of the enzyme activity 
are presented in µg/min/mg.

Non–enzymatic Antioxidants

Estimation of total phenols

A method described by Malik and Singh (1980) was adopted 
to determine the total phenol content of the samples. 0. 5 g 
Quinoa leaves were homogenized with 80% ethanol (10X) and 
it was centrifuged for 20 min at 10000 rpm. This extraction 
process was repeated with ethanol. The obtained supernatants 
were pooled together and evaporated. Then the residue was 
dissolved with distilled water. Different aliquots were taken 
and the volume of each test tube was made to 3 mL. The 
test tubes were placed in a water bath after adding 0.5 mL of 
Folin-Ciocalteau reagent and absorbance was read at 660 nm. 
Different concentrations of catechol solutions were prepared as 
above and the standard curve was prepared. The results of the 
phenol content is expressed as mg/g Fresh weight

Determination of α-tocopherol activity

α-Tocopherol activity was analyzed as described by Backer et al. 
(1980). 10 mL of petroleum ether and ethanol (2:1.6 v/v) was 
used to homogenize 500 mg of fresh tissue and centrifuged for 
20 min at 10000 rpm. After centrifugation, the supernatant was 
taken for the α-tocopherol estimation. 0.2 mL of 2, 2-dipyridyl 
(2%) in ethanol was added in 1 mL of extract and kept in a 
dark room for 5 min. After getting a red colour, the mixture was 
diluted with distilled water (4 mL) and absorbance was read at 
520 nm. A standard graph was used to calculate the content of 
α-tocopherol with a known quantity of α-tocopherol.

Reduced glutathione activity

A method described by Griffith (1980) was adopted to analyze 
the reduced glutathione activity. 200 mg of plant material was 
ground with 2% metaphosphoric acid (5 mL). After grinding, it 
was centrifuged for 10 min at 17000 rpm and supernatant was 
used for the estimation of reduced glutathione. To neutralize 
the extract for estimation, 0.6 mL (10%) sodium citrate buffer 
was added to 0.9 mL of the extract. 1 mL of the extract contains 
100 µL Dithionitrobenzoic acid, 700 µL NADH, 100 µL of 
neutralized extract and 100 µL of distilled water. The mixture 
was kept for 4 min at 25 °C to stabilize it. Finally, Glutathione 

Reductase (10 µL) was added and the absorbance was read at 
412 nm.

Antioxidant Enzymes

Polyphenol oxidase activity

The activity of polyphenol oxidase was determined as per the 
method described by Kumar and Khan (1982). Briefly, the 
assay mixture contained 0.1 M phosphate buffer (2 mL), 0.1 M 
catechol (1 mL) and enzyme extract (0.5 mL). This mixture was 
incubated at 25 °C for 5 min then the reaction was stopped by 
the addition of 1 mL of H2SO4 (2.5 N). The absorbance was read 
at 495 nm after the mixture turned into an orange-red colour. 
The obtained results are expressed in U mg-1 protein.

Peroxidase activity

Peroxidase activity of the Quinoa leaves was determined by the 
method of Kumar and Khan (1982). The assay mixture [0.1 M 
phosphate buffer (2 mL), 0.01 M pyrogallol (1 mL), 0.005 M 
of H2O2 and enzyme extract (0.5 mL)] was incubated at 25 °C 
(5 min) and the reaction was stopped by the addition of 1 mL 
of 2.5 N H2SO4. The amount of orange-red colour formation was 
determined by reading the absorbance at 420 nm. The results 
on the activity of peroxidase are expressed as mg-1 protein.

Superoxide dismutase activity

Based on Hwang et al. (1999) method, the Superoxide 
dismutase activity was determined. For extraction, 1 gm of 
fresh plant sample was homogenized by adding 50 mM sodium 
phosphate buffer which contains 1 mM PMSF. The extract was 
filtered and centrifuged for 20 min at 12500 rpm. By adding 
extraction buffer, the supernatant was made up to 10 mL and 
used for the estimation of superoxide dismutase activity by 
the method of Beauchamp and Fridovich (1971). In 1 mL of 
enzyme extract, 3 mL reaction medium was added and the 
reaction mixture was illuminated in clear glass test tubes with 
the help of Philips 40 W fluorescent tubes. For blank, the 
reaction mixture was without illumination and kept in a dark 
place. Finally, the absorbance was read at 560 nm and the results 
are expressed in U/g FW.

Catalase activity

The catalase activity of the leaves of Quinoa cultivars was 
analyzed by the method of Chandlee and Scandalios (1984). 
500 mg of frozen plant material was homogenized with 50 mM 
sodium phosphate buffer which contains PMSF (1 mM). The 
obtained extract was centrifuged at 12500 rpm for 20 min 
and the supernatant was saved and used for estimation. The 
method of Chandlee and Scandalios (1984) was adopted 
to determine the catalase activity with slight modification. 
Briefly, the assay mixture contains 50 mL of 50 mM potassium 
phosphate buffer + 0.4 mL of 15 mM H2O2 + 0.04 mL of 
enzyme extract. The H2O2 decomposition was followed by 
reading the absorbance at 240 nm and the results are expressed 
in mg-1 protein.
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Ascorbate peroxidase activity

The method of Asada and Takahashi (1987) was used to 
determine the activity of ascorbate peroxidase. 500 mg of fresh 
samples was ground using 50 mM potassium phosphate buffer 
(10 mL) and liquid nitrogen. The homogenate was filtered and 
centrifuged for 20 min at 15000 rpm and supernatant was used 
for the estimation. 1 mL reaction mixture was taken and read 
the absorbance at 290 nm. The results are presented in µg/g FW.

Statistical Analysis

The obtained data related to both salinity tolerance and eCO2 
and UVB treatments were analyzed using SPSS (V. 21.0). The 
results were taken from three replicates and data are expressed 
in Mean ± SE. Statistical significance was indicated at a 
probability level of P > 0.05.

RESULTS AND DISCUSSION

The effect of UVB, eCO2 and UVB+ eCO2 on the proline 
metabolizing enzymes (γ– glutamyl kinase, proline oxidase 
and total phenol content) activity on the selected Quinoa 
varieties are presented in Figures 1 and 2. The results on proline 
metabolizing enzyme, γ–glutamyl kinase were decreased in 
eCO2 treatment and increased with UVB treatment (Figure 1). 
The activity of proline oxidase was reduced in UVB as well as 
UVB+CO2 treated plants. But, the elevated level of CO2 has not 
reduced the activity of proline oxidase significantly (Figure 2). 
This result is in accordance with the previous report on date 
palms (Karthishwaran et al., 2020). The date palm plants were 
grown in open top chambers and treated with UVB and elevated 
level CO2. The UVB treated date palm cultivar showed an 
increased level of γ-glutamyl kinase. Whereas, proline oxidase 
activity was decreased in the UVB treatment. Moreover, in 
plants, the metabolism of proline gives production against stress 
by maintaining NADPH/NADP balance (Miller et al., 2009).

The effect of climate change factors results on non-enzymatic 
antioxidants such as phenol content, α-tocopherol and reduced 

glutathione activities of studied Quinoa varieties are presented 
in Figures 3 to 5. The results on enzymatic and non-enzymatic 
antioxidants were increased in the UVB treatment and decreased 

Figure 1: Effect of eCO2, UVB and combined treatment on γ – glutamyl 
kinase activity of selected Quinoa varieties

Figure 2: Effect of eCO2, UVB and combined treatment on Proline 
oxidase activity of selected Quinoa varieties

Figure 4: Effect of eCO2, UVB and combined treatment on α-tocopherol 
activity of selected Quinoa varieties

Figure 3: Effect of eCO2, UVB and combined treatment on total phenol 
content of selected Quinoa varieties
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in the control as well as in the elevated level CO2 conditions. The 
α-tocopherol activity was slightly increased in all the treatments 
(Figure 4). However, in UVB treatment, a decreased level of 
α-tocopherol activity was recorded in the V1 variety. The CO2 
enrichment showed the highest α-tocopherol activity in the 
V2 quinoa variety (14.930 ± 0.792 mg/g FW). An increased 
activity level of reduced glutathione (Figure 5) was recorded 
in both V1 and V2 varieties when the plants were treated with 
UVB (V1=18.273 ± 0.918; V2=19.289 ± 2.357 µg/g FW) and 
UVB+eCO2 (V1= 17.938 ± 1.293; V2=18.291 ± 2.392 µg/g FW). 
The increasing level of antioxidants might be associated with the 
production of plant cells from UVB radiation. Mainly, the total 
phenol content was dramatically increased when the plants 
were treated with UVB radiation. Usually, the UV absorbing 
compounds act as a shield that protects the plant cells from UVB 
radiation (Köhler et al., 2017).

In the present study, the activity of enzymatic antioxidants was 
increased when compared to control (Figures 6-10). The total 
phenol content was increased in UVB (V1=0.302 ± 0.002; 
V2=0.349 ± 0.007 mg/g) and eCO2+UVB (V1=0.289 ± 0.003; 
V2= 0.293 ± 0.004 mg/g) treatments. However, the CO2 

Figure 6: Effect of eCO2, UVB and combined treatment on polyphenol 
oxidase activity of selected Quinoa varieties

Figure 5: Effect of eCO2, UVB and combined treatment on reduced 
glutathione activity of selected Quinoa varieties

Figure 7: Effect of eCO2, UVB and combined treatment on peroxidase 
activity of selected Quinoa varieties

Figure 9: Effect of eCO2, UVB and combined treatment on catalase 
activity of selected Quinoa varieties

Figure 8: Effect of eCO2, UVB and combined treatment on superoxide 
dismutase activity of selected Quinoa varieties

enrichment has not affected the phenol content of the studied 
Quinoa varieties when compared to the control plant. It 
was also reported that the phenols synthesized through the 
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