

ISSN: 2075-6240

GC-MS-based metabolomics analysis unravels the therapeutic potential of *Neolamarckia cadamba* fruit peel

Divya Selvakumar¹, Paranidharan Vaikuntavasan², Vellaikumar Sampathrajan³, Bharani Manoharan¹, Karthikeyan Adhimoolam⁴, Saranya Nallusamy¹, Balasubramanian Arunachalam⁵, Kalaiselvi Senthil⁶, Senthil Natesan^{1*}

¹Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore - 641003, India, ²Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore - 641003, India, ³Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore - 641003, India, ⁴Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai - 625104, India, ⁵Department of Silviculture & NRM, Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Coimbatore - 641301, India, ⁶Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore - 641043, India

ABSTRACT

Kadam (Neolamarckia cadamba (Roxb.) is an evergreen tropical tree widely grown in Asia, particularly in India. Neolamarckia cadamba commonly known as kadam, cadamba or burflower tree. The roots, leaves, barks, and fruits of N. cadamba possess medicinal properties and are commonly used in the pharmaceutical industry. Fruit peels are the main waste and may contain various biologically active compounds. However, no prior knowledge about the therapeutic compounds of the peel. The objective of the present study was to unveil therapeutic compounds from the peel by Gas Chromatography-Mass Spectrometry (GC-MS) based metabolomics analysis. Metabolites from the kadam fruit peel were isolated and derivatized using MSTFA, characterized by the GC-MS analysis. Raw spectral data were preprocessed, and peak identification was performed using SHIMADZU Postrun analyse software. The metabolites in N. cadamba fruit peel were identified by comparing the peaks with the mass spectral reference database NIST v20. The results showed that the peel of kadam fruit contains 149 metabolites, which were further categorized into 46 different metabolite classes, with 52 different metabolic pathways and 63 biological functions. The principal roles of the metabolites were identified by functional annotation and enrichment analysis. It revealed that metabolites were responsible for anti-inflammation, anti-oxidant, anti-microbial, and anti-cancer properties. In summary, the peel of kadam fruit also contains various therapeutic compounds like other cadamba parts (i.e., roots, leaves, barks, and fruits). Further, comparing the peel with other parts discloses the peel-specific metabolites. The results obtained in this study could be useful for the pharmaceutical industry.

Received: May 20, 2022 Revised: September 02, 2022 Accepted: September 03, 2022 Published: September 23, 2022

*Corresponding Authors: Senthil Natesan E-mail: senthil_natesan@tnau. ac.in

KEYWORDS: Fruit peel, GC-MS, Metabolites, Neolamarckia cadamba, Therapeutic compounds

INTRODUCTION

Neolamarckia cadamba (Roxb.) Bosser, also known as a "miracle tree", is a fast-growing tall evergreen tree found in South and Southeast Asia (Pandey & Negi, 2016). Various tissues (i.e., roots, leaves, barks, and fruits) of *N. cadamba* possess medicinal properties and used to treat various diseases, including fever, dysentery, leprosy, skin, and blood. It also has wound healing, anti-oxidant, and hepatoprotective properties

(Kapil *et al.*, 1995; Umachigi *et al.*, 2007). The kadam is frequently mentioned in Indian literature for ayurvedic treatments and mainly has pharmacological effects like anti-diarrheal and detoxifying, analgesic, and seminal fluids (Bandyopadhyay & Mukherjee, 2009). The kadam leaf's aqueous extract has been used in traditional medicine to treat menorrhagia, pain, swelling, and wounds. The bark's decoction can treat colitis, diarrhoea, and dysentery and can help treat skin infections (Ambujakshi *et al.*, 2009).

Copyright: © The authors. This article is open access and licensed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.o/) which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

The tree produces spherical fruits with an edible pulp at the center surrounded by a thin covering of seeds (Narzary *et al.*, 2013). Fruits are juicy, globose, orange, and turn yellow when ripe. The fruit diameters range from 5-7 cm. (Government of India & Family Welfare, 1999). The kadam fruit has higher quantities of magnesium, zinc, calcium, and iron when compared to numerous commonly consumed fruits. As a result, the kadam fruit is a fantastic source of essential minerals, and in terms of its mineral content, it may be compared to other well-known and pricey fruits like apple, pear, and so on (Pal *et al.*, 2014).

Recent studies have confirmed that fruit and vegetable peel waste can be a valuable source of bioactive compounds due to the presence of steroids, phenolics, tannins, flavonoids, triterpenoids, glycosides, carotenoids, ellagitannins, anthocyanins, vitamin C, and essential oil (Pathak, 2020). If extracted properly, these compounds can add value to the by-products of fruits. Peels of fruits can be converted into various economically valuable products with superior medicinal, nutritional, and antioxidant properties through multiple processes. The non-edible kadam fruit peel (as a by-product) is not yet explored for its medicinal value and metabolites information.

Despite several published findings on the metabolites and biological functions of *N. kadam* 's bark, root, and leaves, few studies have been reported on the kadam fruit. After the kadam fruit has been consumed as juice or pulp, the peel is typically ignored. Also, considering the limited availability of kadam trees and their seasonal fruit, avoiding plant waste is crucial. However, the significant bioactive compounds present in the ripened fruit peel and its biological function are unknown. In light of the above facts, the present study aimed to unveil the therapeutic compounds from *N. cadamba* fruit peel by Gas chromatography–Mass Spectrometry (GC-MS) based metabolomics analysis.

MATERIALS AND METHODS

Sample Collection and Metabolite Extraction

Fruit samples collected from the three-year-old *N. cadamba* tree maintained at Forest College and Research Institute in Mettupalayam, Tamil Nadu, India (altitude of 300 m with a longitude of 11.19'N, latitude of 77.56'E) were used for the GC-MS analysis. In this study, the kadam fruit peel was examined. To preserve the samples for further analysis, they were immediately frozen using liquid nitrogen and kept at -80 °C. For the GC-MS analysis, three replications of samples were used. Metabolites were extracted from the peel and derivatized according to Lisec *et al.* (2006).

GC-MS Analysis

Using Shimadzu single quadrupole GCMS-QP2020 NX Gas Chromatograph-Mass Spectrometer (GC-MS), the samples that had been derivatized were examined. At an injection temperature of 250 $^{\circ}$ C, one μ l sample was injected. The column

(Rxi-5Sil MS column) temperature was set to start at 40 °C for 2 min, then was raised to 320 °C at a rate of 8 °C per min for 10 min. At a split ratio of 1:30, samples were injected. Following is the programming for the mass spectrometer: Ion source at 220 °C, interface at 300 °C, and solvent cut at 6.0 min, and the mass range was 40 m/z to 600 m/z.

Data Analysis

We used the Shimadzu Postrun Analyzer v2020 to profile the metabolites. The National Institute of Standards and Technology (NIST) v2020 is used for compound identification and mass spectrum interpretation. Identified metabolites were classified using ClassyFire online tool (Djoumbou Feunang *et al.*, 2016). Pathway analysis was done using Metaboanalyst v5 (Pang *et al.*, 2015). Metabolite's biological functions were predicted using MBROLE 2.0. online tool (López-Ibañez Infante, 2021).

RESULTS

GC-MS Profiling of Kadam Fruit Peel

With the untargeted approach using the GC-MS detection platform, we identified 149 plant-based metabolites in the peel of kadam fruit (Table 1). Ten metabolites showed highest peak in the total ion chromatogram, including sucrose (17%), citric acid (14.48%), quininic acid (6.84%), pinitol (6.67%), catechine (4.46%), pcicose (3.66%), glucose (3.56%), chlorogenic acid (3.44%), myoinositol (2.22%) and Altrose (1.27%) (Figure 1). The highest accumulated metabolites belonged to the following classes, sugars, organic acids, and flavans.

Functional Annotation of Metabolites and their Enrichment Analysis

We categorized 149 identified metabolites in peel into 46 chemical classes (Table 1). We have analysed all the metabolites in three ways: chemical classification, metabolic pathways, and biological function annotation. In the chemical classification, carbohydrates are identified as a predominant chemical class (56 compounds), followed by alcohols (13 compounds) and then amino acids (6 compounds) (Figure 2). In metabolic pathways mapping, a total of 52 different metabolic pathways were identified. We identified significant pathways with a high impact and a low FDR value. This includes the indole alkaloid pathway, alanine, aspartate, glutamate metabolism, monobactam biosynthesis, and glyoxylate and dicarboxylate metabolism (Figure 3). In functional annotation, the metabolites were classified into 61 functions: sweetening agents, food acidity, osmolyte, and food stabiliser (Table 2). From these annotations, we have identified many pharmaceutically significant metabolites, including glucaric acid (antineoplastic agent), mandelic acid (antibacterial), chloramphenicol (antibiotic), succinic acid (anti-ulcer), chlorogenic acid (hepatoprotective agent) and mannitol (antiglaucoma drug).

Table 1: List of the compounds identified in the peel of cadamba fruit

S. No.	RT	CID	Compounds	MW	Chemical classification
1	6.275	6329	Methylamine	31.06	Amines
2	6.51	65098	Norvaline	117.2	Amino acids, peptides, and analogues
3	7.36	4113	0-Methylhydroxylamine	47.06	Organooxygen compounds
4	7.68	6341	Ethylamine	45.08	Amines
5	7.815	174	1,2-Ethanediol	62.07	Alcohols and polyols
6	8.885	1060	Pyruvic acid	88.06	Alpha-keto acids and derivatives
7	9.915	5959	Chloramphenicol	323.1	Nitrobenzenes
3	9.935	10442	1,3-Propanediol	76.09	Alcohols and polyols
9	10.345	1176	Urea	60.06	Ureas
10	11.32	64960	1,5-Anhydro-D-glucitol	164.2	Carbohydrates and carbohydrate conjugates
11	11.935	827	Pentitol	152.2	Carbohydrates and carbohydrate conjugates
12	12.05	8064	1,4-Butanediol	90.12	Alcohols and polyols
13	12.08	5951	Serine	105.1	Amino acids, peptides, and analogues
14	12.2265	1150	Tryptamine	160.2	Tryptamines and derivatives
15	12.305	753	Glycerol	92.09	Carbohydrates and carbohydrate conjugates
16	12.79	69507	Fructose-6-phosphate	260.1	Carbohydrates and carbohydrate conjugates
17	12.88	1110	Succinic acid	118.1	Dicarboxylic acids and derivatives
18	13.085	752	Glyceric acid	106.1	Carbohydrates and carbohydrate conjugates
19	14	1004	Phosphoric acid	98	Non-metal phosphates
20	14.54	444266	Maleic acid	116.1	Dicarboxylic acids and derivatives
21	14.845	262	2,3-Butanediol	90.12	Alcohols and polyols
22	14.845	8117	, DI (Hydroxyethyl) ether	106.1	Ethers
23	14.845	8146	Diethylene glycol monoethyl ether	134.2	Ethers
24	15.177	525	Malic acid	134.1	Beta hydroxy acids and derivatives
25	15.23	643798	Citraconic acid	130.1	Fatty acids and conjugates
26	15.895	181976	3-Hydroxyglutaric acid	148.1	Beta hydroxy acids and derivatives
27	16.195	785	Hydroquinone	110.1	Benzenediols
28	16.335	6503	Tromethamine	121.1	Amines
29	16.51	5460677	D-ribonic acid	166.1	Carbohydrates and carbohydrate conjugates
30	16.57	5960	Aspartic acid	133.1	Amino acids, peptides, and analogues
31	16.754	33032	Glutamic acid	147.1	Amino acids, peptides, and analogues
32	16.935	875	Tartaric acid	150.1	Carbohydrates and carbohydrate conjugates
33	17.15	6602431	D-xylonic acid	166.1	Carbohydrates and carbohydrate conjugates
34	17.54	444972	Fumaric acid	116.1	Dicarboxylic acids and derivatives
35	17.76	169019	D-Threitol	122.1	Carbohydrates and carbohydrate conjugates
36	17.855	25310	L-Rhamnose	164.2	Carbohydrates and carbohydrate conjugates
37	17.915	222285	Erythritol	122.1	Carbohydrates and carbohydrate conjugates
38	17.925	17106	L-Fucose	164.2	Carbohydrates and carbohydrate conjugates
39	18.085	499	DL-Pyroglutamic acid	129.1	Amino acids, peptides, and analogues
40	18.085	7405	L-Pyroglutamic acid	129.1	Amino acids, peptides, and analogues
41	18.43	440921	I-Arabinofuranose	150.1	Carbohydrates and carbohydrate conjugates
42	18.53	1032	Propionic acid	74.08	Carboxylic acids
43	18.695	439535	2,3,4-Trihydroxybutanoic acid	136.1	Carbohydrates and carbohydrate conjugates
44	18.705	128869	D-Galactonic acid	196.2	Medium-chain hydroxy acids and derivatives
45	18.715	128889	methyl beta-D-fructofuranoside	194.2	Carbohydrates and carbohydrate conjugates
46	18.795	3469	2,5-Dihydroxybenzoic acid	154.1	Benzoic acids and derivatives
47	18.795	7420	3-Hydroxybenzoic acid	138.1	Benzoic acids and derivatives
48	19.154	311	Citric acid	192.1	Tricarboxylic acids and derivatives
49	19.495	51	2-0xoglutaric acid	146.1	Gamma-keto acids and derivatives
50	19.575	102192447	2,2'-Dithiobisethanol	357.3	Dicarboxylic acids and derivatives
50	17.575	1021/244/	1-(2-methyl-2-bromopropionate)	201.2	Dicarboxyne acids and derivatives
			1'-acrylate		
51	19.675	345824	Quininic acid	203.2	Quinoline carboxylic acids
52	19.68	6508	Quinic acid	192.2	Alcohols and polyols
52 53	19.00	6912	Xylitol	192.2	Carbohydrates and carbohydrate conjugates
55 54	19.7	64689	beta-D-Glucose	180.2	Carbohydrates and carbohydrate conjugates
55	19.91	91738890	1,3,5-Benzetriol	270.5	Phenoxy compounds
56	19.91 19.99	441036	D-Psicose	180.2	Carbohydrates and carbohydrate conjugates
50 57	20.07	10975657	D-Psicose D-Ribose	150.2	Carbohydrates and carbohydrate conjugates
58			D-Glucose	180.2	Carbohydrates and carbohydrate conjugates
58 59	20.244	5793 33037			Carbonydrates and carbonydrate conjugates Carbohydrates and carbohydrate conjugates
	20.405	33037	Glucaric acid	210.1	
60 61	20.565	441032	D-Altrose	180.2	Carbohydrates and carbohydrate conjugates
61	20.565	10219674	L-Altrose	180.2	Carbohydrates and carbohydrate conjugates
62	20.62	2723872	D-Fructose	180.2	Carbohydrates and carbohydrate conjugates
63	20.63	560035	3-Deoxy-d-mannitol	166.2	Fatty alcohols
64	20.715	2724705	Levoglucosan	162.1	Oxepanes

Table 1: (Continued)

S. No.	RT	CID	Compounds	MW	Chemical classification
65	20.855	439665	D-Threose	120.1	Carbohydrates and carbohydrate conjugates
6	20.855	5460672	L-Threose	120.1	Carbohydrates and carbohydrate conjugates
57	21.205	11850	Galactitol	182.2	Carbohydrates and carbohydrate conjugates
68	21.365	643757	cis-Aconitic acid	174.1	Tricarboxylic acids and derivatives
9	21.52	439312	D-Tagatose	180.2	Carbohydrates and carbohydrate conjugates
0	21.82	6036	D-Galactose	180.2	Carbohydrates and carbohydrate conjugates
71	21.945	12306016	D-tagatofuranose	180.2	Carbohydrates and carbohydrate conjugates
72	22.238	164619	D-Pinitol	194.2	Alcohols and polyols
73	22.2985	8742	Shikimic acid	174.2	Alcohols and polyols
74	22.77	11005	Myristic acid	228.4	Fatty acids and conjugates
75	23.52	439507	D-Allose	180.2	Carbohydrates and carbohydrate conjugates
6	23.67	515	2-Methylcitric acid	206.2	Tricarboxylic acids and derivatives
7	23.73	89640	Loganic acid	376.4	Terpene glycosides
78	24.125	439215	D-Galacturonic Acid	194.1	Carbohydrates and carbohydrate conjugates
'9	24.357	892	Inositol	180.2	Alcohols and polyols
30	24.69	152109	4-0-beta-D-Mannopyranosy I-D-mannopyranose	342.3	Carbohydrates and carbohydrate conjugates
1	24.69	161276	Secologanin	388.4	Terpene glycosides
32	24.09	60961	Adenosine	267.2	Purine nucleosides
3	25.005	1826	5-Hydroxyindole-3-acetic acid	191.2	Indolyl carboxylic acids and derivatives
35	25.165	985	Palmitic acid	256.4	Fatty acids and conjugates
5	26.13	689043	Caffeic acid	180.2	Hydroxycinnamic acids and derivatives
6	26.145	736715	Urocanic acid	138.1	Imidazoles
87	27.35	5281	Stearic acid	284.5	Fatty acids and conjugates
			Sorbitol		
8	27.695	5780		182.2	Carbohydrates and carbohydrate conjugates Carbohydrates and carbohydrate conjugates
9	27.845	127686	Bungeiside C	430.4	, , , , , , , , , , , , , , , , , , , ,
0	27.845	151261	D-ribulose	150.1	Carbohydrates and carbohydrate conjugates
1	27.845	91696780	3-alpha-Mannobiose	948.8	Fatty acyl glycosides
2	27.98	67901	Trifluoroacetaldehyde hydrate	116	Fluorohydrins
3	28.095	6251	Mannitol	182.2	Carbohydrates and carbohydrate 9conjugates
4	28.115	5958	Glucose 6-phosphate	260.1	Carbohydrates and carbohydrate conjugates
5	28.25	1061	Phosphate	94.97	Non-metal phosphates
6	28.705	94176	D-Erythrose	120.1	Carbohydrates and carbohydrate conjugates
7	29.07	441478	beta-D-Glucopyranuronic acid	194.1	Carbohydrates and carbohydrate conjugates
8	29.53	971	Oxalic acid	90.03	Dicarboxylic acids and derivatives
19	29.8	24879693	Polygalatenoside A	430.4	Carbohydrates and carbohydrate conjugates
00	29.835	5202	Serotonin	176.2	Tryptamines and derivatives
01	30.065	439260	Norepinephrine	169.2	Benzenediols
.02	30.285	6902	D-arabinopyranose	150.1	Carbohydrates and carbohydrate conjugates
.03	30.285	439195	L-Arabinose	150.1	Carbohydrates and carbohydrate conjugates
04	30.485	206	Hexose	180.2	Carbohydrates and carbohydrate conjugates
05	30.675	439503	Salicin	286.3	Carbohydrates and carbohydrate conjugates
06	30.81	14900	Glyceryl palmitate	330.5	Monoradylglycerols
07	31.105	6989	Thymol	150.2	Monoterpenoids
08	31.105	7427	Trehalose	342.3	Carbohydrates and carbohydrate conjugates
09	31.58	107802	3-Hydroxypentanoic acid	118.1	Fatty acids and conjugates
10	32.12	10712	D-(+)-Cellobiose	342.3	Carbohydrates and carbohydrate conjugates
11	32.161	5988	Sucrose	342.3	Carbohydrates and carbohydrate conjugates
12	32.28	10314695	Rosiridin	332.4	Terpene glycosides
13	32.33	135191	D-Xylose	150.1	Carbohydrates and carbohydrate conjugates
14	32.92	439193	Isomaltose	342.3	Carbohydrates and carbohydrate conjugates
15	32.97	441422	Gentiobiose	342.3	Carbohydrates and carbohydrate conjugates
16	33.07	9378	2-Hydroxy-3-(4-hydroxyphenyl) propanoic acid	182.2	Phenylpropanoic acids
.17	33.14	91696999	Catechine	651.2	Flavans
.18	33.5	24699	Glyceryl monostearate	358.6	Monoradylglycerols
19	33.69	1135	Thymine	126.1	Pyrimidines and pyrimidine derivatives
20	33.725	6441280	trans-5-0-(4-coumaroyl)-D-quinic	338.3	Alcohols and polyols
21	22 70	70044	acid	152 0	Mathayyphanals
.21	33.79	70966	Vanillylamine	153.2	Methoxyphenols
122	34.16	87691	Loganin	390.4	Terpene glycosides
.23	34.63	20695	4-Hydroxypyrimidine	96.09	Pyrimidines and pyrimidine derivatives
L24	34.635	1054	Pyridoxine	169.2	Pyridoxines
L25	34.925	442534	Paeoniflorin	480.5	Terpene glycosides
.26	35.025	440658	6-0-(alpha-D-Galactopyranosyl) -D-glucopyranose	342.3	Carbohydrates and carbohydrate conjugates

Selvakumar et al.

Table 1: (Continued)

S. No.	RT	CID	Compounds	MW	Chemical classification
127	35.255	9799386	3-0-Feruloylquinic acid	368.3	Alcohols and polyols
128	35.74	90478782	5-p-Coumaroylquinic acid, (Z)-	338.3	Alcohols and polyols
129	35.96	18950	D-Mannose	180.2	Carbohydrates and carbohydrate conjugates
130	36.09	101995872	Foliachinenoside I	412.4	Fatty acyl glycosides
131	36.42	1794427	Chlorogenic acid	354.3	Alcohols and polyols
132	36.45	493591	Maltitol	344.3	Fatty acyl glycosides
133	36.57	9798666	Cryptochlorogenic acid	354.3	Alcohols and polyols
134	36.715	135398635	Guanosine	283.2	Purine nucleosides
135	36.88	94715	D-Glucuronic Acid	194.1	Carbohydrates and carbohydrate conjugates
136	37.495	39197	(3-Propoxyphenyl) carbamic acid 1-methyl-2-(1-pyrrolidinyl) ethyl ester hydrochloride	342.9	Phenylcarbamic acid esters
137	37.575	6029	Uridine	244.2	Pyrimidine nucleosides
138	37.85	72277	Epigallocatechin	306.3	Flavans
139	38.215	441033	D-Gulose	180.2	Carbohydrates and carbohydrate conjugates
140	38.69	6255	Maltose	342.3	Carbohydrates and carbohydrate conjugates
141	38.965	1188	Xanthine	152.1	Purines and purine derivatives
142	39.35	69948	N-Methyl-2,2,2-trifluoroacetamide	127.1	Carboxylic acid derivatives
143	40.33	3336	Fendiline	315.5	Diphenylmethanes
144	40.41	85782	3,4-Dihydroxymandelic acid	184.2	Benzenediols
145	41.98	73323	Xanthosine-5'-monophosphate	364.2	Purine ribonucleotides
146	44.25	439533	Taxifolin	304.3	Flavans
147	44.25	443758	(+)-Epitaxifolin	304.3	Flavans
148	46.745	1052	Pyridoxamine	168.2	Pyridoxamines
149	47.075	1292	Mandelic acid	152.2	Benzene and substituted derivatives

Table contains the retention time of the metabolites (RT), pubchem compounds identifier (CID), name of the compounds, molecular weight (MW) and its chemical classification.

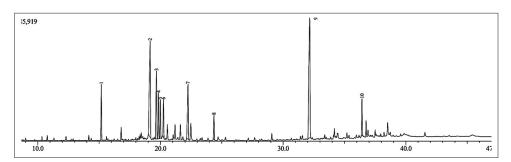


Figure 1: GC-MS total ion chromatogram of kadam fruit peel. Note: Numbers above the peaks indicate the abundant compounds. 1. Malic acid, 2. Citric acid, 3. Quinic acid, 4. Pcicose, 5. Catechine 6. D-Glucose, 7. D-Pinitol, 8. Inositol, 9. Sucrose 10. Chlorogenic acid

DISCUSSION

In our study, 149 metabolites were identified from the kadam fruit peel, which is the first metabolites analysis on the kadam fruit peel using GC-MS. The peak's area represents the concentration of particular metabolites in the sample; based on that, and we identified the highest area compounds such as sucrose, citric acid, quininic acid, pinitol, catechine, pcicose, glucose, chlorogenic acid, myo-inositol, and Altrose (Table 1). The medicinal value of these compounds was already reported by many researchers i.e., in many food and pharmaceutical industries, citric acid is used as an emulsifier, flavorant, sequestrant, buffering, acidulant, and preservative (Verhoff, 2000; Nangare et al., 2021). Quininic acid is one of the organic acids, and it was also extracted from Eucalyptus globulus and employed as an astringent and a precursor for the synthesis of novel medications (Shi et al., 2018). Pinitol is one of the more well-researched insulin mimickers, and also it has antidiabetic, anti-inflammatory, antioxidant, and immunomodulatory properties (Bates et al., 2000; Sripathi et al., 2011; Poongothai & Sripathi, 2013). The polyphenol compound catechins are well-studied metabolites with proven activities such as antioxidant (Parisi et al., 2013), UV protection (Zhang et al., 2017), anti-microbial (Goyal et al., 2017), anti-allegenic (Ohmori et al., 1995), anti-inflammation, antiviral (Ide et al., 2014), anti-cancer (Kumar et al., 2015). Additionally, they enhance cell activity and activate skin barrier passage (Puri et al., 2016; Bae et al., 2020). D-Pcicose is a rare sugar; it prevents and controls obesity and hyperglycemia (Hossain et al., 2015). Chlorogenic acid is also a polyphenol compound, which has significant and bioactive nutrient polyphenol that has numerous beneficial and therapeutic properties, including anti-oxidant, hepatoprotective, cardioprotective, anti-inflammatory, anti-pyretic, anti-obesity, anti-microbial, anti-hypertension, and central neural system stimulator activities (Naveed et al., 2018). Myo inositol is the sugar alcohol which is mainly present in fruits. It also has prevention and control properties such as bipolar disorder

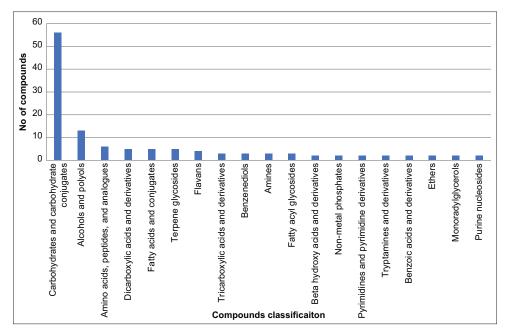
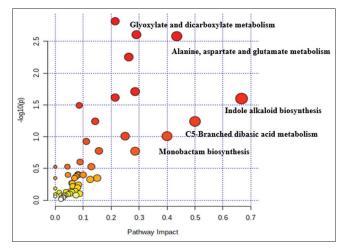



Figure 2: Metabolites classification in the peel of *N. cadamba*. (46 classes. In this figure, we selected classes with the total number of compounds equal to or more than two for graphical representation. The X-axis indicates metabolite classes, and the Y-axis shows the number of metabolites identified in the peel of cadamba

Figure 3: Pathway analysis of identified metabolites from *N. cadamba* peel. A total of 150 metabolites were mapped into 52 different metabolic pathways. Each circle represents a metabolic pathway. Red colour indicates a higher impact, and yellow colour represents the lower impact pathways. The size of the circle indicates the number of metabolites in the pathway. Here, we labeled high-impact metabolic pathways

(Bartoli *et al.*, 2021), depression (Taylor *et al.*, 2004), obsessivecompulsive disorder (Benjamin *et al.*, 1995), polycystic ovary syndrome (Unfer *et al.*, 2017), Alzheimer's disease and diabetic neuropathy. The above-discussed compounds have numerous therapeutic applications, which indicate that the peel of kadam fruit contains significant bioactive compounds.

In our study, different metabolic classes were also identified. In the kadam fruit peel, carbohydrates are predominant in chemical classification (Table 2). Similar results were supported by quantitative studies on the kadam fruit (Surani *et al.*, 2022)

J Phytol • 2022 • Vol 14

but not on the peel. Carbohydrates play a significant role in plant protection, immunity, and plant-microbe interactions. Total metabolites or crude extraction of different parts of kadam revealed its biological significance, including anti-helminthic (Acharyya et al., 2011), antifungal (Divyakant et al., 2011), antifilarial (Kumar et al., 2013), antimalarial (Santiarworn, 2005), antibacterial (Mishra & Siddique, 2011), antidiabetic activity (Bussa & Jyothi, 2010), antidiarrheal activity (Alam et al., 2008), hypolipidemic activity (Kumar et al., 2010) and diuretic and laxative activities (Mondal et al., 2009). However, it is yet unclear which specific metabolite groups are in response to these biological functions. GC-MS or other metabolites profiling and quantification techniques will help identify the significant metabolites responsible for these biological activities. Generally, flavonoids viz., quercetin, apigenin is known to have analgesic and anti-inflammatory activities, we also identified quercetin in the peel of kadam fruit, and the existing report revealed similar results (Ambujakshi et al., 2009; Bachhav et al., 2009). According to studies, the kadam is used for its hepatoprotective properties. Chlorogenic acid isolated from the cadamba plant is responsible for hepatoprotective activity (Kapil et al., 1995). Additionally, we discovered 3.4% chlorogenic acid in the peel of kadam (Figure 1). Further, we identified many biological roles of identified metabolites using the ChEBI database. These medicinal properties are due to alkaloids, flavonoids, saponins, phenolics, and carbohydrates (Ahmed et al., 2011; Malothu et al., 2012). There has not yet been enough thorough research on the active metabolites that give cadamba its wide range of pharmacological effects. A study also showed that monoterpene indole alkaloids (MIA) are responsible for these activities (Kumar et al., 2010). We mapped metabolites against the pathways to confirm this statement, and the results showed that most of the compounds are part of the indole alkaloid pathway. Our studies identified many

Table 2: Function of metabolites in	dentified using Chemical Er	ntities of Biological Interest (ChEBI) database

S. No.	Annotation	Pubchem CID
	Sweetening agent	6251, 6912, 5780, 5988, 2723872, 493591
	Food acidity regulator	525, 444972, 311
	Food humectant	6251, 5780
	Bacterial metabolite	9378, 65098, 7420
	Solvent	753, 1004, 174
	Osmolyte	753, 5988
	EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor	3469, 689043
	Laxative	5780, 493591
	Protic solvent	10442, 8064
)	EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor	985
	Food bulking agent	6251
2	Osmotic diuretic	6251
3	Cofactor	1054, 785
1	Antioxidant	439507, 222285, 85782, 689043, 72277
5	Food stabiliser	6251
5	Food thickening agent	6251
7	EC 3.1.4.11 (phosphoinositide phospholipase C) inhibitor	892
3	Food anticaking agent	6251
9	Drug metabolite	85782, 1826
)	Cathartic	5780
	EC 2.5.1.18 (glutathione transferase) inhibitor	689043
2	Nutrient	892
3	Nutraceutical	1110, 33032
1 -	Allergen	6251, 6912
5	Flour treatment agent	1176
)	Food component	72277
7	EC 3.1.1.1 (carboxylesterase) inhibitor	11005
3	Human xenobiotic metabolite	785, 1292
9	Detergent	753
) L	MALDI matrix material Buffer	3469
L 2	Toxin	6503 174
<u>~</u> 3	EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor	689043
1	EC 3.5.1.98 (histone deacetylase) inhibitor	689043
5	Alpha-adrenergic agonist	439260
, 	Hapten	6251, 6912
7	Protein synthesis inhibitor	5959
3	Prodrug	439503, 8064
9	Antiglaucoma drug	6251
))	Anti-ulcer drug	1110
Ĺ	Chelator	311
2	Hepatoprotective agent	9798666
- 3	Human metabolite	6341
1	Vasoconstrictor agent	439260
5	Sympathomimetic agent	439260
, D	Analgesic	60961
7	EC 1.14.99.1 (prostaglandin-endoperoxide synthase)	439503
	inhibitor	
3	Antimicrobial agent	311
9	Plant metabolite	72277, 69507, 1052, 151261, 785, 94715,
		69507, 1052, 9378, 65098, 7420
)	Antipyretic	439503
L	Anti-arrhythmia drug	60961
2	Vasodilator agent	60961
3	Carcinogenic agent	785
1	Non-narcotic analgesic	439503
5	Non-steroidal anti-inflammatory drug	439503
, D	Epitope	64689, 10712, 441422
7	Antibacterial drug	5959
3	Antibiotic	5959
9	Antibacterial agent	1292
0	Metabolite	73323
1	Antineoplastic agent	33037

therapeutic metabolites from fruit peel and their biological roles using GC-MS based metabolomics and bioinformatics analyses.

Further, therapeutic potential of these compounds needs to be tested by *in vitro* and *in vivo* studies.

CONCLUSION

The current study was the first to look into the identification of metabolites in the kadam fruit peel using GC-MS analysis. We have identified 149 compounds and explored the biological functions of these compounds. It revealed that the peel of kadam fruit also contains various therapeutic compounds like other kadam parts (i.e., roots, leaves, barks, and fruits). Further, comparing the peel with other parts discloses the peel-specific compounds. Collectively, the results obtained in this study could be useful for the pharmaceutical industry.

ACKNOWLEDGEMENT

Financial support from the Department of Biotechnology (DBT), Government of India (GOI), through the project entitled "Development of genetic stocks, genomic resources for *Neolamarckia cadamba* (Kadam) for timber value and medicinal properties" (BT/PR39704/FCB/125/98/2020 dt. 06.05.2022) is acknowledged. The funders had no role in the work design, data collection, and analysis, or decision and preparation of the manuscript. We also thank Centre of Excellence for Innovations, Agricultural College and Research Institute, Madurai and Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India for GC-MS analysis.

REFERENCES

- Acharyya, S., Rathore, D. S., Kumar, H. K. S., & Panda, N. (2011). Screening of Anthocephalus cadamba (Roxb.) Miq. root for antimicrobial and anthelmintic activities. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2(1), 297-300.
- Ahmed, F., Rahman, S., Ahmed, N., Hossain, M., Biswas, A., Sarkar, S., Banna, H., Khatun, A., Chowdhury, M. H., & Rahmatullah, M. (2011). Evaluation of *Neolamarckia cadamba* (Roxb.) Bosser leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. *African Journal of Traditional, Complementary and Alternative Medicines*, 8(1), 79-81. https://doi.org/10.4314/ajtcam.v8i1.60549
- Alam, M. A., Akter, R., Subhan, N., Rahman, M. M., Majumder, M. M., Nahar, L., & Sarker, S. D. (2008). Anti-diarrhoeal property of the hydroethanolic extract of the flowering tops of *Anthocephalus* cadamba. Brazilian Journal of Pharmacognosy, 18(2), 155-159.
- Ambujakshi, H. R., Antony, S. T., Kanchana, Y., Riddhi, P., Heena, T., & Shyamnanda (2009). Analgesic activity of *Anthocephalus cadamba* leaf extract. *Journal of Pharmacy Research*, 2(8), 1279-1280.
- Bachhav, R. S., Buchake, V. V. & Saudagar, R. B. (2009). Analgesic and anti-inflammatory activities of *Anthocephalu scadamba* roxb. leaves in wistar rats. *Research Journal of Pharmacy and Technology*, 2(1), 164-167.
- Bae, J., Kim, N., Shin, Y., Kim, S.-Y., & Kim, Y.-J. (2020). Activity of catechins and their applications. *Biomedical Dermatology*, 4, 8. https://doi. org/10.1186/s41702-020-0057-8
- Bandyopadhyay, S., & Mukherjee, S. K. (2009). Wild edible plants of Koch Bihar district, West Bengal. *Natural Product Radiance*, 8(1), 64-72.
- Bartoli, F., Cavaleri, D., Bachi, B., Moretti, F., Riboldi, I., Crocamo, C., & Carrà, G. (2021). Repurposed drugs as adjunctive treatments for mania and bipolar depression: A meta-review and critical appraisal of meta-analyses of randomized placebo-controlled trials. *Journal* of *Psychiatric Research*, 143, 230-238. https://doi.org/10.1016/j. jpsychires.2021.09.018
- Bates, S. H., Jones, R. B., & Bailey, C. J. (2000). Insulin-like effect of pinitol. British Journal of Pharmacology, 130(8), 1944-1948. https://doi. org/10.1038/sj.bjp.0703523
- Benjamin, J., Levine, J., Fux, M., Aviv, A., Levy, D., & Belmaker, R. (1995). Double-blind, placebo-controlled, crossover trial of inositol treatment

for panic disorder. American Journal of Psychiatry, 152(7), 1084-1086. https://doi.org/10.1176/ajp.152.7.1084

- Bussa, S. K., & Jyothi, P. (2010). Antidiabetic activity of stem bark of Neolamarckia cadamba in alloxan induced diabetic rats. International Journal of Pharmacy and Technology, 2(2), 314-324.
- Divyakant, A. P., Vinay, C. D., Aditi, H. B., Kaushik, R. P., & Rakshit, S. N. (2011). Evaluation of antifungal activity of *Neolamarckia cadamba* (roxb.) bosser leaf and bark extract. *International Research Journal* of *Pharmacy*, 2(5), 192-193.
- Djoumbou Feunang, Y., Eisner, R., Knox, C., Chepelev, L., Hastings, J., Owen, G., Fahy, E., Steinbeck, C., Subramanian, S., & Bolton, E., Greiner, R., & Wishart, D. S. (2016). ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. *Journal* of Cheminformatics, 8, 61. https://doi.org/10.1186/s13321-016-0174-y
- Goyal, A. K., Bhat, M., Sharma, M., Garg, M., Khairwa, A., & Garg, R. (2017). Effect of green tea mouth rinse on Streptococcus mutans in plaque and saliva in children: *An in vivo* study. *Journal of Indian Society* of *Pedodontics and Preventive Dentistry*, 35(1), 41-46. https://doi. org/10.4103/0970-4388.199227
- Hossain, A., Yamaguchi, F., Hirose, K., Matsunaga, T., Sui, L., Hirata, Y., Noguchi, C., Katagi, A., Kamitori, K., Dong, Y., Tsukamoto, I., & Tokuda, M. (2015). Rare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats. *Drug Design, Development and Therapy*, 9, 525-535. https://doi.org/10.2147/DDDT.S71289
- Ide, K., Yamada, H., Matsushita, K., Ito, M., Nojiri, K., Toyoizumi, K., Matsumoto, K., & Sameshima, Y. (2014). Effects of green tea gargling on the prevention of influenza infection in high school students: A randomized controlled study. *PLoS One*, 9(5), e96373. https://doi. org/10.1371/journal.pone.0096373
- Kapil, A., Koul, I., & Suri, O. P. (1995). Antihepatotoxic effects of chlorogenic acid from *Anthocephalus cadamba*. *Phytotherapy Research*, 9(3), 189-193. https://doi.org/10.1002/ptr.2650090307
- Kumar, A. N., Jeyalalitha, T., Murugan, K., & Madhiyazhagan, P. (2013). Bioefficacy of plant-mediated gold nanoparticles and *Anthocepholus cadamba* on filarial vector, *Culex quinquefasciatus* (Insecta: Diptera: Culicidae). *Parasitology Research*, *112*(3), 1053-1063. https://doi.org/10.1007/s00436-012-3232-z
- Kumar, A., Chowdhury, S. R., Jatte, K. K., Chakrabarti, T., Majumder, H. K., Jha, T., & Mukhopadhyay, S. (2015). Anthocephaline, a new indole alkaloid and cadambine, a potent inhibitor of DNA topoisomerase IB of Leishmaniadonovani (LdTOP1LS), isolated from *Anthocephalus cadamba*. *Natural Product Communications*, 10(2), 297-299.
- Kumar, V., Mahdi, F., Chander, R., Singh, R., Mahdi, A. A., Khanna, A. K., Bhatt, S., Kushwaha, R. S., Jawad, K., Saxena, J. K., & Singh, R. K. (2010). Hypolipidemic and antioxidant activity of *Anthocephalus indicus* (Kadam) root extract. *Indian Journal of Biochemistry & Biophysics*, 47(2), 104-109.
- Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. *Nature Protocols*, 1(1), 387-396. https://doi.org/10.1038/ nprot.2006.59
- López-Ibañez Infante, J. (2021). *New methodologies for analyzing metabolomic data.* Doctoral Thesis, University of Madrid.
- Malothu, R., Mathala, N., Adarsh, G., & Rao, D. M. (2012). Hepatoprotective activity and anti-oxidant activity of *Anthocephalus indicus* in ethanol induced hepatotoxicity in albino Wistar rats. *International Journal of Phytopharmacology*, 3(3), 245-248.
- Mishra, R. P., & Siddique, L. (2011). Antibacterial Properties of Anthocephalus cadamba Fruits. Asian Journal of Plant Science and Research, 1(2), 1-7.
- Mondal, S., Dash, G. K., Acharyya, A., Acharyya, S., & Sharma, H. P. (2009). Studies on diuretic and laxative activity of bark extracts of *Neolamarckia cadamba* (Roxb.) Bosser. *Drug Invention Today*, 1(1), 78-80.
- Nangare, S., Vispute, Y., Tade, R., Dugam, S., & Patil, P. (2021). Pharmaceutical applications of citric acid. *Future Journal of Pharmaceutical Sciences*, 7, 54. https://doi.org/10.1186/s43094-021-00203-9
- Narzary, H., Brahma, S., & Basumatary, S. (2013). Wild edible vegetables consumed by BodoTribe of Kokrajhar District (Assam), North-East India. Archives of Applied Science Research, 5(5), 182-190.
- Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., Ahmad, F., Babazadeh, D., FangFang, X., Modarresi-

Ghazani, F., WenHua, L., & XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. *Biomedicine & Pharmacotherapy*, *97*, 67-74. https://doi.org/10.1016/j. biopha.2017.10.064

- Ohmori, Y., Ito, M., Kishi, M., Mizutani, H., Katada, T., & Konishi, H. (1995). Antiallergic constituents from oolong tea stem. *Biological and Pharmaceutical Bulletin*, 18(5), 683-686. https://doi.org/10.1248/ bpb.18.683
- Pal, I., Majumdar, A., Khaled, K. L., & Datta, S. (2014). Quantitative estimation of some essential minerals in the fruit of *Neolamarckia* cadamba. IOSR Journal of Pharmacy and Biological Sciences, 9(6), 20-22.
- Pandey, A., & Negi, P. S. (2016). Traditional uses, phytochemistry and pharmacological properties of *Neolamarckia cadamba*: A review. *Journal of Ethnopharmacology*, *181*, 118-135. https://doi. org/10.1016/j.jep.2016.01.036
- Pang, S. L., Ho, W. S., Mat-Isa, M. N., & Abdullah, J. (2015). Gene discovery in the developing xylem tissue of a tropical timber tree species: *Neolamarckia cadamba* (Roxb.) Bosser (kelampayan). *Tree Genetics* & *Genomes*, *11*, 47. https://doi.org/10.1007/s11295-015-0873-y
- Parisi, O. I., Puoci, F., Iemma, F., Curcio, M., Cirillo, G., Spizzirri, U. G., & Picci, N. (2013). Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone). *Pharmaceutical Development* and Technology, 18(5), 1058-1065. https://doi.org/10.3109/108374 50.2012.680595
- Pathak, P. (2020). Medicinal properties of fruit and vegetable peels. In R. Vyas (Eds.), *Advances in Bioengineering* (pp. 115-128), Singapore: Springer. https://doi.org/10.1007/978-981-15-2063-1_6
- Poongothai, G., & Sripathi, S. K. (2013). A review on insulinomimetic pinitol from plants. *International Journal of Pharma and Bio Sciences*, 4(2), 992-1009.
- Puri, A., Nguyen, H. X., & Banga, A. K. (2016). Microneedle-mediated intradermal delivery of epigallocatechin-3-gallate. *International*

Journal of Cosmetic Science, 38(5), 512-523. https://doi.org/10.1111/ ics.12320

- Santiarworn, D. (2005). *Chemical constituents and biological activities of some rubiaceae.* Doctoral Thesis, Chiang Mai University.
- Shi, J.-t., Liu, H.-c., Luo, J.-y., & Cai, L.-p. (2018). Seasonal changes of metabolites in phloem sap from *Broussonetia papyrifera*. *bioRxiv*, 317271. https://doi.org/10.1101/317271
- Sripathi, S. K., Gopal, P. & Lalitha, P. (2011). Allantoin from the leaves of Pisonia grandis R. Br. International Journal of Pharmacy & Life Sciences, 2(6), 815-817.
- Surani, H. C., Suryawanshi, V. R., & Yadav, H. R. (2022). Qualitative and Quantitative Analysis of Fruits of *Neolamarckia cadamba* (Roxb.). *Bulletin of Environment, Pharmacology and Life Sciences*, 2022(S1), 1340-1344.
- Taylor, M. J., Wilder, H., Bhagwagar, Z., & Geddes, J. (2004). Inositol for depressive disorders. *Cochrane Database of Systematic Reviews*, 2004(1), CD004049. https://doi.org/10.1002/14651858.CD004049. pub2
- Umachigi, S. P., Kumar, G. S., Jayaveera, K., Kishore, K. D. V., Ashok, K. C. K., & Dhanapal, R. (2007). Antimicrobial, wound healing and antioxidant activities of Anthocephalus cadamba. African Journal of Traditional Complementary and Alternative Medicines, 4(4), 481-487.
- Unfer, V., Facchinetti, F., Orrù, B., Giordani, B., & Nestler, J. (2017). Myoinositol effects in women with PCOS: a meta-analysis of randomized controlled trials. *Endocrine Connections*, 6(8), 647-658. https://doi. org/10.1530/EC-17-0243
- Verhoff, F. H. (2000). Citric acid. In F. Ullman (Eds.), *Ullmann's encyclopedia of industrial chemistry*. Germany: Wiley-VCH.
- Zhang, Q., Liu, M., & Ruan, J. (2017). Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. *BMC Plant Biology*, *17*(1), 64. https://doi.org/10.1186/ s12870-017-1012-8