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INTRODUCTION

Wheat (Triticum aestivum L.) is one of the major cereal 
crops in Bangladesh, with a global production of about 700 
million tons, providing 20% of the daily protein and calorie 
requirements for over 4.5 billion people worldwide (Arzani & 
Ashraf 2017). As a staple food grain for more than 35% of the 

total populations of Bangladesh, it has emerged as the country’s 
second most profitable cereal crop after rice (Golder et al., 
2013). Wheat cultivation has recently received a lot of attention 
from Bangladeshi farmers as the demand has increased in the 
bakery industry (Mottaleb et al., 2018). However, outrageous 
environmental change as a result of dangerous atmospheric 
deviation and global warming has recently caused a drastic shift 
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ABSTRACT
Salinity is one of the most important abiotic stresses that inhibit wheat (Triticum aestivum L.) growth, development 
and yield. Therefore, finding efficient strategies to prevent salt-induced growth retardation and yield loss is crucial for 
modern agriculture to sustain production. This study was conducted to explore the roles of exogenous salicylic acid 
(SA) and thiourea (TU) in regulating salt tolerance by evaluating morpho-physiological traits and antioxidant response 
in two wheat genotypes at the seedling stage. Imposition of salt stress resulted in reduced growth characteristics, leaf 
water status, and photosynthetic pigments, while the Na+/K+ ratio, hydrogen peroxide (H2O2), and malondialdehyde 
(MDA) content were increased significantly in both of the wheat genotypes. In contrast, exogenous application of 
SA or TU in the salt-stressed plants significantly reduced the negative effects of salt stress and improved growth 
performance by up-regulating photosynthetic pigments, leaf water status, and proline content in both wheat genotypes. 
Besides, when compared to the seedlings treated with salt stress only, SA and TU were found to play an important role 
in maintaining lower Na+/K+ levels and reducing oxidative stress by lowering MDA and H2O2 levels in salt-stressed 
plants through boosting the activities of antioxidant enzymes such as catalase, ascorbate peroxidase, and peroxidase. 
In addition, hierarchical clustering and principal component analysis revealed a significant interaction among growth 
characteristics, chlorophyll and carotenoid content and antioxidant activities with the salt, SA or TU treatments. The 
findings suggested that exogenous application of SA or TU could be a useful strategy for reducing the negative effects 
of salinity on wheat growth and development.
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in salinity dominated areas of Bangladesh, putting the present 
wheat cultivars’ productivity at risk (Siddiqui et al., 2017). Saline 
soil is characterized by the procurement of sodium ions (Na+) 
with dominant anions of chloride and sulphate leading to the 
high electrical conductivity of more than 4 dSm−1 (Ali et al., 
2013). As a result of climate change, soil salinity is becoming a 
major issue in coastal areas, particularly in developing countries 
(Nicholls et al., 2007) and over 800 million hectares of land are 
expected to be adversely affected by soil salinity globally (Munns 
& Tester 2008). Soil salinity is a growing menace all over the 
world because of its noxious effect on reducing soil fertility and 
water uptake in the crop plants (Yuvaraj et al., 2021). In recent 
years, soil salinity has severely hampered agricultural production 
by affecting plant growth and development at various phases 
of plant growth (James et al., 2012; Konuşkan et al., 2017). In 
Bangladesh, different levels of salinity have already impacted 
approximately 0.87 million hectares which grasped almost 
30% of cultivable lands causing 30-50% yields loss every year 
(Khatun et al., 2019). As a result, successful and cost-effective 
strategies should undoubtedly be introduced in the saline belt 
of Bangladesh to minimize salinity-induced yield reduction and 
meet the increasing population’s demand for wheat.

Wheat is a salt-sensitive crop that exhibits high salt susceptibility 
throughout its entire life cycle, especially during the vegetative 
and early reproductive phases (Kumar et al., 2013; Uddin et al., 
2017). Salinity exerts its cellular toxicity by instigating ionic, 
osmotic, and oxidative stresses (Akramet al., 2017; Kamran et al., 
2020). Demonstration of over aggregation of soluble salt most 
likely Na+ restricts the plant development and advancement by 
upsetting numerous physiological and biochemical procedures, 
for example, osmotic modification, water parity, membrane 
integrity, alteration of growth regulators levels, and metabolic 
failure going with ionic and osmotic pressure as a result of 
hyper-ionic and osmotic stresses (Nieves-Cordones et al., 2016; 
Negrão et al., 2017; Mathur et al., 2019). High amount of Na+ 
accumulation in soils lowers the potassium (K+) ions uptake 
into plant cells. As a result, excessive Na+ damages the cell 
membrane and plant organelles, resulting in plant cell death 
(Ma et al., 2016). Therefore, plants activate various mechanisms 
to reduce Na+ aggregation in the cytoplasm, thereby preventing 
Na+ intrusion into the cell, especially by removing Na+ from 
the cell or categorizing Na+ into the vacuole (Shi et al., 2003; 
Mostofa et al., 2015). Plants also regulate the expression and 
activity of various membrane transporters, such as high-affinity 
K+ transporters, which help cation transport throughout the 
membrane and uphold the standard Na+/K+ ratio (Waters 
et al., 2013). In general, salinity resistance in crop plants is 
connected with the upkeep of a low Na+/K+ ratio (Omisun et al., 
2018). Thus, maintaining the proper Na+/K+ ratio is critical 
for the development of salt-tolerant wheat cultivars under 
stress conditions (Sun et al., 2014). Besides ion homeostasis, 
different osmoprotectant like proline, also demonstrate a 
very crucial role under salinity stress to maintain lower levels 
of lipid peroxidation in plants (Khan et al., 2019). Thus, the 
increase of proline accumulation levels in plants under saline 
conditions is correlated with the improvement of salt tolerance 
(Gharsallah et al., 2016). The noxious effects of salt stress also 
lead to metabolic changes that increase reactive oxygen species 

generation (ROS) in plants (Chawla et al., 2013; Mostofa et al., 
2015; AbdElgawad et al., 2016; Hossain et al., 2021). When 
one, two, or three O2 electrons exchange, hydrogen peroxide 
(H2O2), superoxide (O2

.-), or hydroxyl radical (OH•) are formed, 
which usually results in the formation of ROS (Rodrigo-Moreno 
et al. 2013). The overproduction of ROS disrupts normal plant 
metabolism by targeting proteins, DNA, and membrane lipids 
(Parihar et al., 2015). To counteract the toxic effects of stress-
induced ROS, plants itself develop an inherent protective 
mechanism that includes enzymatic antioxidants such as 
catalase (CAT), ascorbate peroxidase (APX), and peroxidase 
(POX) (Choudhury et al., 2017; Tanveer & Shabala, 2018). 
Plants trigger this enzymatic antioxidant matabolism to 
reduce ROS-induced toxic effects under stress conditions 
because they detoxify H2O2 and inhibit lipid peroxidation 
through specific mechanisms (Aghaleh et al., 2009; Dugasa 
et al., 2019). Previously, few plant species showed a significant 
positive correlation between enzymatic antioxidants and salinity 
tolerance level (Cicek & Cakirlar, 2008; Ashraf, 2009).

Recent studies revealed that the priming of seeds or plants by 
certain exogenous protecting agents such as plant hormone 
is potentially a significant in modulating resistance in plants 
against various abiotic stresses (Borges et al., 2014; Ismail 
et al., 2016). It has also been reported that treatment with 
exogenous substances like organic extracts and lipoic acid 
significantly improved the antioxidant defense system of the 
plants, thereby reducing ROS levels and increasing wheat 
growth and production under saline conditions (Elrys et al., 
2020). Among the potential endogenous hormones, salicylic 
acid (SA), and thiourea (TU) has been marked assuming a 
very noteworthy role in plant growth and development and 
impact a wide assortment of plant physiological processes, ion 
uptake and transportation, proline metabolism, and plant water 
relations by minimizing salt toxicity under stress situations 
(Wakchaure et al., 2018; Kaya et al., 2019). The shoot and root 
length, chlorophyll content, relative water content was found 
to increase whereas malondialdehyde, proline and ion leakage 
were decreased after application of SA in Triticale under saline 
condition (Erkan and Aras Aşci 2021). Furthermore, both TU 
and SA serve as a critical signalling molecule for counteracting 
the negative effects of ROS induced oxidative stress by the 
enhancement of antioxidant enzyme activity such as CAT, APX, 
and POD (Patade et al., 2012; Yadu et al., 2017; Kaya et al., 
2020). In addition, numerous reports demonstrated that salt 
stress caused a significant increase in MDA content on rice and 
maize which was prevented by SA treatments (Erkan & Aras 
Aşci, 2021; Pandey et al., 2021). Several previous studies also 
reported that priming with exogenous SA and TU was found 
to mitigate the salt stress in rice (Oryza sativa), onion (Pisum 
sativum), potato (Solanum tuberosum), faba bean (Vicia faba), 
mung bean (Vigna radiata), and lentil (Lens culinaris) by 
intensifying the activities of antioxidant enzymes and osmotic 
adjustment and by promoting root and shoot formation and 
by stimulating flowering (Mani et al., 2012; Mostofa & Fujita 
2013; Khan et al., 2014; Ahmad et al., 2017; Nooren et al., 2017; 
Nie et al., 2018; El-Kinany, 2020; Yadav et al., 2020; Pandey 
et al., 2021). While the stress alleviating roles of SA and TU 
are largely analysed in several crops, however many aspects of 
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exogenous SA and TU-mediated salt tolerance in wheat remain 
elusive. The present research work was therefore executed to 
analyse the potential roles and possible mechanisms of SA and 
TU-mediated salt stress tolerance in wheat at the seedling 
stage. Different agronomic and biochemical determinants of 
salinity tolerance were assessed to scrutinize the salt stress relief 
mechanism by SA and TU.

MATERIALS AND METHODS

Experimental Design and Treatments

The experiment was carried out using two salt-sensitive high 
yielding wheat genotypes namely BARI Gom-25 and BARI 
Gom-26 under hydroponic conditions following a two factorial 
randomized complete block design with three replications.The 
salinity factor (NaCl) is comprised of one level (150 mM), and 
the SA and TU were exogenously applied at 0.75 mM and 15 mM 
levels respectively. Thus, the treatment combinations were as 
follows: control, C (T0, nutrient solution); salt, S (T1, nutrient 
solution with 150 mM NaCl); S+SA (T2, 150 mM NaCl with 
0.75 mM SA); and S+TU (T3, 150 mM NaCl with15 mM 
TU). The concentrations of SA and TU were selected based on 
previously published literature on different crops (Khan et al., 
2015; Perveen et al. 2016; Waqas et al., 2019).

Initially, seeds were treated for 25 minutes with 5% sodium 
hypochlorite + 2% Tween-20, followed by three washes with 
distilled water. Approximately hundreds of seeds were pre-
soaked for 24 hrs in distilled water (dH2O) and incubated in a 
petri-dish with one sheet of moistened filter paper containing 
8 ml of dH2O water for 3 days in dark condition at 25°C to 
induce germination. Afterward, three days old evenly sprouted 
seeds were placed into the holes of circular plates in a Styrofoam 
sheet (28 cm × 32 cm × 1.25 cm) having nylon net at the 
bottom and fitted in a 12-L plastic tray containing nutrient 
solution. The modified cooper’s nutrient solution was used to 
supply the nutrients for the growth and development of wheat 
seedlings (Cooper, 1988). After 5 days of seedling establishment, 
the salt treatment (T1, 150 mM NaCl) was applied in six steps 
for 42 days employing 25 mM in each time in each tray at an 
interval of 6 days. The first and the last salt stress imposition 
was applied on the day 5th and day 35th, respectively after 
planting. Simultaneously, the exogenous SA (T2, 0.75 mM) 
and TU (T3, 15 mM) treatments were sprayed individually for 
6 times to the leaf surface of salt treated wheat seedlings at 
5-day intervals for the first time on day 20 following planting 
and the last time on day 45. From the 36th day of planting, the 
salinized nutrient solution was altered with nutrient solution 
only, and this setup was maintained until harvesting (day 55). 
The control (T0) plants were grown on the nutrient solutions 
only with dH20 without the addition of NaCl. The nutrient 
solutions were renewed at an interval of 15 days. The pH (6.5) 
and EC of the nutrient solution kept constant throughout the 
experimental period measured by pH meter (Hanna HI2211) 
and EC-meter (Hanna HI 4321) respectively. Different growth 
traits were measured from 10 wheat seedlings in each replication 
after 55 days of crop life span and afterward, the average value 
was taken. Furthermore, leaf samples were collected from the 

55-days old wheat seedlings for the analyses of photosynthetic 
components, leaf water parameters, proline accumulation, 
Na+/K+ ratio, H2O2, and MDA content, and the activity of 
antioxidant enzymes (APX, CAT, and POD).

Determination of Growth Parameters

The number of live leaves was divided by the total number of 
leaves and multiplied by a hundred to get percentages of the 
leaf live (%). Using a centimetre (cm) scale, root length was 
measured from shoot initiation to root tip, and shoot length 
was calculated by subtracting plant length from root length. 
The shoot samples were separated from the root samples 
immediately after harvesting, and the fresh weight of root and 
shoot were meticulously measured using an electric balance. 
Following that, plant samples were individually wrapped in a 
brown envelope (20 cm x 10 cm) and oven-dried for 3 days at 
60°C. After that, an electric balance was used to determine the 
dry weight of the root and shoot.

Determination of Leaf Water-related Parameters

Different leaf water-related traits viz., relative water content 
(RWC), excised leaf water retention (ELWR), and relative water 
loss (RWL) were estimated from the representative fresh leaves 
samples of 55-days old wheat seedlings. For the measurement 
of RWC, fresh weight (FW) of leaves were measured, and 
subsequently submerged in distilled water (dH20) for 4 h and 
reweighed to obtain turgid weight (TW). Then, leaf samples were 
oven-dried at 70°C for 48 h and dry weight (DW) was recorded. 
Finally, RWC was calculated using the formula of Mostofa and 
Fujita (2013). In the case of RWL and ELWR measurement, 
FW of leaves was recorded and oven-dried at 30ºC for 4 hours 
and reweighed (WW4h). Afterwards, RWL and ELWR were 
estimated following the previously described protocols of 
Gavuzzi et al. (1997) and Lonbani and Arzani (2011) respectively.

Determination of Photosynthetic Pigments

Chlorophyll a (Chl a), Chlorophyll b (Chl b), total chlorophyll 
content, and carotenoids were determined on the 55th day of 
planting from the 2nd leaf. An amount of 0.05 g fresh leaf sample 
was taken into a small vial containing 10 ml of 80% acetone and 
was covered by aluminum foil, and preserved in the dark for 
7-10 days. The absorbance was measured at 663 for Chl a, 645 
for Chl b, 663 for total chlorophyll, and 470 nm wavelengths for 
carotenoids by using a spectrophotometer (Shimadzu UV-2550, 
Kyoto, Japan). Afterwards, the concentrations of Chl a, Chl b 
and total chlorophyll content were calculated using a standard 
method developed by Lichtenthaler and Buschmann (2001) 
and expressed as mg g−1FW.

Determination of Na+/K+ Ion Concentration and Proline 
Content

After harvesting, shoot samples were oven-dried at 60°C for 
3 days and the finely powdered plant material was digested 
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with HNO3: HClO4 (2:1v/v) mixture at 220°C for 1.5 - 2 hours 
according to the method of Tahjib-Ul-Arif et al. (2018a). Na+ 

and K+ contents were quantified by flame photometry (Jencon 
PFP 7, JENCONS-PLS, UK) following to Brown and Lilleland 
(1946).

The proline content of the leaves was estimated using 
the guidelines described by Bates et al. (1973), with some 
adjustments as stated by Rasel et al. (2019).

Determination of H2O2 and MDA Content

The level of H2O2 was determined from leaf tissues using 
the procedure of Velikova et al. (2000), with an extinction 
coefficient of 0.28 µM–1 cm–1, and the values expressed as 
mmol g–1 FW.

Lipid peroxidation, defined as MDA content, was determined 
from the seedlings’ leaf tissues using Khan and Panda’s (2008) 
technique, with an extinction co-efficient of 155 mM–1 cm–1 
and values converted in mmol g–1 FW.

Determination of Antioxidant Enzyme Activities

A pre-cooled mortar and pestle was used to homogenize 
approximately 0.5 g of fresh leaf tissues in 3 mL of 50 mM ice-
cold potassium phosphate buffer (pH 8.0). The supernatant was 
separated and utilized to analyse various antioxidant enzymatic 
reactions after centrifugation of the homogenate at 11,500×g 
for 10 minutes at 4 °C.

The activity of CAT (EC: 1.11.1.6) was measured using the Aebi 
(1984) technique, which involved measuring the reduction in 
absorbance at 240 nm with an extinction value of 39.4 M–1 cm–1 
and expressed the results in mmol min–1 g–1 FW.

According to the method of Nakano and Asada (1981), the 
activity of APX (EC: 1.11.1.11) was estimated by monitoring the 
decrease in absorbance at 290 nm as ascorbate was oxidized. The 
specific activity was calculated using a 2.8 mM–1 cm–1 extinction 
coefficient and expressed as µ mol min–1 g–1 FW.

The activity of POX (EC: 1.11.1.7) was determined using the 
approach of Nakano and Asada (1981), with slight modifications. 
The extinction coefficient of H2O2 was 40 M-1cm-1, the activity of 
POX was determined as mmol min–1 g–1 FW from the increase 
in absorbance per minute.

Statistical Analysis

To assess the effects of salt treatments, data were analysed 
following one-way analysis of variance using the Statistical Tool 
for Agricultural Research (STAR) (IRRI, Los Baños, Laguna, 
Philippines).The statistical differences between mean values 
were assessed using the least significant differences (LSD) test 
at a significance level of P<0.05, and different alphabetical 
letters in the same column were used to denote them. Biovinci 
was used to carry out the hierarchical clustering. The STAR was 

used to perform the principal component analysis (PCA), and 
bi-plots were created using the first two PCA components, PC1 
and PC2, which explained the maximum variations throughout 
the datasets.

RESULTS

Effect of NaCl, SA, and TU on Plant Growth Traits

The results related to the effects of NaCl, SA, and TU on 
morphological parameters of wheat genotypes are presented 
in Table 1. Salt stress significantly decreased the growth traits 
in both genotypes, however, the exogenous application of SA 
and TU successfully mitigate the toxic effect of salt stress 
and thereby, considerably improved the growth performance 
in wheat seedlings under salt-stressed conditions (Table 1; 
Figure 1). In the present investigation, the reduction of leaf lives 
(%) was recorded by 13% and 18% in the varieties named BARI 
Gom-25 and BARI Gom-26 respectively when plants exposed to 
salt stress in comparison with control. On the other hand, when 
the exogenous SA or TU applied on stressed wheat seeding, leaf 
live (%) was substantially increased by 36% and 42% in BARI 
Gom-25 and BARI Gom-26 in comparison with salt-treated 
plants only (Table 1). Salt treatment considerably curtailed the 
shoot length and root length in both genotypes. However, the 
supplementation of salt-stressed seedlings with exogenous TU 
and SA enhanced the shoot length by 10% in BARI Gom-25, 
and 13% BARI Gom-26 respectively as compared to the salt-
treated plants in the absence of SA and TU (Table 1). Similarly, 
the foliar application of SA also significantly improved the root 
length in both genotypes and more evidently in BARI Gom-
26 (54%) (Table 1). The results of the study confirmed that 
salt treatment manifested the noteworthy reduction of root 
fresh weight and shoot fresh weight in BARI Gom-25 (26% 
and 17%, respectively) and BARI Gom-26 (49% and 38%, 
respectively) were manifested under salt treatment than the 
level of control plants (Table 1). But the greatly amelioration 
of the harmful effect of salinity more pronouncedly done by 
foliar application of SA in BARI Gom-25 and increased root 
fresh weight and shoot fresh weight by 91%, 46% as compared 
to the seedlings treated with salt-stress without SA application, 
whereas the foliar spray of TU to salt-stressed wheat seedlings 
also caused the moderate enhancement of root and shoot 
fresh weight in BARI Gom-26 (13% and 15% respectively) as 
compared to the NaCl treated plants only (Table 1). Salt stress 
also remarkably decreased the dry biomass of root and shoot 
significantly in BARI Gom-26 (48% and 42% respectively). In 
the contrast, the greater increment of root dry weight and shoot 
dry weight were observed in stressed BARI Gom-26 (38% and 
53% respectively) upon the exogenous application of TU to 
salt-stressed plants in comparison with the seedlings treated 
with stress only (Table 1). Similarly, the foliar application of 
SA on the salt-treated plant also substantially improved the dry 
weight of root and shoot by 77% and 20% respectively in BARI 
Gom-26. However, the exogenous application of SA and TU 
didn’t substantially increase the dry biomass in salt-stressed 
BARI Gom-25 (Table 1).
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Estimation of Leaf Water-related Parameters

To examine the alleviating effect of SA and TU on leaf water 
status in wheat seedlings under salt stress, some leaf water-
related parameters viz., RWC, ELWR, and RWL were measured 
(Table 2). Salt intrusion caused a significant reduction of RWC 
and ELWR by 25% and 33% in BARI Gom-25 and by 21% and 
40% respectively in BARI Gom-26 compared to the salt-free 
plants. In contrast, the plants supplemented with exogenous 
SA demonstrated the highest increment of RWC and ELWR 
in the leaves of BARI Gom-25 (30% and 49%, respectively) 
and BARI Gom-26 (21% and 46%, respectively) compared 
to the salt-stressed plant in the absence of SA (Table 2). The 
imposition of salinity stress also had a remarkable effect on 
RWL in the leaves of BARI Gom-25 and BARI Gom-26 in the 
level of control, whereas when the plants were sprayed with 
exogenous SA, RWL was considerably decreased by 27% BARI 
Gom-25 and by 41% in BARI Gom-26 compared to the salt-
treated plants only. On the other hand, the application of TU 
didn’t exhibit significant improvement of RWC and ELWR 
as well as the reduction of RWL in both salt-stressed wheat 
genotypes (Table 2).

Determination of Photosynthetic Pigment under NaCl, 
SA, and TU Treatments

Wheat seedlings subjected to salt stress caused the severe 
curtailment of chl a, and chl b content in both genotypes and 

the reduction is much pronounced in BARI Gom-26 (16%, chl 
a and 42% chl b) (Figure 2A and B). The alleviation effect of 
TU on salt-stressed plants was considered best in compared 
with SA treatment alone in this case. When the wheat plants 
were treated with NaCl+TU, the chl a and chl b content 
was substantially increased in wheat genotypes viz., BARI 
Gom-26 (33% and 53% respectively) and BARI Gom-25 (15% 
and 36% respectively) as compared to seedlings treated with 

Table 1: The effects of exogenous salicylic acid (SA) and thiourea (TU) on growth parameters of the two wheat cultivars under 
non-salinized and salinized conditions.
Genotypes Treatment LL (%) SL RL SFW RFW SDW RDW

C 4.31±0.04c 44.47±0.19a 32.62±0.39a 3.036±0.09b 1.58±0.05b 0.33±0.01a 0.13±0.01a

BARI Gom 25 S 3.75±0.19d 28.42±0.41d 22.19±0.31c 2.246±0.02c 1.316±0.03c 0.31±0.01a 0.11±0.03a

S+SA 5.58±0.14b 29.89±1.09c 26.40±0.22b 3.28±0.04a 2.52±0.02a 0.33±0.04a 0.14±0.03a

S+TU 5.91±0.06a 31.27±0.26b 26.85±0.2b 2.35±0.18c 1.65±0.03b 0.32±0.02a 0.14±0.01a

C 4.44±0.02c 47.24±0.53a 38.67±0.02a 3.23±0.07a 1.20±0.1a 0.36±0.03a 0.14±0.02a

BARI Gom 26 S 3.63±0.1d 27.19±0.11c 21.41±0.11d 1.65±0.02d 0.74±0.02d 0.21±0.01d 0.07±0.02b

S+SA 5.38±0.34a 30.82±0.36b 32.95±2.16b 2.03±0.03b 0.91±0.07b 0.25±0.02c 0.12±0.03a

S+TU 4.85±0.1b 30.14±0.15b 24.30±0.1c 1.86±0.03c 0.85±0.02c 0.32±0.02b 0.10±0.01ab

Here, LL(%) leaf live (%), SL Shoot length (cm), RL Root length (cm), SFW Shoot fresh weight (g), RFW Root fresh weight (g), SDW Shoot dry weight 
(g), and RDW Root dry weight (g). Data are presented with mean values of three independent replicates ± standard errors (n = 3) indicated by different 
alphabetical letters in the same column at the p< 0.05 level using the least significant difference (LSD) test. Different letters indicate significant 
differences and the same letter indicates no significant differences between the treatments. Control, C (nutrient solution); salt, S (nutrient solution with 
150 mM NaCl); S+SA (150 mM NaCl with 0.75mM SA); and S+TU (150 mM NaCl with 15 mM TU)

Table 2: The effects of exogenous salicylic acid (SA) and thiourea 
(TU) on relative water content (RWC), relative water loss 
(RWL), and excised leaf water retention (ELWR) of the two 
wheat cultivars under non-salinized and salinized conditions.
Genotypes Treatment RWC (%) RWL (%) EWLR (%)

C 83.67±0.62a 0.32±0.02b 0.38±0.04a

BARI Gom 25 S 63.30±1.96c 0.44±0.08a 0.22±0.03b

S+SA 81.93±0.84a 0.32±0.03b 0.35±0.02a

S+TU 71.57±0.25b 0.39±0.06ab 0.27±0.02b

C 65.14±0.65a 0.27±0.03c 0.36±0.03a

BARI Gom 26 S 51.41±0.26c 0.39±0.08a 0.21±0.01b

S+SA 61.96±0.08a 0.23±0.02c 0.31±0.06a

S+TU 61.45±0.05a 0.30±0.03b 0.27±0.02b

Data are presented with mean values of three independent replicates ± 
standard errors (n = 3) indicated by different alphabetical letters in the 
same column at the p< 0.05 level using the least significant difference 
(LSD) test. Different letters indicate significant differences and the 
same letter indicates no significant differences between the treatments. 
Control, C (nutrient solution); salt, S (nutrient solution with 150 mM 
NaCl); S+SA (150 mM NaCl with 0.75 mM SA); and S+TU (150 mM 
NaCl with 15 mM TU)

Figure 1: Effects of SA and TU on the phenotype of wheat seedling’s grown under salt stress conditions. Control, C (nutrient solution); salt, S 
(nutrient solution with 150 mM NaCl); S+SA (150 mM NaCl with 0.75 mM SA); and S+TU (150 mM NaCl with 15 mM TU).
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salt stress only (Figure 2A and B). On the other hand, chl b 
content substantially improved only by 30% in BARI Gom-25 
and 36% in BARI Gom-26 due to the foliar application of SA 
particularly. Carotenoid concentrations reduced in both BARI 
Gom-25 (37%) and BARI Gom-26 (49%) under salt stress 
condition compared to control-treated plants. However, S+SA’ 
and ‘S+TU treatments displayed the greater increment of 
carotenoid content by 44% and 49% respectively in BARI Gom-
26. Moreover, only ‘S+TU’ treatment promoted the carotenoid 
content BARI Gom-25 by 55% in as compared with the plants 
treated with salt only (Figure 2D).

Determination of Na+/K+ under NaCl, SA, and TU 
Treatments

The Na+/K+ in the leaves of both genotypes enhanced after 
imposition of salt treatment with a 15% increment in BARI 
Gom-26 and 2% increment in BARI Gom-25 compared to 
control condition plants (Figure 3A). However, when the salt-
stressed plants were supplemented with SA and TU, Na+/K+ was 
markedly lowered in BARI Gom-25 by 33% and 17% respectively 
due to the mitigation effects of SA and TU in compared with 

Figure 2: The effects of exogenous salicylic acid (SA) and thiourea 
(TU) on (a) Carotenoid, (b) Chl a, (c) Chl b and (d) Total chlorophyll 
content of the two wheat genotypes under non-salinized and salinized 
conditions. Data are presented with mean values of three independent 
replicates indicated by different alphabetical letters in the same column 
at the p< 0.05 level using the least significant difference (LSD) test. 
Different letters indicate significant differences and the same letter 
indicates no significant differences between the treatments. Vertical 
bars indicate standard errors. Control, C (nutrient solution); salt, S 
(nutrient solution with 150 mM NaCl); S+SA (150 mM NaCl with 0.75 
mM SA); and S+TU (150 mM NaCl with 15 mM TU).
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Figure 3: The effects of exogenous salicylic acid (SA) and thiourea 
(TU) on (a) Na+/K+, (b) Proline content, (c) Hydrogen peroxide (H2O2), 
(d) Malondialdehyde (MDA) content, (e) Catalase (CAT) activity, 
(f) Ascorbate peroxidase (APX) activity and, (g) Peroxidase (POX) 
activity of the two wheat genotypes under non-salinized and salinized 
conditions. FW denotes fresh weight. Data are presented with 
mean values of three independent replicates indicated by different 
alphabetical letters in the same column at the p< 0.05 level using 
the least significant difference (LSD) test. Different letters indicate 
significant differences and the same letter indicates no significant 
differences between the treatments. Vertical bars indicate standard 
errors. Control, C (nutrient solution); salt, S (nutrient solution with 150 
mM NaCl); S+SA (150 mM NaCl with 0.75 mM SA); and S+TU (150 
mM NaCl with 15 mM TU).
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that of the salt-stressed plants only. Besides, the exogenous SA 
or TU application did not cause significant changes of Na+/K+ 
in salt-stressed BARI Gom-26 as compared to that of salt-treated 
plants (Figure 3A).

Determination of Proline Content under NaCl, SA, and 
TU Treatments

Salt stress caused a marked change in proline accumulation 
in the leaves of wheat seedlings (Figure 3B). The application 
of salt treatment resulted in an increase of proline content 
resulted in BARI Gom-25 and BARI Gom-26 by 16% and 
19% respectively due to salt application as compared to 
control (Figure 3B). Moreover, exogenous application of both 
SA and TU significantly increased the proline level in salt-
stressed wheat genotypes namely BARI Gom-25 (22% and 3%, 
respectively) and BARI Gom-26 (32% and 14%, respectively) 
in comparison with the seedlings treated with salt stress only 
(Figure 3B).

Hydrogen Peroxide (H2O2) and Malondialdehyde 
(MDA) Content, under NaCl, SA, and TU Treatments

To investigate the alleviating effect of SA and TU on salt-
induced oxidative damage in the wheat genotypes leaves H2O2 
and MDA contents were measured under salt stress. The results 
of the study demonstrated that the application of 150 mM 
salt stress increased the production of H2O2 by 89% as well as 
a substantial rise of MDA content by 96% in BARI Gom-26 
in comparison with the salt-treated plant in the absence of 
SA or TU (Figure 3C and D). In contrast, spraying of SA and 
TU on salt-stressed plants defended the cell membrane from 
salt commenced oxidative injury which is indicated by lower 
H2O2 (29% and 20%, respectively) and MDA content (29% and 
59%, respectively) markedly in BARI Gom-26 as compared 
with the seedlings treated with salt-stressed only (Figure 3C 
and D). However, the generation of H2O2 and MDA were 
not significantly varied in the leaves of BARI Gom-25 under 
different treatments in this study (Figure 3C and D).

Different Antioxidant Enzyme Activities under NaCl, 
SA, and TU Treatments

The enzymatic activities of antioxidants viz., CAT, APX, POX, 
were determined in salt exposed wheat seedlings which are as act 
likes vital players and give protection to plant from membrane 
damage mediated by H2O2. Salt stress increased the activities 
of antioxidant enzymes in wheat genotypes; however, more 
enhancements were found when the salt-treated plants were 
supplemented with SA or TU (Figure 3). In the present study, 
CAT activities were expressed with 46% increment in BARI 
Gom-25 and 94% increment in BARI Gom-26 under salt stress 
conditions whereas APX activity displayed moderate increment 
in both BARI Gom-25 (28%) and BARI Gom-26 (26%) with 
regard to control plant (Figure 3E and F). However, the further 
higher increment of CAT with the application of ‘S+TU’ 
combinations was remarkably noted in BARI Gom-25 by 35% 
and BARI Gom-26 by 65%. Then again, to salt-stressed wheat 

plants with individual foliar application of SA revealed greater 
enhancement of the APX activity in both genotypes such as 
BARI Gom-25 (38%) and BARI Gom-26 (90%) in compared with 
the salt-treated plants only (Figure 3E and F). The consequences 
of the study also exposed that increased activities of POX by 
7% in BARI Gom-25 and 50% BARI Gom-26 under salt stress 
as compared to the control plants (Figure 3G). Moreover, 
salt-stressed seedlings displayed further enhancement of POX 
activity in BARI Gom-25 (44% and 21%, respectively) and BARI 
Gom-26 (16% and 28% respectively) when supplemented with 
‘S+SA’ and ‘S+TU’ treatments in comparison with seedlings 
treated with salt-stress only (Figure 3G).

Treatment–Variable Interaction Measurement Using 
Hierarchical Clustering and Principal Component 
Analysis (PCA)

The heat map and hierarchical cluster analysis based on the 
mean value of different morpho-physiological, and biochemical 
traits of two wheat genotypes under both non-salinized and 
salinized conditions and all the traits were grouped into three 
main clusters (Cluster-I, -II and -III) (Figure 4). The cluster 
distribution design showed that the variables viz., H2O2, CAT, 
LL (%), APX, PRO, and POX were grouped in Cluster- I. 
Among these traits, H2O2 was significantly increased in salt 
stress conditions, however, declined upon the foliar spray of SA 
or TU on salt-stressed wheat plants. On the other hand, other 
traits namely PRO, and POD showed unchanged activities 

Figure 4: Hierarchical clustering to understand treatment-variable 
relationships of two wheat genotypes, BARI Gom-25 and BARI Gom-26 
under different treatment combinations including Control, C (nutrient 
solution); salt, S (nutrient solution with 150 mM NaCl); S+SA (150 mM 
NaCl with 0.75 mM SA); and S+TU (150 mM NaCl with 15 mM TU). 
Three distinct clusters (I, -II and -III) were obtained at the variable 
level. The colour scale shows the intensity of the normalized mean 
values of different traits. The variables included LL(%) leaf live (%), 
SL Shoot length, RL Root length, SFW Shoot fresh weight, RFW Root 
fresh weight, SDW Shoot dry weight, RDW Root dry weight, RWC 
Relative water content, RWL Relative water loss, ELWR excised leaf 
water retention, CAR Carotenoid, Chl a Chlorophyll a, Chl b Chlorophyll 
b, TC Total chlorophyll content, Na+/K+ Na+/K+ratio, PRO Proline 
content, H2O2 Hydrogen peroxide, MDA Malondialdehyde content, 
CAT Catalase activity, APX Ascorbate peroxidase activity, and POX 
Peroxidase activity.
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under salinity stress in compared with control condition plants 
whereas the exogenous application of SA and TU caused the 
clear increasing trend of PRO, and POX activities in salt-treated 
plants when compared with ‘S’ alone (Figure 4). Moreover, CAT, 
APX, and LL (%) reflected no change in wheat plants upon 
the addition of S, S+SA, and S+TU treatments in compared 
with non-stressed treatment. The traits of Cluster-II (TC, SL, 
RL, and RWC) demonstrated differential reaction due to the 
application of NaCl and exogenous SA or TU on wheat plants 
with regards to the salt-free control plants (Figure 4). The TC 
content was unchanged and SL, RL, and RWC were decreased 
when salt stress was imposed, while the supplementation of salt-
treated plants with SA and TU displayed the increased level of 
these parameters except TC content (Figure 4). The heat map 
also exhibited different response in Cluster-III variable’s where 
some traits namely RWL, and Na+/K+ were enhanced and other 
traits viz., RFW, MDA, SFW, RWL, EWLR, SDW, RDW, Na+/
K+, Chl a, Chl b, and CAR were declined in wheat plants due to 
salt-induced injury when compared with control-treated plants 
only. In contrast, these traits showed positive results when the 
salt-stressed plants were supplemented by SA or TU such as a 
decreasing trend of RWL and Na+/K+ and an increasing trend of 
RFW, MDA, SFW, RWL, EWLR, SDW, RDW, Na+/K+, Chl (a, 
b) as well as CAR in comparison with the plant under salt-stress 
with no use of SA or TU, indicating that exogenous SA and TU 

might play ameliorating role to mitigate the adverse effect of 
salt stress and thereby, enhanced the growth performance in 
wheat plants under salt stress situations (Figure 4).

To reveal the association of the different treatments (S, S+SA, 
and S+TU) with morpho-physiological and biochemical 
traits, the PCA was also performed (Figure 5). In the present 
investigation, the PC1 from the PCA analysis explained about 
58.75% of the total variation present in these genotypes, 
whereas PC2 describes 32.28% and the two components (PC1 
and PC2) collectively explained 91.03% of data variability. 
The results of the PCA displayed that the parameters Na+/K+, 
RWL, MDA, and H2O2 were associated salt stress treatment 
demonstrated that these traits increased under salt stress 
(Figure 5). Besides, another treatment’s ‘S+SA’ and ‘S+SA’ 
were clustered in two different groups of morpho-physiological 
and biochemical characteristics. The variables PRO, POX, 
CAT, and APX were closely associated with ‘S + TU’, whereas 
LL (%), RFW, Chl a, TC and RDW were associated with ‘S 
+ SA’. Another group of traits viz., SL, SDW, SFW, CAR, Chl 
b, RL, RWC, and EWLR showed significant interaction with 
‘C’ treatment (Figure 5).

DISCUSSION

Salinity stress is considered as one of the major limiting factors 
for agricultural crop production, which becomes a significant 
threat to ensure food security for the increasing population of 
the world (Alhasnawi et al., 2015; Gupta & Huang, 2015). Under 
high salt stress conditions, different morpho-physiological 
and biochemical changes occurred in plants resulting in the 
reduction of growth potential as well as productivity (Bacha 
et al., 2017; Jahan et al., 2020; Rahman et al., 2020). In 
recent times, exogenous osmoprotectants such as SA and TU 
demonstrated the capacity to enhance the plants’ growth and 
development under salinity stress by mitigating the salt-induced 
damage through osmotic adjustment, scavenging ROS and 
stabilization of membrane integrity, etc. (Ali & Ashraf, 2011; 
Hasanuzzaman et al., 2013; Pandey et al., 2021). Thus, the 
present study revealed the alleviating actions of exogenous 
application of SA and TU against the negative impacts of 
saline stress in two wheat genotypes by increasing the growth 
traits, leaf water status and photosynthetic components, and 
antioxidant defence systems.

Under stressful conditions, the cell metabolism of plants is 
inhibited which mandate the dysfunction of cell division as 
well as cell differentiation (Veylder et al., 2007). Salt stress 
primarily incites ionic toxicity causing osmotic and oxidative 
stresses, later on, all of which collectively exert a negative effect 
on plant growth performance and development (Muchate 
et al., 2016; Rouphael et al., 2018).The results of our study 
showed that the exposure of wheat seedlings to salinity stress 
severely diminished the growth parameters viz., lower live leaf 
(%), reduced root and shoot length, and reduced root and 
shoot biomass in both wheat genotypes (Table 1; Figure 1). 
These outcomes have similarity to the findings of Sanaullah 
et al. (2016) and Chunthaburee et al. (2016) who observed a 
reduced shoot and root growth, and less dry mass production 

Figure 5: Principle component analysis (PCA) to understand the 
treatment-variable relationships of two wheat genotypes, BARI Gom-25 
and BARI Gom-26, under different treatment combinations including 
Control, C (nutrient solution); salt, S (nutrient solution with 150 mM 
NaCl); S+SA (150 mM NaCl with 0.75 mM SA); and S+TU (150 mM 
NaCl with 15 mM TU). The lines originating from central point of bi-
plots indicate positive or negative correlations of different variables; 
where their closeness indicates correlation strength with particular 
treatment. The variables included LL(%) leaf live (%), SL Shoot length, 
RL Root length, SFW Shoot fresh weight, RFW Root fresh weight, 
SDW Shoot dry weight, RDW Root dry weight, RWC Relative water 
content, RWL Relative water loss, ELWR excised leaf water retention, 
CAR Carotenoid, Chl a Chlorophyll a, Chl b Chlorophyll b, TC Total 
chlorophyll content, Na+/K+ Na+/K+ ratio, PRO Proline content, H2O2 
Hydrogen peroxide, MDA Malondialdehyde content, CAT Catalase 
activity, APX Ascorbate peroxidase activity, and POX Peroxidase 
activity.
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at the seedling stage of maize (Zea mays L.) and rice (Oryza 
sativa L.) plants under saline condition, respectively. The 
higher level of salt concentration dispenses a toxic effect on 
shoots resulting lower live leaves (%) because of the exclusion 
of symplastic xylem accumulation of calcium by salt into the 
root of plants (Läuchli & Grattan 2007).

As the number of live leaves is reduced, the rate of photosynthesis 
ultimately decreases hampering the supply of carbohydrates 
and growth hormones to meristematic tissues and ultimately, 
decelerates plant biomass production (Hussain et al., 2018). 
However, foliar treatment of salt-stressed BARI Gom-25 and 
BARI Gom-26 with SA or TU demonstrated a higher efficiency 
in the reduction of the adverse impacts of salt stress on plant 
growth and revealed a protective role of SA and TU in wheat 
seedlings against salinity stress by exhibiting higher percentage 
of live leaf, higher weight of root and shoot in both fresh and 
dry conditions, and improvement in shoot and root length as 
compared to the plants treated with salt stress only (Table 1) 
(Nie et al., 2018). The similar findings were also reported 
in cucumber (Cucumis sativus) (Shim et al., 2009), cotton 
(Gossypium hirsutum) (Shaheen et al., 2012), and teak (Tectona 
grandis) (Li et al., 2014). SA-induced growth increase could be 
related to the enhanced activities of antioxidant enzymes in 
salt stress conditions allowing plant with a greater proficiency 
of growth and development by encountering the salt-induced 
oxidative stress (Horvath et al., 2007; Harfouche et al., 2008). 
Besides, the growth-flourishing effects of SA might be causes 
the positive changes of plant hormonal status leading to the 
improvement of photosynthesis, transpiration, and stomatal 
conductance in plants under stress situations (Stevens et al., 
2006; Abreu & Munne´-Bosch, 2009). On the other hand, 
the exogenous application of TU might provide the source of 
C and N to the leaves of salt-stressed wheat seedlings, which 
was positively correlated to the enhanced production of plant 
biomass (Anjum et al., 2011). Moreover, TU increased the 
uptake of essential nutrients and accelerates the metabolic 
processes under stress conditions, which lead the higher growth 
and dry matter accumulation in stressed plants (Burman et al., 
2004). The maintenance of optimal water status in plants is 
considered as a key physiological process for keeping normal 
growth and development under salt stress (Ahanger et al., 2017). 
Different leaf water-related parameters such as RWC, RWL, 
and ELWR are commonly used to measure the water status 
of plant as well as osmotic adjustment in stress conditions 
(Baisakhet al., 2012). Salinity is often lowers the water potential 
in the soil environment which is found to decline the RWC in 
root and shoot that ultimately causing the closure of stomata 
and limits the assimilation of CO2 mounting, an adverse 
impact on photosynthetic components in plants (González & 
González-Vilar 2006; Pattangul & Thitisaksakul 2008). In the 
present study, RWC, and ELWR were severely diminished when 
the wheat seedlings were confronted with salt stress (Table 2). 
This is because the salt-induced injury caused a reduction of 
water uptake in the leaves by disrupting the cell wall structure 
(Khaled et al., 2018; Parvin et al., 2019). Moreover, seedlings 
exposed to salt stress also showed a severe increment of RWL 
in the leaves in comparison with untreated plants (Table 2), as 
stress condition forced to more leaf electrolyte leakage in plants 

which severely reduced the water content in leaves (Parida & 
Das 2005; Hniličková et al., 2019).

In contrast, the exogenous application of SA dramatically 
up-regulated leaf RWC and ELWR in wheat leaves, as well as 
decreased the RWL in salt-stressed wheat seedlings (Table 2), 
reflecting that SA considerably elevated the membrane 
damages caused in salinity thereby minimizing water loss 
through facilitating the adjustment of optimal water status 
inside the plant tissues by reducing the transpiration and/
or up-taking more water from the soil (Tahjib-Ul-Arif et al., 
2018b). This result was in agreement with Shi et al. (2006) 
and Khalifa et al. (2016) who observed lower electrolyte 
leakage in salt stress affected lettuce plants when treated 
with exogenous SA treatments. Moreover, the exogenous SA 
lowered the membrane damages in salinity stressed plants, 
which might be related to the up-regulation of antioxidant 
responses that safeguard the plant from oxidative damage 
(Khan et al., 2015).

The photosynthetic attributes such as chlorophyll a and b are 
the vital factors fixing photosynthetic efficiency and leading the 
mechanism of the photosynthetic process in plants (Shao et al., 
2014). Several reports suggested that photosynthetic pigments 
are highly affected by salt stress which inhibits photosynthesis 
by worsening the leaf chlorophyll content directly or by feigning 
photosynthetic apparatus (Sharma et al., 2020). Furthermore, 
when the high levels of salt accumulate in leaves, the activity of 
chlorophyll degrading enzyme namely chlorophyllase accelerates 
the degradation or inhibition of chlorophyll synthesis leading 
to decrease in chlorophyll content (Ashraf & Harris 2013; 
Kordrostami et al., 2017).

Our investigation reported that the photosynthetic pigments 
viz.,Chl a, Chl b, total chlorophyll, and carotenoid contents 
were declined in greater proportions in both salt-stressed 
wheat genotypes (Figure 2), whereas when stressed plants 
were supplemented with SA or TU alone, the photosynthetic 
components were significantly augmented in the seedlings 
of both genotypes (Figure 2) which indicated that SA or TU 
might assist photosynthesis process by protecting chloroplast 
pigments from the salinity induced toxicity probably through 
the oxidative protection of chloroplasts (Foyer & Shigeoka 2011; 
Amin et al., 2016). Furthermore, SA and TU might flourish the 
enzyme’s activity by regulating chlorophyll biosynthesis or might 
protect the photosynthetic system from impairment, thereby 
decreasing chlorophyll degradation under salt stress situations 
(Ma et al., 2017). The similar findings to our study were also 
reported by Amin et al. (2014) and Abdelaal et al. (2020) who 
were reported an up-regulation of chlorophyll content in the 
salt-stressed leaves of barley (Hordeum vulgare) and faba bean 
(Vicia faba) upon the addition of exogenous SA and TU.

The prevailing of excess salinity in the soil leads to saline toxicity 
and nutrient deficiencies in plants through the excessive uptake 
of individual ions like Na+ and inhibiting the absorption of 
essential plant nutrients, respectively (Assaha et al., 2017; 
Sa et al., 2019). Salt stress also accelerated the expression 
OsNHX1, which is associated with the transfer of Na+ for 
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vascular compartmentalization (Mekawy et al., 2015). Plants 
can reduce the excessive accumulation of Na+ in the shoots in 
two different ways, such as preventing the load or maximization 
of Na+ retrieval from the xylem by minimizing the Na+ entry 
from the root symplast (Davenport et al., 2007), or exporting 
the Na+ from the leaf into the phloem (Berthomieu et al., 2003). 
Ejection of superfluous Na+ from the shoots is considered as 
one of the most vital characteristics of salt tolerance ability in 
plants (Wu, 2018), hence it is crucial to measure Na+ in plants 
under saline conditions to understand the mechanisms of 
salinity tolerance in plants (Waqas et al., 2019). In our study, 
the imposition of salinity stress significantly increased Na+ 

concentration in the leaves of wheat genotypes reflecting a 
higher Na+/K+ ratio (Figure 3A). However, salt-stressed wheat 
seedlings treated with ‘S+SA’ or ‘S+TU’ demonstrated lower 
Na+ accumulation in the leaves which destined a lowered 
Na+/K+ ratio (Figure 3A). This result was in agreement with 
Sanaullah et al. (2016) who observed a lower leaf Na+/K+ ratio 
in the salt-stressed maize (Zea mays L.) leaves with the foliar 
application of TU. The application of SA and/or TU on the 
leaves of stressed plant could inhibit the uptake of excessive 
salt by restricting passive Na+ influx under salt stress conditions 
and eventually improve the transportation of essential ions 
from roots to shoots to maintain a balance Na+/K+ ratio (Liu 
et al.,2014). The exogenous SA and TU could modulate the 
Na+/K+ ratio to improve the salt-tolerance mechanisms by 
facilitating the activity of H+-ATPase in the plasma membrane, 
which plays a major role in the increased absorption of K+, Ca2+, 
and Mg2+ under NaCl induced toxicity (Nazar et al., 2011; Kaya 
et al., 2015; Kaya et al., 2016).

Proline supplementation plays a crucial role to prevent salinity 
stress-mediated oxidative damage and lowered cell death, 
as proline can scavenges free radicals and minimizes the 
production of ROS (Banu et al., 2009; Kibria et al., 2017). 
Moreover, proline might inhibit stress-induced harmful effects 
on cellular organelles by stabilizing membrane structures, 
enzyme functioning, and maintaining water status (Ahanger 
et al., 2018). In the present investigation, proline content was 
significantly affected by the application of salt stress, SA, and 
TU in wheat genotypes (Figure 3B). When plants faced salt 
stress, the storage of intracellular proline content is enhanced in 
both genotypes (Figure 3B). Increased accumulation of proline 
in plants under salinity stress has been also reported by several 
workers in wheat (Triticum aestivum L), mustard (Brassica 
juncea L.), and canola (Brassica napus L.) which is similar to 
our investigation (Ashrafijou et al., 2010; Ahmad et al., 2011; 
Ahanger et al., 2017). Moreover, accumulation of proline was 
demonstrated in the leaves of salt-treated wheat seedlings 
due to the exogenous application of SA or, TU in comparison 
with the plants treated with salt stress only (Figure 3B). Khan 
et al. (2014) have also observed the improvement of salinity 
tolerance in mung bean (Vigna radiata L.) due to increased 
accumulation proline upon the exogenous application of SA. 
Kaya et al. (2016) also reported the higher accumulation of 
proline content in salt-stressed maize when TU sprayed on foliar 
leaves. This might be due to the involvement of SA or TU in 
up-regulation of pro-biosynthesis enzymes such as γ-glut amyl 
kinase and pyrroline-5-carboxylate reductase under salt stress 

along with the improved salinity tolerance ability in wheat plants 
(Misra & Saxena 2009; Khan et al., 2013). The increment of the 
proline content with the application of SA or TU under saline 
conditions contributes to maintain osmotic balance, membrane 
integrity, enzyme and protein stability, and ROS detoxification, 
which may subsequently facilitate the conferring tolerance of 
stressed plants (Blum, 2017).

Accumulation of toxic ion (Na+) in plant cells resulted in 
oxidative damage as reflected by higher ROS generation 
in parallel with higher lipid peroxidation (Soundararajan 
et al., 2018). MDA is considered as a determining factor for 
measuring the lipid peroxidation level, which is a decomposition 
product of the thiobarbituric acid (TBA)-induced peroxidised 
polyunsaturated fatty acid content of the membrane lipid 
(Alamet al., 2013; Shen et al., 2014). Salt stress caused an 
increment of H2O2 content in the leaves of plants, thus 
disrupting its permeability through the peroxidation of the lipid 
membrane (Hossain et al., 2015). The excessive procurement 
of H2O2 exerts negative impacts on membrane functioning 
by commencing the peroxidation of lipids. Our investigation 
showed that the seedlings treated with salt without spraying 
of SA and TU accumulated higher MDA and H2O2 levels in 
leaves resulted in higher oxidative damage as compared to 
control (Figure 3C and D). Kadioglu et al. (2011) and Kaya 
et al. (2013) also demonstrated that the prolonged exposure 
of salt stress to wheat plants resulted in a significant boost of 
MDA and H2O2 content. By contrast, lower level of MDA and 
H2O2 accumulation in salt-stressed wheat leaves were observed 
in the present study due to the exogenous application of SA 
and TU (Figure 3C and D). These findings were supported by 
the other findings recorded in sweet basil (Ocimum basilicum) 
(Delavari et al., 2010), savory (Satureja hortensis) (Yazdanpanah 
et al., 2011), and in barley (Hordeum vulgare) (Alamri et al., 
2018). This is because the exogenous application of SA and 
TU decreased lipid peroxidation as well as H2O2 production by 
the induction of antioxidant responses in plants for quenching 
ROS in stress situations, which protects the plant from oxidative 
stress-induced membrane damage (Alam et al., 2013). Moreover, 
SA supplementation was also increased GSH and AsA, and 
enhanced GSH/GSSG ratio, which causes a marked decline 
in salt-induced oxidative burst by the reduction of MDA and 
H2O2 content under salt stress (Hasanuzzaman et al., 2014). The 
procurement of venturesome elements like ROS in plant cells is 
the most general consequence of saline condition which causes 
different oxidative damage such as infringement to proteins, 
lipids, and nucleic acids thereby inciting rapid plant cell death 
(Sharma et al., 2012; Xie et al., 2019). To safeguard form 
oxidative stress, the plant adopts a defensive mechanism with 
the activation of antioxidant defence systems including CAT, 
APX, and POX, which are played a key role in the scavenging of 
ROS, and to counteract against lipid peroxidation (Ahmad et al., 
2010; Dugasa et al., 2019). One of the most effective antioxidant 
enzymes is CAT, which detoxifies H2O2 by converting it into 
H2O and O2 in the in different cellular organelles of the cells 
whereas APX plays the central role in the H2O2 detoxifying 
system in plant cells by catalysing the conversion of the H2O2 
into H2O and O2 through using AsA as a specific electron donor 
(Caverzan et al., 2012; Sofo et al., 2015).
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In the current study, a significant increase in CAT, APX, and 
POX activities was observed in the leaf tissues of the wheat 
genotypes under salt stress conditions (Figure 3A, B and C). 
The results observed in this study are in accordance with the 
results reported in different plant species such as mustard 
(Brassica spp.), wheat (Triticum aestivum), and pepper (Piper 
nigrum) (Nazar et al., 2011; Ahanger & Agarwal, 2017; Shams 
et al., 2019). Moreover, a higher activity of CAT, APX and 
POX was observed in salt-stressed wheat leaves because of 
applying exogenous SA and TU (Figure 3A, B and C), which 
clearly indicates that exogenous SA and TU might have an 
ameliorating capacity to detoxify excessively generated H2O2 
and subsequently reduced the MDA accumulation. Hence, the 
exogenous SA and TU diminished the oxidative damage in the 
wheat genotypes under salt stress through up-regulating the 
antioxidant enzymes activities. These findings were consistent 
with other researchers who observed an enhanced antioxidant 
response with the application of SA or TU in strawberry 
(Fragaria ananassa L.), cucumber (Cucumis sativus L.), and rice 
(Oryza sativa L.) (Faghih et al., 2017; Kim et al., 2017; Zahra 
et al., 2018). Additionally, exogenously applied SA was found 
to modulate the transcription of antioxidant genes including, 
GPX1, GPX2, DHAR, GR, GST1, GST2, MDHAR, and GS, and 
enhanced the activities of ascorbate-glutathione (AsA-GSH) 
pathway enzymes under salt stress situations for improving salt 
tolerance in wheat seedlings (Li et al., 2013).

CONCLUSIONS

The present data clearly demonstrated that salt stress lead to 
growth inhibition, reduced photosynthetic capacity, leaf water 
status, and increased Na+/K+ ratio, and evocation of oxidative 
damage due to the generation of excessive H2O2 and MDA in 
both wheat genotypes. Salt-stressed wheat plants supplemented 
with exogenous SA or TU exhibited better growth performance 
through the enhancement of photosynthetic attributes and 
intracellular proline content. SA or TU also played an important 
role in minimizing membrane damage as indicated by lower level 
of MDA and H2O2 accumulation in the leaves of wheat seedlings 
exposed to salt stress. More evidently, antioxidant enzyme 
activities were considerably up-regulated in salinity exposed 
wheat plants upon the addition of SA or TU; representing the 
protective effects of SA or TU against the salt-induced oxidative 
stress. However, in-depth studies with different concentration 
of SA and TU under direct field condition will decipher the 
molecular mechanisms of SA- and TU-induced salt stress 
tolerance in wheat.
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