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INTRODUCTION

Environmental pollution events generally have a negative 
impact, both structurally and functionally. For example, 
plant leaf necrosis is an example of structural damage from 
the impact of metal contamination on the soil. Next is the 
death of plants to be the examples of functional damage. 
In any event of pollution there is a need for environmental 
restoration, so that it can be reused according to its function, or 
it can be used for other purposes. For the purpose of restoring 
a polluted environment, there are physical, chemical and 
biological processes. Physical processes include soil washing. 
Concurently, an example of a chemical process is the addition 
of an organic substance amendment to the soil. Meanwhile, 
biological processes can be carried out microbiologically and 
using plants. In practice, these processes are difficult to work 
alone, meaning that more than one process is required to 
restore environmental quality. The spectrum of these processes 
is quite broad and developing, and therefore this paper focuses 
on biological processes. These biological processes include the 
role of microbes, known as bioremediation, and plant processes, 
known as phytoremediation. The bioremediation process 
can work without the involvement of plants, for example 
adding microbial cultures to oil-polluted water. Meanwhile, 
phytoremediation includes the role of root microbes and 
the plants themselves. Thus, phytoremediation includes the 

presence of bioremediation, but not the other way around. 
The result of the phytoremediation process is the result of 
collaborative work between root microbes, which is commonly 
known as rhizodegradation, and various plant functions to 
localize, absorb and degrade pollutants. 

The roles and functions of phytoremediation have proven to be 
a lot of recovery of multi-media environmental pollution: air, 
water, soil. In addition, plants absorb environmental carbon 
dioxide, and provide oxygen to the environment, as well as 
additional aesthetic benefits [1-3]. However, phytoremediation 
has limitations, because the process is slow [4] according to the 
plant growth process. It is well known that the growth rates of 
plants differ from one another. A single plant may also only 
handle certain pollutants [5], but in the field, contaminated 
environments contain many pollutants. This is what underlies 
the need and importance of studying phytoremediation using 
a mixture of plants.

The use of mixed plants is expected to eliminate various 
pollutants in a polluted area, both land and water. This has also 
been suggested in efforts to green the environment [6], which 
of course includes phytoremediation applications. Therefore, 
this theoretical study describes the essential conditions of 
plants and the environment, which aims to achieve an optimal 
phytoremediation process.
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Conditioning of plants and environment

Based on the observations of Chekol et al. [7] demonstrated 
that pollutant-plant-soil interactions are highly specific, and this 
specificity determines the effectiveness of the phytoremediation 
scheme. The effectiveness of the phytoremediation was 
further confirmed by similar studies, which also involved a 
microbiological remediation process [8-10]. The specificity 
requires ensuring that no plant will die during the remediation 
process. Mixed plants must be able to absorb specific pollutants, 
for example cadmium which is related to plant species, but 
zinc is associated with soil [11]. Similar results were obtained 
in remediation of soil contaminated with some heavy metals 
and oils [12-14]. In addition, each plant must be able to work 
synergistically, including with root bacteria [2,3]. This fact 
directs attention to conducting a specification test of pollutants 
that can be removed by mixed plants.

On the other hand, it is necessary to ensure that each pollutant 
can be eliminated. In dealing with this problem, range finding 
tests [15,16] are needed for various plants in growing media that 
contain various pollutants according to the actual conditions 
of the polluted environment. This range finding test requires 
a time scale, which can show the presence of plant growth, as 
an indicator that plants are alive, and are able to undergo the 
phytoremediation process. Plant growth is important during 
the phytoremediation process, therefore the factors that 
support plant growth must be well preserved. In addition, it 
is important to pay attention to the choice of plant species 
for phytoremediation applications, especially for post-harvest 
handling [17-19].

The use of plants to eliminate pollutants from the environment 
also makes them pollutant collectors. This becomes an 
important concern after harvest, regarding further handling, 
whether for consumption of living things or for conversion of 
other products, such as compost, and others. As a safety factor 
for consumers and to shorten procedures, it is advisable to use 
non-consumptive plant species that are locally available, as well 
as to demonstrate the certainty of adaptive plants on site. When 
using consumptive plant types, which are quite widely applied 
in the remediation process [20-22], it is necessary to carry out a 
phytotoxicity test to determine the translocation of pollutants 
in plants, as well as the phytoaccumulation of pollutants. 

Several studies have shown that the use of amendments 
increases the efficiency of phytoremediation. Especially for 
contaminated soil, inorganic amendments such as lime, and 
organic such as compost or chelates EDTA and EDGA have 
the effect of increasing soil remediation from heavy metal 
contamination [23,24] and oil [25,26]. The use of amendments 
also has a positive effect, namely being able to improve soil 
physical properties, such as increasing porosity, moisture 
content and soil aggregation. The physical condition of the soil 
supports the plant process and the rhizodegradation process 
by microbes [26]. Although the amendments can improve 
remediation efficiency, the use of EDTA metal chelates can 
improve metal leaching, therefore good management is needed 
in phytoremediation operations [27,28].

Environmental conditions that support the growth of plants 
and microbes are water content, especially for polluted soil. 
The water content in the soil determines the remediation 
performance [29,30] so that it is necessary to adjust it. There 
are two status of soil conditions, namely water-saturated 
and unsaturated water. For water-saturated soil conditions, 
water can be poured into the soil, which results in anaerobic 
conditions. Soils with anaerobic status are suitable for 
increasing the effectiveness and efficiency of endosulfan 
phytoremediation [31-33]. However anaerobic soil conditions 
may not apply to all pollutants. In such case, it is necessary to 
have aerobic conditioning. 

In general, the aerobic soil conditions are conducive to the 
microbiological degradation of organic pollutants. The way for 
aerobic conditioning is to regulate the soil water content, which 
is kept unsaturated water. In addition, aerobic conditions are 
carried out by turning the ground or through an aeration system. 
Therefore, to phytoremediate various pollutants in an area it is 
necessary to schedule soil saturation and soil aeration, which 
are expected to reduce various types of pollutants. 

Single in Comparison with Mixed Plants

Ramamurthy & Memarian [34] reported Cd, Pb and engine 
oil could be treated by single plant, i.e. the Indian mustard: 
Brassica juncea. However, it was enhanced by addition of non-
ionic surfactants Triton X-100 and Tween 80 on the removal of 
mixed contaminants.

Interesting research results come from Li et al. [35], who 
conducted an experiment using the Vetiveria zizanioides plant. 
It is found that the submerged plant zone is the best condition 
for restoring water quality, compared to the non-vegetation 
zone. Particularly, it is the ability of plants to break down organic 
matter in the form of chemical oxygen demand (COD), and 
to eliminate ammonia and total phosphorus. Next, the water 
temperature shows that it is lower than the water without plants. 
Finally, the dissolved oxygen (DO) water from the vegetation 
zone shows more stability compared to the water from the zone 
without vegetation. These results need further attention for 
mixed plant applications.

The study of endosulfan sulfate elimination by several plant 
species was carried out by Somtrakoon et al. [5]. The types of 
plants used are sweet corn (Zea mays), cowpeas (Vigna sinensis), 
and cucumber (Cucumis sativus). This study evaluated the 
extent of removal of endosulfan sulfate from soils with different 
cropping patterns, whether cultivated alone or together in 
experimental pots. This study found that endosulfan sulfate 
was removed mostly in treatments in which sweet corn was 
grown alone. Endosulfan sulfate is also removed from the 
soil mostly in remediation, where cucumbers or cowpeas are 
grown independently. The results showed that monocrops 
were the most efficient way to restore soil contaminated with 
endosulfan sulfate. So far, it is not certain what determines 
that mixed crop cultivation is not effective for eliminating 
endosulfan sulfate from the soil. Furthermore Somtrakoon 
et al. [36] conducted a similar study to remediate anthracene 



J Phytol  •  2020  •  Vol 12		  101 

Samudro and Mangkoedihardjo

and fluorene contaminated soil. This process uses three plant 
species (sweet corn, cucumber, and winged bean), through 
single crop cultivation and multiple crop co-cultivation. The 
facts obtained show that winged bean is the most effective plant 
for phytoremediation when grown alone. However, with the 
combination of winged bean and corn plants, phytoremediation 
actually increases its effectiveness. These results indicate 
that there is an effect of plant species, which can produce 
phytoremediation effectiveness in mixed plants. The results 
obtained by these researchers are important to be followed up 
in their follow-up research, which indicates the influence of 
plant species in the application of mixed plant phytoremediation 
effectively and efficiently.

Fraser et al. [37] tested four types of aquatic plants namely 
Scirpus validus, Carex lacustris, Phalaris arundinacea, and Typha 
latifolia in reducing the nitrogen and phosphorus of leachate 
content by using constructed wetland at various concentrations 
of N and P. The study was conducted by comparing the single 
plant treatment system from each of the four plants, and mixed 
plants treatment. The nutrient uptake of the four plant species 
has different effectiveness in the decrease of N and P. In the low 
concentration of both substances, Scirpus validus with single 
plant treatment system has lower efficiency than the four plants 
in mixed plants treatment system. In high concentrations, the 
four plant species did not produce significant differences in 
the efficiency of the reduction of the substance. These results 
were different from those of Noor et al. [38], which showed 
that single-treatment plant Typha latifolia was very effective 
against nutrient depletion, and the results confirmed the results 
of Yalcuk and Ugurlu [39].

Furthermore, the research of Hechmi et al. [40], who have 
carried out mixed plant studies to restore pentachlorophenol 
(PCP) contaminated soil. The treatment variations were for 
single plants and a mixture of four plant species, namely white 
clover, ryegrass, alfalfa, and rapeseed. Phytoremediation results 
for two months of cultivation showed that a mixture of white 
clover, raygrass, alfalfa, and rapeseed significantly increased PCP 
degradation. The mixed plant cultivation of rapeseed and alfalfa 
resulted in higher PCP phytoremediation efficiency compared 
to single plant. Meanwhile, alfalfa eliminated PCP the most in 
the monoculture system. A similar study was also conducted 
by Chen et al. [41], which resulted in the fact that PCP can be 
eliminated well by plant root exudates. Further confirmation 
is the report of Li et al. [42], which resulted in the fact that 
the mixed plants significantly increased the dissipation of 
polychlorinated biphenyls (PCBs). In addition, mixed plants 
of fescue and alfalfa was most beneficial for soil bacteria and 
enzyme activity. These results demonstrated the superiority of 
mixed plant phytoremediation for the particular species used. 
This invites further research on the effects of plant species 
exudate production in eliminating environmental pollutants.

Batty & Anslow [43] studied the phytoremediation of zinc 
and the effects of pyrene by Brassica juncea and Festuca 
arundinacea in contaminated soil. Compared to the control 
treatment, plant-free media, zinc was effectively removed from 
the soil by the role of the mixed plant. Zinc accumulates in 

plants, which was affected by the presence of pyrene. However, 
B. juncea growth was significantly reduced if zinc and pyrene 
were supplied in combination. Zinc was primarily associated 
with root tissue for F. arundinacea, whereas B. juncea contains 
a higher concentration in shoot tissue.

The phytoremediation of soil contaminated with polycyclic 
aromatic hydrocarbons (PAHs) was investigated by Muratova 
et al. [44]. The researchers studied the ability of plants to 
support and enhance the microbial degradation of pollutants 
in the rhizosphere as the main mechanism. The type of plant 
determines the formation of specific rhizosphere, which 
have a high degradation potential for these contaminants. 
Comparison of PAH degradation in unplanted soil, and in soil 
planted by reeds (Phragmites australis) and alfalfa (Medicago 
sativa) was observed in a two-year potting experiment. Both 
plant species were able to remediate PAH contaminated soil 
with an elimination efficiency of over 60%. Studies of the 
rhizosphere, rhizoplane, and soil microflora that were not 
planted in experimental pots showed that alfalfa stimulated 
the rhizosphere microflora in soil contaminated with PAHs, 
which was more effective than reed. Alfalfa clearly increases 
the total number of microorganisms and the population rate 
decreases the PAH. The potential for degradation of rhizosphere 
microflora against PAH was higher than that of reed rhizosphere 
degradation activity. The results were confirmed by the study 
of Nwaichi et al. [45] who conducted field experiments to 
investigate the removal and/or absorption of PAH and certain 
metals (As, Cd, Cr) from crude oil-contaminated agricultural 
soils. The researchers concluded that the use of mixed plants 
coupled with soil amendments resulted in a significantly 
increased activity of the biota community, thereby promoting 
ecosystem restoration.

For comparison with the remediation of polluted environment, 
in the application of sewage treatment in wetlands, it was also 
found the effect of mixed plants in eliminating pollutants. Plant 
mixtures of Lemna minor, Typha latifolia, and Scirpus acutus 
were more effective and efficient at eliminating pollutants 
than monoculture applications. The next result was that mixed 
plant operations were suitable using a sequential method, ie 
flow into the compartment sequence of each different plant 
species [46-48].

Plants Operation

Mixed plants operation here defined as, first, the use of more 
than one species in a plot; in this case referred to as simultaneous 
mixed plants. In agriculture, it was known as the polyculture or 
intercropping pattern. For this case, the application was suitable 
for remediation of static or fixed polluted media such as polluted 
soil and polluted lake water. Similarly, it was the treatment of 
sewage in wetland systems. There was no limit to the number 
of species of plants that were used for this purpose.

The second was the use of each type in a separate plot, the one 
and the other plot was a sequential process; in this case referred 
to as sequential mixed plants. In this case, the cropping pattern 
may be monoculture sequentially, or sequential polyculture, or a 
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combination thereof. For this case, the application was suitable 
for remediation of movable polluted media such as polluted river 
water, ex-situ treatment, and also for wastewater treatment. The 
number of plant species used was limited in accordance with 
the availability of treatment facilities.

The third was the use of plants interchangeably in a plot; 
hereinafter referred to as alternating mixed plants. It was the 
same as rotation cropping pattern, which used different types of 
plants in rotation on a single plot. For this case, the application 
was suitable for remediation of static or fixed polluted media.

Application of mixed plants actually was a realistic approach. 
There was rarely a single plant species in an ecosystem in the 
field, unless it was a cultivation of plants with specific controls 
to produce a particular product.

During plant operation there were many possible occurrences of 
plant residue entering the soil. The incident actually benefited 
the soil condition as it would improve the remediation process. 
The study of Wang et al. [49,50] suggested that both the soil 
microbial biomass carbon and nitrogen contents could be 
substantially increased by returning of two or more than two-
plant-species residues into soils, which could then contribute 
to the enhancement of vegetation restoration and soil fertility.

CONCLUSIONS

Phytoremediation using mixed plants, like using single plant, 
is a specific interaction between plants, pollutants and the 
environment. Plant conditioning to the polluted environment 
is very important, especially for the synergy between plant 
species in order to eliminate various pollutants. Regulating water 
content for polluted soil, and/or conditioning the anaerobic/
aerobic status of the environment generally requires operational 
management in accordance with plants and pollutants as 
well as environmental media. The advantages of mixed plant 
phytoremediation are strongly influenced by the selection of 
plant types and the types of pollutants in the environmental 
media. 
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