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INTRODUCTION

Agriculture plays an important role in procuring food 
security, soothe poverty and bolster development. The world’s 
population is expected to reach 9.7 billion in 2050 and 11.2 
billion by the end of this century [1], so food production must 
increase despite various crop yield affecting factors like pests, 
weeds, pathogens, nutrients, water, sunlight, soil degradation, 
environmental impacts, and sparse arable land. The manual 
crop inspection is slow, error-prone due to human mistakes 
and parts of the field may be hard to reach results in poor 
efficiency. Technology adaptation is very crucial for more 
efficient food production. 

The machine vision systems (MVS) can automate crop 
inspection with the help of in-situ and ex-situ imaging 
techniques to improve overall crop yield. Compared to 
human vision, they can predict the problems in the crop more 
precisely by analyzing information acquired from the images. 
The biotic factors damage severity varies with type and variant 
of the crop, geolocation, and weather conditions. Yield losses 
of wheat, maize, cotton and rice crops due to biotic factors 
(pests, diseases, and weeds) in 2001-03 [2] are depicted in 
Figure 1. Over the year’s biotic factors are becoming more 
and more immune to pesticides, herbicides, and fungicides 
causing more damage to the crop yield. This review paper 
concentrates on various machine vision techniques proposed 
for identifying pests, diseases, and weeds in the agriculture 
field. MVS has great potential in identifying natural resources, 
precision farming, product quality assessment, sorting, 

classification and so forth. They can recognize the color, 
shape, size, and texture of an object and can find the point 
of interest from them. MVS can capture invisible lights such 
as ultraviolet, IR, and NIR, which render better information 
regarding crop health [3]. 

MATERIALS AND METHODS

A. Pest Detection using Machine Vision

RGB images of the traps can be processed to detect and 
recognize pests when pest traps and lures are placed in the 
field. Multispectral and hyperspectral imaging systems[4] use 
the texture and color of the crops for problem identification. 
Different spectral bands provide distinctive information 
regarding the plants, for instance, visible spectrum (VIS) renders 
leaf pigmentation information and the plant’s physiological 
condition can be collected from NIR bands [5]. 

Singh et al. [6]investigated the damaged wheat kernels using 
LWIR hyperspectral imaging. Rice weevils, lesser grain borer, 
red flour beetles, and rusty grain beetles affected wheat kernels 
scanned in the wavelength of 1-1.6mm. InGaAs camera (Model 
no. SU640-1.7RT-D, Sensors Unlimited Inc.,) along with two 
300W halogen-tungsten lamps as illumination sources used 
for detection. Captured hyperspectral data was fed to a digital 
data acquisition board (Model no. NI PCI-1422, National 
Instruments Corp). The data then converted to greyscale 
intensity images from matrix format. 48 different features 
extracted from the image and utilized in the classification. 
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Linear discriminant analysis (LDA) and quadratic discriminant 
analysis (QDA) classifiers were used, healthy and pest infected 
kernels uniquely classified with an accuracy of 85-100%. 
Working in the Long-wave NIR region is very costly due to 
the high-cost InGaAs detector. So in their succeeding work 
[7] attempted to lower system cost without compromising the 
performance by replacing long-wave NIR detectors with low-
cost shortwave NIR charge-coupled device (CCD) detectors. 
They used a CCD area scan image sensor (Model no. C7042, 
Hamamatsu Photonics) working in the NIR and VIS regions. For 
comparison, a 2MP color imaging camera was used along with 
the detector and achieved an accuracy of 92.7-100%.

Yao et al. [8]described a rice pest’s identification system by using 
two 12MP Nikon digital cameras placed on top and bottom of 
a glass plate with 4 black light sources to lure pests. The main 
aim was to detect four different rice pests from lepidoptera 
species, sesamia inferens, pararaguttata bremeret, cnaphalocrocis 
medinalis, and chilo suppressalis. They achieved an average 
accuracy of 90.5% without cross-validation and 97.5% by 7 fold 
cross-validation. The major challenge is insect overlapping, in 
such cases, manual separation is performed. In their succeeding 
work [9], they tried to automate the separation of overlapped 
insects by tapping the glass plate lightly and capturing the 
image after that. Asefpour and Vakilian [10]developed a system 
to identify beet armyworm (spodoptera exigua), a serious pest 
of vegetable, field, and flower crops. Armyworms acquired 
from a sugar beet farm and placed in a dark chamber for image 
acquisition. The images captured with a Canon CCD digital 
camera along with an LDR lightening module. An array of 200 
LED’s used for light focus on the surface plate for uniform 
light reflections of the worm. 100 armyworm images and 100 
other pest species images collected. From each image, four 
morphological (area, perimeter, eccentricity, and sphericity) and 
three textural features (local homogeneity, entropy, and energy) 
were extracted and prepared a dataset. 150 images utilized for 

training ANN classifier and remaining for evaluation. ANN 
classifier was able to classify armyworms with an accuracy of 90%.

Qing et al. [11]proposed a technique to gauge white-backed 
planthopper (WBPH) population density in the paddy field. 
A smartphone and a Wi-Fi enabled 14MP digital camera 
(Samsung SH100) were used. The digital camera attached to 
a stretchable pole and remotely controlled by a smartphone to 
capture WBPH on rice stems. Counting was done in three-layer 
detection mechanism, the first layer is an AdaBoost classifier, the 
second is a support vector machine (SVM) classifier based on 
the histogram of oriented gradient (HOG), and the third layer 
used threshold judgment based on one color and three shape 
features of the WBPH. They achieved a detection accuracy of 
90.7% with 4.9% false detection rate. Prasannakumar et al. [12]
has studied reflectance of brown planthopper (BPH) attacked 
rice crop by capturing reflectance of the crop with various 
wavelengths from 350-2500nm i.e. VIS (400-700nm), NIR 
(740-925nm), and MIR (1450-1975nm) regions. A fieldspec3 
spectroradiometer (analytical spectral devices, Boulder, USA) 
was used and kept at a height of 0.8m above the crop at an angle 
of 25° field of view to cover the entire rice canopy. Collected 
images in various wavelengths analyzed using one-way analysis 
of variance (ANOVA). By comparing level 0 to level 9, they 
proved that the NIR band is well suited for the detection of 
BPH damage in the rice field. 

Ding and Taylor [13]developed a system for monitoring the 
number of insects on a pest trap with pheromones. Moths are 
being uniquely identified and the number of moths trapped 
counted in real-time. For identification, they proposed a 
sliding window-based detection pipeline, where captured image 
patches from around the image analyzed by the convolutional 
neural network (CNN) to ascertain the possibility of moth’s 
presence. Thresholding was applied on the filtered image 
patches according to their associated confidences and location 

Figure 1: Yield loss share of pests, diseases, and weeds in wheat, maize, cotton, and rice crops [2]
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for confirmation. They have achieved an accuracy of 93.1% with 
0.099 log-average miss rate with trap liners rarely changed and 
achieved 93.4% accuracy with a log-average miss rate of 0.091 
with trap liners changed regularly. Rajan et al. [14]proposed 
an automatic pest identification system to detect whiteflies, 
aphids, and cabbage moths. Digital camera (VIS) was used to 
capture images of the crop which may have pests on their leaves. 
Images of different pests collected, then their histograms were 
determined and kept in a database. SVM classifier trained with 
threshold values and the slack variables of the images in the 
database. The threshold value was used to distinguish the object 
from the background and classification of the pests was done 
using slack variables. They achieved a detection accuracy of 95%. 

Doitsidis et al. [15]implemented a web-based pest detection 
system to detect and count olive fruit flies (bactrocera oleae) in 
olive orchards. They used an automatic McPhail trap with a 2MP 
digital camera and embedded hardware powered by a 7000mAh, 
12V battery. The glass trap was filled with 200ml of ammonium 
sulfate which attracts olive fruit flies. The images of trapped 
fruit flies were captured and sent to a web server through TELIT 
(model: GM862) GSM module. When a new image uploaded 
to the server, a pre-programmed listener module activates the 
image analyzer and system monitoring components. One-way 
ANOVA used to analyze the image online. Black areas (black 
pixels) in the images indicate fruit flies and their dimensions 
with respect to the area of interest given the total number of 
trapped flies. They achieved a detection accuracy of 75%.

Ebrahimi et al. [16]developed an imaging system in the 
strawberry greenhouse to detect thrips and classify parasites. 

They used an 18MP Canon EOS M digital camera on a 
LabVIEW program-controlled horizontal mobile agricultural 
robot, to capture the strawberry flower images. With color 
indexing and SVM classification, they were successful in 
identifying thrips with an accuracy of greater than 97.5%. 
Sun et al. [17] proposed a deep learning method for counting 
adult red turpentine beetles in the pine trees using a pheromone 
trap. They used a deep learning detector (RTBnet) running 
on embedded devices. The runtime tests were performed on 
Arm platforms with GPU acceleration (NVidia Jetson TX2) 
and raspberry pi3 platform without GPU acceleration. They 
got object-level average precision of 0.746. [18]developed an 
automatic Asian citrus psyllid pests detection and counting 
system in the citrus crop. The system has 6 cameras to capture 
images of psyllid pests falling on a board fixed to a mobile vehicle 
which has a tapping unit to shake citrus tree branches. NVIDIA 
TX2 embedded computational unit with convolutional neural-
networks used to identify psyllids from captured images. They 
achieved precision and recall of 80% and 95%, respectively. An 
overview of different MVS pest detection methods was shown 
in Table.1. 

B. Disease Detection Using Machine Vision

Crop diseases are classified based on plant’s visual symptoms, 
infected plant organs, the type of plants, and pathogens as 
shown in Figure 2. The disease may be an infectious disease 
(fungi, bacteria, viruses, etc.) or a non-infectious disease (due 
to nutrient deficiencies, soil acidity, mineral toxicities and the 
like) [19]. Franke and Menz [20]developed a system to monitor 
fungal diseases of wheat using multispectral satellite images. 

Table 1: Machine vision systems for pest detection
Type of Crop Name of the Pest Type of Sensor Spectral bands Main tool Accuracy References

Wheat Rice weevils,
Lesser grain borer,
Red flour beetles,
Rusty grain beetles.

InGaAs Camera
(M.no. SU640-1.7RT-D, Sensors 
Unlimited Inc.)

LWIR QDA, LDA Classifiers >85% [6]

Wheat Rice weevils,
Lesser grain borer,
Red flour beetles,
Rusty grain beetles.

CCD area scan image sensor (M.no. 
C7042, Hamamatsu Photonics),
Digital Camera

VIS, SWIR QDA, LDA Classifiers >92.7% [7]

Paddy Chilo suppressalis,
Sesamia inferens,
Cnaphalocrocis medinalis,
Pararaguttata bremeret.

Digital Camera
(12MP, Nikon)

VIS SVM 97.5% [8]

Multiple Crops Beet armyworm Digital Camera (Canon, Power 
shot, G12)

VIS ANN 90% [10]

Paddy WBPH Digital Camera VIS AdaBoost &
SVM Classifiers

85.2% [11]

Paddy Brown plant hopper
(BPH)

Spectroradiometer
(ASD, Boulder)

VIS, NIR, MIR One-way ANOVA - [12]

Multiple Crops Codling moth Digital Camera VIS ConvNets (CNN) 93.4% [13]
Multiple Crops Whiteflies,

Aphids,
Cabbage moths.

Digital Camera VIS SVM 95% [14]

Olive Orchids Olive fruit flies Digital Camera (2MP) VIS One-way ANOVA 75% [15]
Strawberry Thrips Digital Camera

(Canon EOS M,  18MP, CMOS)
VIS SVM >97.5% [16]

Pine trees Red turpentine beetles Digital Camera VIS RTBnet 74.6% [17]
Citrus Asian citrus

psyllid
Digital Camera VIS CNN 80% [18]
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The focus is on powdery mildew (Blumeria graminis), and leaf 
rust (Puccinia recondita), the two most common pathogens in 
cereals of central Europe. The target field plot divided into 3 
sub-areas and applied with different dosages of fungicide for 
a variety of infection severity analysis. QuickBird satellite data 
of the target area was acquired in the year 2005 on 22nd April 
when the infection is at the earliest and on 20th June. On 28th 
May airborne hyperspectral HyMap sensor’s (450-2480nm, 
126 bands, and 4m spatial resolution) data also collected. A 
spectral library was created with the data acquired from each 
date. Apart from QuickBird and HyMap sensor data, the ground 
truth data also often collected in the field at 54 sample points 
for cross-validation. A decision tree was built using spectral 
mixture analyses (SMA), normalized difference vegetation index 
(NDVI) and deviation of the NDVI used for detecting infected 
areas. With SMA classifier they achieved an overall accuracy 
of 56.8%, 65.9%, 88.6% for data collected on respective dates. 
Phadikar and Sil. [21]implemented a method to detect leaf 
blast and brown spot diseases in the paddy field. Diseased leaves 
collected from various parts of Midnapore and their images 
captured using a digital camera (Nikon COOLPIX P4). After 
adjusting the contrast and brightness of the images they were 
transformed into a hue intensity saturation (HIS) model, then 
segmented using entropy-based bi-level thresholding method. 
Self-organizing map (SOM) neural network used for disease 
categorization. The classifier was trained with 300 different 
patterns and 50 epochs, achieved detection accuracy of 92%.

Bauer et al. [22]investigated the automatic classification of leaf 
diseases, Cercospora beticola (leaf spot pathogen cercospora), 
Uromyces betae (rust fungus) in sugar beet plants. Healthy 
and disease infected plant leaves collected and placed in a light 
illumination controlled environment for image acquisition. 
From four different positions, four RGB images (FujiFilm 
FinePix S5600), and one multispectral image (Tetracam ADC) 
of each leaf was captured to prepare a 3D model by image fusion. 
RGB camera position and rotation controlled by AURELO 
program [23] and the 3D structure of leaves were prepared using 
INPHO-Software MATCH-T [24]. The 3D model of the leaves 
classified using pixel-wise K-nearest neighbor (KNN), pixel-wise 
adaptive Bayes classification using Gaussian mixture model and 
a conditional random fields (CRF) classifier. Achieved median 
of pixel-wise classification accuracy of 86% in the detection of 
uromyces betae, 91% for cercospora beticola and healthy leaf 
areas were detection with an accuracy of 94%.

Santoso et al. [25] studied a method to map and detect 
Ganoderma boninense pathogen affected basal stem rot disease 
in oil palm. Visible, NIR and panchromatic (450-900 nm) spectral 
bands of Quick bird images were used for the study. ArcGIS 9.2 
and ENVI 4.3 image processing systems used to identify the 
disease infestation from the satellite data. Identification and 
mapping of infection done in two stages, in the first stage image 
segmentation performed to delineate dead palm trees due to 
the stem rot infection, diseased living palm trees identified in 
the second stage using six different vegetation indices (ARVI, 
GNDVI, GBNDVI, NDVI, SAVI, and SR). Four different palm 
fields (aged 21 (field-I), 16 (field-II), 15 & 18 (field-III), and 10 
(field-IV) years) were chosen and then six vegetation indices 
applied on the captured images for disease identification. 
Manual field samples collected for comparison with the images 
interpreted from quick bird imagery. In the field-I GBNDVI and 
ARVI were the most accurate with disease interpretation accuracy 
of 85%, SR vegetation indices achieved an accuracy of 85% in 
field-II, 73% of maximum accuracy was achieved by GBNDVI in 
field-III and in field-IV, GBNDVI, and GNDVI gave 84% accuracy. 

In 2012, Wang et al. [26]developed an approach to detect 
diseases in grape (grape downy mildew & grape powdery mildew) 
and wheat crops (wheat stripe rust & wheat leaf rust). A total of 
185 digital images collected and then segmented with K-means 
clustering algorithm. From segmented images twenty-one color 
features, twenty-five texture features, and four shape features 
were extracted. Back Propagation (BP) networks used as the 
classifier for disease identification. Some of the images randomly 
chosen to train the classifier and remaining used as the test set. 
The author achieved an accuracy of 100% in detecting both the 
crop diseases with BP networks.

Phadikar et al. [27]proposed a method to detect four different 
diseases, bacterial blight, leaf brown spot, rice blast, and sheath 
rot in rice crop, and the infected leaves are shown in Figure 3. 
The color, position, and shape of the infected regions were used 
for disease classification. The diseased leaf visual symptoms 
were extracted using Fermi energy-based region extraction 
method, then the genetic algorithm applied in two steps to 
detect the shape (diamond, rectangular, circular, oval, elliptical, 
or irregular) of the infected region. The infected region’s 
position detected by partitioning the image into blocks, then 
arranged into different groups with labels. The rule generation 
algorithm used as a classifier to classify the collected disease 
infected image datasets and the results were compared with 
existing classifiers using 10-fold cross-validation and obtained 
an average accuracy of 94.21%.

Liaghat et al. [28]used Fourier transform infrared (FT-IR) 
spectroscopic technique to identify and discriminate different 
stages of oil palm’s basal stem rot disease infestation. FT-
IR spectrometer (Thermo Fisher Scientific Inc., USA) has 
a spectral range of 2.55–25.05µm with 451 spectral bands. 
Four different classification algorithms used to classify data 
captured by spectrometer namely KNN, Linear discriminant 
analysis (LDA), Naive-Bayes (NB), and QDA. QDA and LDA 
algorithms have given a high average overall classification 
accuracy of over 85%. With pre-processed FT-IR spectral data 

Figure 2: Plant disease classification
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LDA was able to differentiate between healthy and infected 
leaf samples with high classification accuracies (>90%). 
Pourreza et al. [29] proposed a system to detect citrus greening 
(Huanglongbing (HLB)) bacterial infection in citrus trees. They 
used a monochrome camera (DMK 23G445, the imaging source, 
Germany) with a CCD sensor, ten LEDs with high luminous 
efficiency for illumination. 60 citrus leaves collected from 
citrus trees used as test samples, some healthy and some with 
HLB infection. The SVM classifier was trained with the mean 
and standard deviation for disease detection. They achieved a 
maximum detection accuracy of 98.5%. 

Schor et al. [30]developed a robotic disease detection system to 
identify two serious diseases, tomato spotted wilt virus (TSWV) & 
powdery mildew (PM) in bell peppers greenhouse. The system has 
3 major parts, a robotic manipulator (MH5L, Motoman, Japan), 
custom made end-effector and a sensory apparatus comprising 
a VIS camera and a laser sensor (DT35, SICK). The PCA-based 
algorithm and two variants of coefficients of variation (CV) 
algorithms used for disease identification. PM detection accuracy 
of 90% achieved using PCA-based algorithm and two variants of 
CV algorithms achieved 84%, 87% accuracies in detecting TSWV 
disease. [31]proposed a method for early detection of gray mold 
disease caused by Botrytis cinerea fungus in tomato crops using 
hyperspectral imaging. The setup has a digital CCD camera (M 
C8484-05, Hamamatsu City), an imaging spectrograph (V10E, 
Specim, Oulu), and two halogen light sources.

They collected 42 healthy and 170 gray mold infected tomato 
leaves and captured their hyperspectral images. First images 
compressed using principal component analysis (PCA) and then 
sent to KNN, C5.0 and features ranking-KNN (based on selected 
wavelengths) classifiers. The useful wavelength of the image for 
FR-KNN was filtered using 5 feature ranking methods namely 
chernoff bound, kullback-leibler distance, receiver operating 
characteristic, t-test, and wilcoxon test. The author achieved 
a disease detection accuracy of 94.83%, 96.55% and 96.55% 
with KNN, C5.0, and FR-KNN classifiers respectively. Ali et 
al. [32]proposed an approach to detect citrus plant diseases, 
Downy, Anthracnose, Gummosis, Citrus canker, and Citrus 

greening. Downy and anthracnose infected leaf images were 
collected from the internet and the remaining captured locally 
using a DSLR camera. Delta E (ΔE) algorithm used to segment 
images by calculating the distance between colors on the leaves. 
Local binary patterns (LBP) and color histograms (RGB, Hue 
saturation value (HSV)) used as descriptors. 199 images used 
for the detection process out of which 99 were disease infected 
leaves. KNN, SVM, Bagged tree and Boosted tree classifiers used 
for the disease classification. By providing multiple class tables 
for training the classifiers, the multilevel classification (Disease 
level and image level detection) was achieved. Bagged tree 
ensemble classifier performed better than others and gave an 
accuracy of 99.5% (RGB), 100% (HSV) and 100% (LBP). Moriya 
et al. [33] developed a method to identify the Mosaic virus in the 
sugarcane plantation using an unmanned aerial system (UAS). 
The SX8 multirotor UAS equipped with a hyperspectral camera 
(model DT-0014, Rikola), a portable computer (Raspberry Pi), 
platform positioning inertial navigation system (model IGM-S1, 
Novatel), an irradiance sensor, and a GPS receiver. To select 
the most suitable spectral bands, first in-field measurement 
was performed using spectroradiometer and collected spectral 
signatures of healthy and virus-infected sugarcane leaves to 
form a spectral library. The rikola camera configured to capture 
images according to the spectral bands chosen from the library. 
The Spectral information divergence process used as the 
classifier and its classification accuracy estimated with the kappa 
statistical coefficient and the confusion matrix. The mosaic 
virus-infected sugarcane area was detected with an accuracy of 
92.50% and got 0.87 kappa coefficient. 

Lu et al. [34]used the hyperspectral imaging technique to 
discriminate tomato leaf disease caused by tomato yellow leaf 
curl virus. A line scanning spectrograph (Imspector V10E-QE, 
Spectral Imaging Ltd., Finland), and a CCD camera (C8484-
05G01, Hamamatsu Photonics, Japan) placed in a closed 
chamber with a 150W light source. Hundred infected and 
sixty-six healthy leaves collected and placed in the chamber to 
capture hyperspectral images. The captured images processed 
and analyzed using ENVI 4.6 and Matlab7.14.0 software. From 
each image sample, eight different features (ASM_MEAN, 
ENT_MEAN, INE_MEAN, COR_MEAN, ASM_DEV, ENT_
DEV, INE_DEV, & COR_DEV) were calculated to transfer 
image spatial information into numerical values. 853nm 
wavelength was selected to subtract the background from the 
leaf. 586nm, 720nm (two peaks) and 690nm, 840nm (two 
valleys) were chosen as sensitive wavelengths for discriminating 
infected leaves from healthy ones. The performance of each 
feature was evaluated by receiver operator characteristic (ROC) 
curve analysis. Detection accuracy of 100% was achieved with 
COR_MEAN  texture features  based datasets. In 2018, Huang 
et al. [35]proposed SVM based machine vision technology 
to detect sugar cane borer disease before planting sugarcane 
seeds in the field. Sugarcane seeds of 300mm images were 
captured in 3 different angles (with 120º angle interval) in a 
sugarcane rotating platform, with those images training and 
testing datasets were created for SVM classification. Using radial 
basis function as the kernel function of SVM they achieved 
96% disease detection accuracy. An overview of MVS disease 
detection methods was shown in Table.2. 

Figure 3: Rice leaves infected by a) Bacterial blight b) Leaf brown spot 
c) Rice blast d) Sheath rot

a b

c d
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C. Weed Detection Using Machine Vision

Plant growing, where it is not wanted is termed as a weed, 
though no plant is a weed in nature. In crop farming, the yield 
affecting invasive plants is a serious threat to agriculture. Weeds 
cause land and water degradation, they host pests, pathogens, 
and parasites, some create health hazards to humans and 
animals. Machine vision can keep a watch on the weed presence 
and its population in the crop. Alchanatis et al. [36]developed an 
automatic weed detection mechanism in the cotton field with a 
hyperspectral imaging system comprises a CCD camera (model 
TM657, Pulnix America Inc.), an acousto-optic tunable filter 
(TVA100-0.5-1.0., Brimrose Inc.), and a spectral bandpass filter. 
The output signal of the CCD camera connected to a frame 
grabber (IVP150, Bar- gold Ltd.) to control image acquisition. 
The setup was fixed to a tractor which travels along the crop 

rows to acquire hyperspectral images, for natural sunlight 
illumination the images were captured between 11:00 to 15:00. 
Green leaves and bare soil were discriminated by combining 
660 and 800nm reflectance information. At 660nm, Rank order 
algorithms (ROA) used to analyze the segmented hyperspectral 
images to distinguish between cotton and weed. By observing 
sharply varying local inhomogeneity exhibited by weeds (local 
inhomogeneity of cotton plants is low), they achieved a weed 
detection accuracy of 86%. 

Armstrong et al. [37]proposed a method to detect lambs 
quarters weed at low densities in cornfield using multispectral 
imaging. They used a three-band CCD multispectral camera 
that collects image data in the VIS and NIR spectrums. The 
camera mounted on a GPS enabled airplane captured images 
from an altitude of 300m. Crop planted in two different sites 
(ACRE, TPAC) and data collected from the airplane fed 

Table 2: Machine vision systems for disease detection
Type of Crop Name of the Disease Type of Sensor Spectral bands Main tool Accuracy References

Wheat Leaf rust
(Puccinia recondita),
Powdery mildew (Blumeria 
graminis).

QuickBird Satellite,
Hyperspectral HyMap sensor

VIS, NIR MTMF
(one type of SMA 
Algorithm)

88.6% [20]

Paddy Leaf blast,
Leaf brown spot.

Digital Camera
(Nikon COOLPIX P4)

VIS SOM Neural 
Network

92% [21]

Sugar beet Cercospora beticola,
Uromyces betae.

Digital Camera
(FujiFilm FinePix S5600),
Multispectral Camera
(Tetracam ADC)

VIS, NIR KNN, Modified 
Bayes classifier,
CRF classifier

91% (Cercospora   
beticola) 86% (Uromyces 

betae)

[22]

Oil palm Basal stem rot Quick bird satellite Visible, NIR and 
Panchromatic

GBNDVI 84% [25]

Grape &
Wheat

Grape downy mildew,
Grape powdery mildew,
Wheat stripe rust,
Wheat leaf rust.

Digital Camera VIS BP Networks  
Classifier 100%

[26]

Paddy Bacterial blight,
Leaf brown spot,
Rice blast, Sheath rot.

Digital Camera VIS Genetic Algorithm, 
Rule Generation 
Algorithm

94.2% [27]

Oil palm Rice weevils,
Lesser grain borer,
Red flour beetles,
Rusty grain beetles.

FT-IR Spectrometer 
(Thermo Fisher 
Scientific Inc.)

VIS, NIR KNN, LDA, NB & 
QDA

>90%
(LDA Classifier)

[28]

Citrus Huanglongbing (HLB) Monochrome Camera
(DMK 23G445),
CCD Sensor

VIS SVM 98.5% [29]

Bell peppers Tomato spotted wilt virus 
(TSWV),
Powdery mildew (PM).

VIS Camera and Laser sensor 
(DT35, SICK)

VIS PCA-based 
Algorithm,
CV Algorithms

90% (PCA-based),
87% (one CV algorithm 

variant)

[30]

Tomato Gray mold disease. Digital CCD Camera
(M C8484-05),
Imaging Spectrograph
(V10E, Specim, Oulu)

VIS, NIR KNN, C5.0, &  FR-
KKN

94.83% (KNN),
96.55% (C5.0 & FR-KNN)

[31]

Citrus Gummosis,
Citrus canker,
Downy,
Citrus greening,
Anthracnose.

Digital Camera VIS KNN, SVM, Bagged 
tree, and Boosted 
tree

(Bagged tree )
99.5% (RGB)
100% (HSV)
100% (LBP)

[32]

Sugarcane Mosaic virus Hyperspectral Camera (model 
DT-0014, Rikola),
Spectroradiometer

VIS, NIR Spectral information 
divergence (SID) 
Classifier

92.5% [33]

Tomato Yellow leaf curl virus. Line Scanning Spectrograph
(Imspector V10E-QE),
CCD Camera

VIS, NIR ROC 100% (COR_MEAN) [34]

Sugarcane Sugar cane borer disease Digital Camera VIS SVM 96% [35]
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into multispectral data analysis software (MultiSpec) which 
has 4 different algorithms namely spectral angle mapper 
(SAM), maximum likelihood classifier (MLC), fisher’s linear 
likelihood (LL), minimum Euclidean distance, extraction and 
classification of homogenous objects (ECHO) spatial-spectral 
and a matched filter.

MLC gave the highest classification accuracy of 91% in TPAC 
and 86% in ACRE. [38]developed a system to detect broom 
snakeweed using airborne hyperspectral images and compared 
them with color-infrared (CIR) photography and digital imagery. 
A hyperspectral camera (SensiCam), CIR photographic camera 
(Fairchild Imaging, Milpitas) and three multispectral CIR 
digital cameras (Kodak MegaPlus) mounted on a twin-engine 
Cessna 404 aircraft which has taken images at an altitude of 
1.68km above ground level. Four different classifiers namely 
minimum distance, Mahalanobis distance, MLC, and SAM used 
for weed classification. All three types of images analyzed with 
four different classifiers for detecting the weed. Among all the 
classifiers, MLC performance is superior and classified weeds 
in the CIR photographic images with an accuracy of 91%, 92% 
with CIR digital images, and 95% with hyperspectral images. 

Piron et al. [39]studied a 3D imaging method to detect weeds, 
matricaria maritima, sonchus asper L., cirsium sp., chenopodium 
sp., merurialis m. perennis, and brassica sp. in carrot crop using 
the plant’s height as a discriminating parameter. 3D information 
obtained using the stereoscopic acquisition method based on 
coded structured light. The stereoscopic device consists of a 
video projector (OPTOMA EP719, 1024 X 768 resolution) 
mounted on a movable acquisition device along with the 
1.3MP black and white camera (Vector International C-cam 
BCI 5, Belgium) and a filter wheel. The projector used time-
multiplexing pattern projection technique which projects a set 
of image patterns on the scene (black and white bands of large 
then finer width). The camera along with filter wheel captures 
multispectral images of the scene. Fifty-one multispectral 
images collected from random locations over a period of 19 
days with different moisture levels in the field. Plant height 
was calculated from the images in two stages. In the first stage, 
QDA was performed to segment plant and ground pixels and in 
the second stage, both the surfaces joined through soil pixels 
after alignments final image was created. QDA was used for 
classification and achieved an accuracy of 83%. 

In 2012, de Castro et al. [40]developed a system to detect 
cruciferous weeds (Diplotaxis spp. and Sinapis spp.) in legumes 
(pea & broad bean) and wheat using airborne multispectral 
imaging. Images captured with a digital DMC Zeiss-Intergraph 
camera (Green, Red, & NIR) and a digital CCD camera (RGB) 
mounted on a turboprop twin-engine plane (CESSNA 404 
Titan). Flying at an altitude of 2.5km, the plane captured the 
images with a spatial resolution of 250cm at a scale of 1:30000 
above the field. After radiometric adjustments images were 
ortho-rectified with ENVI software, then georeferenced. Three 
different classification methods used, vegetation indices (VI), 
MLC, and SAM. Among seven locations, at Montalán Alto 
with MLC, they achieved weed detection accuracy of 99.9% 
in pea, 69.8% in broad bean crops, with VI they got 99.9% 

accuracy in pea, 73.7% in the broad bean with SAM the weed 
detection accuracy was 98.4% in pea, 72.7% in broad bean. 
At La Carlota, the weed patches in wheat detected with an 
accuracy of 99.5% with IV, 98.6% with MLC and 97.8% with 
SAM. Peña et al. [41]developed an early weed detection system 
in sunflower plantation using the unmanned aerial vehicle 
(UAV). The images captured by a quadcopter (model md4-
1000, microdrones GmbH, Germany) fitted with a 12MP VIS 
camera (Olympus PEN E-PM1, Olympus Corporation) and a 
1.3MP multispectral camera (Tetracam mini-MCA-6, Tetracam 
Inc.). Twenty four images captured at a specific pre-programmed 
altitude with the help of GPS and those images were tagged with 
corresponding coordinates using the ENVI software (ENVI 4.4, 
Research Systems Inc.). Tetracam images were pre-processed 
and aligned with tetracam Pixel wrench 2 software (Tetracam 
Inc.). UAV captured images with two different cameras, in four 
different altitudes (40, 60, 80 &100m) and in three different 
days (44, 50 & 57 days after sowing (DAS)) to compare weed 
detection accuracy. Good accuracies achieved with images 
captured at 40m amplitude from 50 DAS crop. The VIS camera 
detected weed with a maximum accuracy of 77%, where as 
multispectral camera achieved accuracy of 91%. 

Wendel et al. [42]developed a self-supervising hyperspectral 
autonomous mobile ground vehicle (Ladybird robot) for 
barnyard grass (Echinochloa crusgalli), curly dock (Rumex 
Crispus), and caltrop (Tribulus terrestris) weeds detection in 
the cornfield. The ladybird robot scans two rows of the field 
at a time mounted with hyperspectral line scanning camera 
(Resonon Pika II VNIR), and an RGB camera mounted 
underneath the robot to collect color images of the field. A 
DSLR camera used to take crop and weed photos for reference, 
hough transform was used to detect the crop rows. Manually 
captured weed images with DSLR camera used in training and 
testing data along with ladybird hyperspectral image data. Both 
the collected data’s pre-processed, normalized and PCA were 
done to generate test and train data for classification of weed. 
SVM and LDA classifiers used to generate the classified data. 
The LDA classifier able to classify robot collected image data 
quickly compared to SVM. They achieved a detection accuracy 
of 93% using LDA and 94% using SVM with auto-generated 
data sets. Tamouridou et al. [43] evaluated a method to detect 
Silybum marianum weed using UAV imagery. A multispectral 
camera (12MP, Canon S110) mounted on eBee fixed-wing UAV 
to capture images at an altitude of 115m. Fifty-five images 
captured in the field and orthorectified using the Pix4Dmapper 
Pro software. An ortho-mosaic image was created which 
comprised red, green and NIR bands and a texture layer based 
on NIR channel. S. marianum plants spectral signatures taken 
using UniSpec-DC spectrometer (PP Systems, Inc.) in the 
field for reference. MLC was used to classify the S. marianum 
among other weeds and got an overall detection accuracy of 
87% with 1-meter resolution.

López-Granados et al. [44]implemented an airborne system 
for early detection of pigweed, mustard bindweed, and lambs 
quarters weeds in the sunflower field. A 12MP digital camera 
(Olympus PEN E-PM1, Olympus Corporation, Japan) and 
a 1.3MP multispectral camera (Tetracam mini-MCA-6, 
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Tetracam Inc., USA) mounted on a quadcopter UAV (md4-
1000, microdrones GmbH, Germany) for image acquisition. 
The images acquired from two different sunflower fields at 
an altitude of 40m and 60m. Captured images from different 
cameras at different flight altitudes converted to orthomosaic 
images. Automated and accurate OBIA (Object-based Image 
Analysis) procedure was developed to detect and map weeds, 
crop rows, and bare soil. OBIA algorithm detected weeds in the 
inter-row area of the field and classified its infestation severity 
based on weed threshold. In both the fields, approximately 100% 
weed detection accuracy was achieved using the multispectral 
camera with a 15% threshold, and more than 85% accuracy 
with 2.5 to 5% threshold. Digital camera accuracy was 50-60% 
at all flight altitudes. Barrero et al. [45] developed a method 
to identify weeds in the rice field using airborne images. 
Autonomous delta wind plane (Phantom FX-61) taken aerial 
images with a 16MP digital CMOS camera (Canon Elph110 HS) 
at an altitude of 50m. Mission planner software used for auto 
control the plane path and auto-capture images. Pix4Dmapper 
Pro software used for patching captured images to form an 
orthomosaic map of the entire 5-hectare rice field. Neural 
networks (NN) used for classification and it was trained with 
nine descriptors for texture and one for color. They got weed 
detection accuracy of 99% using trained NN. 

Bakhshipour et al. [46]proposed a system to detect pigweed, 
lambsquarters, hare’s-ear mustard, and turnip weeds in sugar 
beet crops using texture features. A digital camera took the crop 
images at a height of 0.5m, 70 images collected out of which 30 
images used for training the algorithm and the remaining 40 
for assessment. The Wavelet transform applied to extract the 
texture features, then the extracted features used in artificial 
neural networks (ANN) classifier to segment the images. Two 
manners of classification were studied, discrimination of each 
plant species against the others and discriminating sugar beet 
from the weeds, they got the detection accuracy of 96% with 
crop-weed distinction approach and 89% with plant classification 
approach. Tang et al. [47] implemented cephalanoplos, digitaria, 
and bindweed weeds detection model in soybean field based on 
CNN combined with K-means feature learning. Digital camera 
(Canon EOS 70D, EF-S 18–135mm f/3.5–5.6 IS STM) used 
for capture images in the field. Traditional CNN uses random 
initialization of weights but by K-means as pre-training process 
accuracy of detection was improved. They achieved an accuracy 
of 92.89%, i.e. 1.82% additional accuracy compared to ordinary 
CNN.

Gao et al. [48]proposed a method for the classification of 
convolvulus arvensis, rumex, and Cirsium arvense weeds 
in maize (zea mays) fields. They used snapshot mosaic 
hyperspectral camera to capture 185 spectral features. Random 
forest model with different spectral features was tested and 
finally, 30 important spectral features were selected for weed 
classification. They achieved a precision of 95.9%, 70.3%, and 
65.9% for convolvulus arvensis, rumex, and Cirsium arvense 
weeds respectively. Weed detection methods presented in this 
paper were outlined in Table.3. 

DISCUSSION AND FUTURE DIRECTIONS

Increased pest attacks, diseases and weed infestations added 
with climate change, crop yield have been substantially dropped 
in recent decades. Technological support can help agriculture 
from its downfall. Many techniques were proposed, developed 
and implemented in agriculture, machine vision is one among 
them, which is viable, in the areas like the pests, diseases, and 
weeds detection, water stress detection, soil nutrients, and 
post-harvest product quality assessments. The most common 
pest detection approach is to use an RGB camera that works 
in the VIS. With the help of traps (sticky solid or fluid trap) 
and attractants (color, pheromones, light), pests are lured to 
the place where the camera is placed and the number of pests 
trapped is used to assess the severity of the damage. This 
approach can detect them at the early stage of infestation 
which helps lessen the chemical application and reduces 
environmental impacts and cost. In VIS sensors, color, patterns 
and the size of the pest is used for identification and counting. 
The accuracy of pest detection depends on the type of attractant 
used (pest dependent), and classification algorithm. Among 
all, the SVM algorithm is popular. The major challenge in the 
trap based technique is distinguishing the targeted pests from 
other trapped insects, pest overlaps, attractant used to entice 
them, and trap replacement mechanism. Damage symptoms 
(stress) on the crop also can be used to identify (by using NIR 
bands along with RGB) the particular pest. Multispectral and 
hyperspectral imaging use visible and invisible spectral bands 
to detect crop stress, but premature detection is intractable. 

Pathogens like bacteria, viruses, and fungus detection are 
implausible with traps and lures so direct detection is not 
feasible with MVS. Their presence in the crop can be assessed 
by analyzing color and texture changes in the crop. The images 
are acquired from the field using drones (UAV), satellites and 
mobile ground robots. For cross verification, ground truth data 
were collected in case of airborne imaging. Generally used 
classifiers include MLC, KNN, SVM, and PCA. In the case of 
weeds, detection is possible in the early stage of crop growth 
as later crop weed overlap may create difficulties in detection, 
such cases must be addressed by the researchers. Colour, shape 
and texture features are used for discriminating weed from the 
crop. MVS disease and weed identification techniques prefer 
multispectral and hyperspectral imaging since they capture crop 
reflections better than VIS. 

The developed systems are studied in ideal conditions which 
in the real world may have complications. Satellite imaging can 
detect pests, diseases, and weed infestations on a larger scale with 
less complexity, but the frequency of data updates and cost to 
retrieve them is a bottleneck. The major challenges with drones 
are the reliability issues and accuracy of the mosaic image. Now 
they are coming with sophisticated software for auto flight and 
automatic image stitching of the whole field and reasonably low 
cost which will in the near future help new researchers explore 
more drone-based MVS methods in agriculture. 

The spectral response of the remote sensing data can be affected 
by variable soil backgrounds and residue covers, which will 
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affect the detection accuracy so more attention must be given 
on this issue. Control measures must be taken before damage 
crosses the action threshold to avoid economic loss. Widespread 
commercialization of MVS in agriculture is possible only with 
robust, low cost, automated unified detection systems (pest, 
weed, and diseases). The future research focus must be on MVS 
capable of detecting all yield affecting factors of a particular 
crop. Multi-crop detection variant is preferable since farmers 
use the same field for different crops in different seasons in a 
year. Internet of Things technology [49] must be exploited in 
agriculture for the real-time automatic pest detection system. 
The system cost can be reduced by using low cost programmable 
hardware’s (Arduino, Raspberry Pi, Intel’s Edition, Beagle bone 
and so forth) with open software, connected to cloud servers 
(Amazon web services, Microsoft Azure, Google Cloud and 

others) for processing the image information to detect stress and 
alerting the farmer to take action at a particular geo-location. In 
the future before the farmer gets up, every morning UAV’s fitted 
with sophisticated cameras will take off and locate whether there 
are any crop health issues within the field. 

CONCLUSION

In this review paper, various machine vision techniques proposed 
for classification and detection of pests, disease, and weeds in 
the agriculture field were presented and their key points were 
tabulated. In the near future, agriculture needs to become more 
like manufacturing factories to continue to feed the world. 
Increasing the efficiency of crop production is very important 
and is possible with technological support. In agriculture, MVS 

Table 3: Machine vision systems for weed detection
Type of Crop Name of the Weed Type of Sensor Spectral bands Main tool Accuracy References

Cotton General CCD Camera
(Model TM657, Pulnix America Inc.) 
with NIR filter removed

VIS, NIR Rank Order 
Algorithms 

86% [36]

Corn & 
Soybean

Lambs quarters CCD Multispectral
Camera

VIS, NIR MLC 91% (in TPAC)
86% (in ACRE)

[37]

Multiple Crops Broom snakeweed Hyperspectral Camera (SensiCam),
Multispectral Camera
(Kodak MegaPlus), &
CIR Photographic Camera (Fairchild 
Imaging)

VIS, NIR Minimum 
distance, 
Mahalanobis 
distance,
MLC & SAM

91% (CIR photographic),
92% (CIR digital image),

95% (Hyperspectral).

[38]

Carrot Matricaria maritime,
Sonchus asper L.,
Cirsium sp.,
Chenopodium sp.,
Merurialis M. perennis,
Brassica sp..

Video projector (OPTOMA EP719),
1.3MP black and white Camera

VIS QDA 83% [39]

Pea,
Broad-bean & 
Wheat

Diplotaxis spp.,
Sinapis spp..

Digital CCD Camera, DMC Zeiss-
Intergraph Camera

R, G, NIR MLC, VI, 
and SAM

99.9% (MLC&VI in pea)
73.7% (VI in broad bean)

99.5% (VI in wheat)

[40]

Sunflower  General Digital Camera (Olympus PEN E-PM1), 
1.3MP Multispectral Camera (Tetracam 
mini-MCA-6)

VIS, NIR Spectral 
Information 
Divergence 
Classifier

77% (with digital cam)
91% (with Tetracam)

[41]

Corn Barnyard grass,
Curly dock,
Ipomoea spp.,
Polymeria spp.,
Caltrop.

Hyperspectral Camera (Resonon Pika 
II VNIR),
RGB Camera, & DSLR Camera

VIS, NIR SVM and 
LDA

93% (LDA)
94% (SVM)

[42]

Multiple 
Crops

Silybum marianum Multispectral Camera
(12MP, Canon S110 NIR )

R, G, NIR MLC 87% [43]

Sunflower Pigweed,
Mustard,
Bindweed,
Lambsquarters.

12MP Digital Camera (Olympus PEN 
E-PM1),
1.3MP Multispectral Camera 

VIS, NIR OBIA 100% (with 15% weed 
threshold),

>85% (with 2.5-5% 
threshold)

[44]

Paddy General Digital Camera VIS Neural 
Networks

99% [45]

Sugar beet Pigweed,
Lambsquarters,
Hare’s-ear mustard,
Turnip weed.

Digital Camera VIS ANN 96% (Crop-weed 
distinction)
89% (Plant 

classification)

[46]

Soybean Cephalanoplos,
Digitaria, 
Bindweed.

Digital Camera
(Canon EOS 70D, EF-S 
18-135mm f/3.5-5.6 IS STM)

VIS CNN 92.89% [47]

Maize Convolvulus arvensis, 
Rumex, 
Cirsium arvense.

Snapshot Mosaic Hyperspectral Camera VIS, NIR Random 
Forest

95.9% (convolvulus 
arvensis),70.3% (Rumex)

and 65.9% (cirsium 
arvense) 

[48]



Muppala and Guruviah 

18	 J Phytol  •  2020  •  Vol 12

is a likely option in dealing with pests, diseases, and weeds 
which can save about 30% of the crop yield. Machine vision 
systems linked with fungicide, pesticide, and herbicide sprayers 
autonomously monitoring crop health and taking suitable action 
against the crop-damaging factors will be a regular operation 
in the future. There are still many notable deficiencies related 
to the image sensor’s ability, platform dependability, and lack 
of standardized procedure. With the advancements in image 
processing methods, low-cost hardware and more research focus 
in this domain there will be a greater benefit of these systems 
in precision agriculture. 
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