

Induced Mutation as a Tool for Improving Corm Multiplication in Saffron (*Crocus sativus* L.)

Mohammad Anwar Khan1*, Shaheena Nagoo1, Sabina Naseer1, F.A. Nehvi1 and Sajad Majeed Zargar2

¹Saffron Research Sub-Station, K. D. Research Station, Post Box no. 905-G.P.O. Srinagar, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India.

²School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-J, Chatha, Jammu-18000, J&K, India

Article Info	Summary						
Article History	An attempt was made to create new variants for increasing corm production per planting						
Received : 10-02-2011 Revisea : 09-03-2011 Accepted : 07-04-2011	cycle through the induction of mutations using physical [Gamma rays in Kilo-Roentgen (kr)] and chemical (Ethyl Methane Sulphonate, Colchicine, Ethidium bromide) mutagens at different growth stages of saffron using fortnight treatments (Ist June, 15 th June, Ist July, 15 th						
*Corresponding Author	July, Ist August, 15 th August, 1 st September, 15 th September). Initially, 44 plants were						
Tel : + 91-9419712102 Fax : +91-1942305084 Email: anwarkhan143@gmail.com	selected mutagenic plants in M3 generation during the year 2010 identified the treatments D2T6 (15 th June treatments of corms with 0.1% EMS) and D8T6 (15 th June treatment of corms with Colchicine 0.05%) both producing highest number of daughter corms (15) per mother corm followed by D2T2 (15 th June treatment of corms with 0.2kr gamma radiations) producing 12 daughter corms per mother corm. Thus, 15 th June is proposed as ideal time for treatment of saffron corms in order to induce increased number of daughter corms per						
	mother corm. Further 0.2kr dose gamma radiation is having positive effect on increasing number of daughter corms per mother corm. Standardization of such technique could add to economic stability of farmers, make available considerable quantity of saffron corms for area expansion and by that add to the saffron area and production of our country.						
©ScholarJournals, SSR	Key Words: Mutagenesis, Variability, Corm Production, Corm Multiplication						

Introduction

Saffron is triploid (2n=3X=24), sterile geophyte and is propagated solely vegetatively by means of corms. The autotriploid nature of this Crocus sp. renders chances of crop improvement through conventional means like hybridization very difficult [1]. The triploid condition in saffron only allows vegetative multiplication, but no regular sexual reproduction due to meiotic abnormalities which result in abnormal chromosome assortment and formation of an abnormal number of genetically unbalanced spores that vary in shape and size leading to complete sterility [2]. However, there have been efforts by different researchers to this effect using nonconventional breeding techniques [3-6]. Therefore, utilization of heterogenity in the natural population which is due to genetic and environmental factors offers a tremendous scope for saffron improvement. Mutation breeding technique is presently used for induction of genetic variability [7]. The use of mutagenesis could enhance the multiplication rate of saffron corms per planting cycle (4-5 years) in absence of sexuality and thus increase the scope of improvement of saffron through mutation breeding.

Materials and Methods

The corms of uniform weight (10 g) from natural saffron population were subjected to five dozes of Co^{60} gamma rays at Bhaba Atomic Research Centre, Srinagar during 2007 viz; 0.1 Kr, 0.2 Kr, 0.3 Kr, 0.4 Kr and 0.5 Kr and five doses of chemical

mutagens viz., Ethyl Methane Sulphonate (0.1 and 0.2%), Ethidium Bromide (0.1 and 0.2%) and Colchicine (0.05%). Each treatment (T1 to T10) was subjected to 8 sets of 100 dormant saffron corms at regular interval of 15 days starting from 1st June to 15th September (D1 to D8). Treated corms were planted at the Saffron Research Sub-Station with a planting geometry of 20 x 10 cm². Data on number of corms per mother corm, total number of flowers per plot, average number of leaves per plant, average plant height (cm), average leaf width (mm), fresh flower weight (g), fresh pistil weight (g), dry pistil weight (g) and saffron yield kg/ ha were recorded for M3 generation.

Results and Discussion

Initially 44 plants were selected on the basis of their higher yield performances during M0 (2007), M1 (2008) and M2 (2009) generations. Further evaluation of those 44 selected mutagenic plants produced through physical and chemical mutagenesis applied at different growth stages of saffron in M3 generation during the year 2010 identified the treatments D2T6 (15th June treatments of corms with 0.1% EMS) and D8T6 (15th June treatment of corms with Colchicine 0.05%) both produced highest number of daughter corms (15) per mother corm followed by D2T2 (15th June treatment of corms with 0.2kr gamma radiations) producing 12 daughter corms per mother corm, as compared to control (Natural Population) producing

_

only 5 daughter corms per mother corm (Table 1). Thus, 15th June is proposed as ideal time for treatment of saffron corms in order to induce increased number of daughter corms per mother corm. Further 0.2kr dose gamma radiation is having positive effect on increasing number of daughter corms per mother corm. EMS has been reported to induce nuclear as well as cytoplasmic mutations in crop plants [8]. Further the effect of various doses and treatment durations of physical and chemical mutagens in inducing variability for economic traits in crop plants has also been reported [8, 9, 10, 11]. Data on traits other than yield attributing traits like average number of leaves per plant, average plant height (cm), average leaf width (mm) recorded during M3 generation identified 0.2kr treatment on 15th June and 15th July as promising. Stunted growth, reduction in survival and reduced fertility was attributed to genetic loss due to chromosomal aberrations and gene mutations [12, 13].

Conclusion

Standardization of technique of using induced mutagenesis for enhancing the rate of corm multiplication in saffron would add to economic stability of farmers, make available considerable quantity of saffron corms for area expansion and by that add to the saffron area and economize the saffron cultivation of our country.

Table 1. Evaluation of selections made from mutation breeding experiment (Plot size- 0.75 m ²)												
S. No	Treatment	Mutant selections ¥	No. of corms per mother corm	Total Number of Flowers per plot	Number of leaves	Plant Height (cm)	Avg. Leaf width (mm)	Fresh Flower Weight (g)	Fresh Pistil Weight (g)	Dry Pistil Weight (g)	Yield Kg/ha	
1	2	3	4	5	6	7	8	9	10	11	12	
1	D1T1	R2P10	2	4	9	25	1.8	1.64	0.148	0.033	0.440	
2		R3P10	6	8	10	17	0.8	3.28	0.295	0.065	0.866	
3		R9P2	5	9	8	10	1.0	3.69	0.332	0.074	0.986	
4		R6P5	3	5	24	20	1.0	2.05	0.185	0.041	0.547	
5	D1T2	R9P4	4	7	10	27	1.0	2.87	0.258	0.057	0.760	
6	D1T5	R5P6	2	6	8	16	1.0	2.46	0.221	0.049	0.653	
7	D1T6	R7P10	2	5	8	19	1.1	2.05	0.185	0.041	0.547	
8	D1T7	R3P1	4	7	32	12	0.6	2.87	0.258	0.057	0.760	
9		R3P8	8	10	21	23	1.85	4.1	0.369	0.082	1.093	
10	D1T9	R6P1	5	8	41	18	1.2	3.28	0.295	0.065	0.866	
11		R4P9	4	7	23	20	0.9	2.87	0.258	0.057	0.760	
12		R2P9	10	16	10	38	1.0	6.56	0.590	0.131	1.746	
13	D1T10	R6P9	4	7	5	36	1.3	2.87	0.258	0.057	0.760	
14	D212	R3P5	4	9	50	19.5	1.0	3.69	0.332	0.074	0.986	
15		R2P3	12	17	7	30	1.0	6.97	0.627	0.139	1.853	
16		R5P7	6	8	23	22	1.1	3.28	0.295	0.065	0.866	
1/		R4P10	10	13	12	29	0.7	5.33	0.480	0.107	1.426	
18	DAT	R/P4	5	9	15	29	1.1	3.69	0.332	0.074	0.986	
19	D216	R6P6	5	8	24	11	0.7	3.28	0.295	0.065	0.866	
20	DOTO	RI0P4	15	22	33	14	0.8	9.02	0.812	0.180	2.399	
21	D213	R2P3	5	/	21	20	0.9	2.87	0.258	0.057	0.760	
22	D319	R3P6	9	13	19	18	0.7	5.33	0.480	0.107	1.426	
23	DOTT	R4P4	5	9	9	30	0.8	3.69	0.332	0.074	0.986	
24	D317	R9P3	4	/	/	20 12 F	0.9	2.87	0.258	0.057	0.760	
25	D3110	R3P1	3	4	27	13.5	0.75	1.64	0.148	0.033	0.440	
20	D412	R4P9	9	10	45	10.5	0.7	4.1	0.369	0.082	1.093	
27	D415	R5P10	5	0	33	15	0.0	2.40	0.221	0.049	0.003	
28	D512 DET4	R4P7	0	7	20	12	0.0	2.87	0.258	0.057	0.760	
29	D310	R2P3	/	/	19	30 12	1.4	Z.07	0.200	0.057	0.700	
3U 21	D012		10 5	13	24	13	0.0	0.33	0.460	0.107	1.420	
51	D017	1.41 1	5	9	25	10	0.7	3.69	0.332	0.074	0.986	
32	D6110	R7P6	10	11	27	27	0.9	4.51	0.406	0.090	1.200	
33	D/18	R4P10	10	9	27	18	0.9	3.69	0.332	0.074	0.986	
34		R4P9	3	5	38	18	1.0	2.05	0.185	0.041	0.547	
35	D7T9	R3P4	10	12	22	26	1.0	4 92	0 443	0.098	1 306	
36		R1P4	4	7	20	19	1.0	2.87	0 258	0.057	0 760	
37		R10P8	10	11	18	30	1.2	4 E1	0.404	0.000	1 200	
20	DOTA		7	11	11	10	0.0	4.51	0.406	0.090	1.200	
38	D814	R0P1	/ F	8	10	15	0.8	3.28	0.295	0.065	0.866	
39 10	νάιδ	К IP I D2D1	ວ ວ	1	19	∠1 20	1.2	2.87	0.208	0.057	0.700	
40		K2P1	3	5	∠4 _	20	1.0	2.05	0.185	0.041	0.547	
41	D8T1	R3P9	10	11	7	10	0.6	4.51	0.406	0.090	1.200	
42	D8T6	R3P10	15	19	12	18	0.9	7.79	0.701	0.156	2.079	
43		R5P6	5	8	19	17	1.0	3.28	0.295	0.065	0.866	
44	D8T10	R6P5	14	16	28	15	0.8	6.56	0.590	0.131	1.746	
45	Control	Natural	10	11	17	17	0.9	4.51	0.406	0.090	1.200	

- 1st June to 15th September treatment (D1 to D8), Doses of physical and chemical mutagens (T1 to T10); ¥- R= row number, P= plant number selected

References

- D. Baskerand, M. Negbi.1983. Uses of Saffron. Econ. Bot. 37:228-236.
- [2] G. Chichirricco. 1990. Sterlity and improvement of saffron Crocus: In Tammaro and Marra (eds): Lo Zafferano: Proceeding of the International Conference in saffron (*Crocus sativa L.*) L" Aquila (Italy) 27-29 October 1989. Universita Degli Studi L' Aquila e Academia Italiana della Cuema, L'Aquila.
- [3] A. Estilai. 1978. Variability in saffron (*Crocus sativus* L.). Experientia 34:725-727.
- [4] A. H. Dhar, R. Sapru, K. Rebha. 1988. Studies on saffron in Kashmir. Variation in natural population on cytological behaviour. Crop Improv. 15(1):48-52.
- [5] A. R. Bagheri. 1989. Variation studies in saffron (*Crocus sativus* L) and its possible application in saffron breeding .I.R.O.S.T. Mashad, Iran.
- [6] F. A. Nehvi. 2003. Problems and prospects of saffron Improvement in India. Proc. International Seminar on Industrial use of biotechnology. 27th September to 1st October, 2003. Islamic Republic of Iran.

- [7] F. A. Nehvi, M. A. Khan, Ajaz A. Lone, M. I. Makhdoomi, Shafiq A. Wani and Vaseem Yousuf (2010) Effect of radiation and chemical mutagens on variability in saffron (*Crocus sativus* L.). Acta Hort. (ISHS) 850: 67-74.
- [8] Akhund-Zade and R. S. Muzaferova. 1975. Studies of the effectiveness of gamma irradiation of the saffron. Radiobiologiya 15(2):319-322.
- [9] U. Laneri, S. Lucretti. 1983. Propagazione in vitro di *Crocus sativus* L. rapporto dei resultati ottenuti nel 1982. ENEA. Rome, RT/FARE-SIN (83).
- [10] I. A. Khan. 2004. Induced mutagenic variability in saffron (*Crocus sativus* L.) Acta Hort. 650:281-283.
- [11] F.A. Nehvi, S.A. Wani, S.A. Dar, M.I. Makhdoomi, B.A. Allie, Z.A.Mir. 2006. Biological Interventions for enhancing Saffron Productivity in Kashmir. Acta Hort. (ISHS) 650: 67-74
- [12] A. H. Sparrow, R. L. Gunay, J. P. Micksche, L. A. Schairer. 1967. Some factors affecting the responses of plant to acute and chronic radiation exposure. Rad. Bot. 1:10.
- [13] S. K. Datta, M. M. Gupta. 1980. Effect of gamma irradiation on rooted cuttings of small flowered chrysanthemum. New Bot. VII (7):3-85.