

Cytogenetic Effects of Individual and Combined Treatment of Cd²⁺, Cu²⁺ and Zn²⁺ in *Vigna radiata* (L.) Wilczeck

Manoj Kumari^{1*}, Vijay Kumar Sinhal², Alok Srivastava¹ and V.P. Singh¹

¹Department of Plant Science, M.J.P. Rohilkhand University, Bareilly -243006, India ²Department of Botany Maharaja Agrasen Mahavidyalaya, Bareilly, UP, India

Article Info	Summary
Article History	The present investigation has been designed to evaluate the cytogenetic effects of individual
Received : 19-04-2011 Revisea : 05-07-2011 Accepted : 07-07-2011	treatment of Cd ²⁺ (0.2mg L ⁻¹), Cu ²⁺ (6.5, 7.5 and 8.5mg L ⁻¹), and Zn ²⁺ (6.3, 7.3 and 8.3mg L ⁻¹) and combined treatments of Cd ²⁺ (0.2mg L ⁻¹) with Cu ²⁺ (6.5, 7.5 and 8.5mg L ⁻¹) and Zn ²⁺ (6.3, 7.3 and 8.3mg L ⁻¹) in two cultivars i.e.PDM-139 and K-851 of <i>Vigna radiata</i> (L.) Wilczek.
*Corresponding Author	 The impacts of these doses were measured in terms of germination percentage, plant height, fresh and dry weight of plants, number and weight of root nodules, pollen and seed
Tel : +91-9219894002	fertility, mitotic index and mitotic anomalies. The results showed that germination percentage, plant height, fresh and dry weight of plant, number and weight of root nodules,
Email: mrs.manojsingh@rediffmail.com	pollen and seed fertility, and mitotic index in both the cultivars were significantly reduced under the influence of all the individual treatment of heavy metals however, mitotic anomalies were enhanced. Cd^{2+} induced reductions in above mentioned growth parameters were significantly enhanced due to Cu^{2+} supplementation but such reductions were significantly recovered with Zn^{2+} supplementation. On the other hand, supplementation of Cu^{2+} increased the Cd^{2+} induced mitotic anomalies however Zn^{2+} supplementation was able to decrease the mitotic anomalies. It is clear from the present study that the individual treatments of Cd^{2+} , Cu^{2+} and Zn^{2+} are toxic to both the cultivars of <i>Vigna radiata</i> (L.) and the toxicity caused by Cd^{2+} is enhanced by Cu^{2+} supplementation but recovered by Zn^{2+} supplementation.
©Scholar Journals, SSR	Key Words: Cadmium, Copper, Zinc, Combination, Cytogenetic, Vigna radiata

Introduction

Heavy metals at extremely micro concentrations affect different cellular components, thereby interfering with the normal metabolic functions [1]. Important sources of heavy metals include metalliferous mining, smelting processes, industrial emissions, effluents, vehicle emission, dumped waste material, sewage sludge, pig slurry, composted town refuse, fertilizers, oil emeliorants, pesticides, contaminated dusts and rainfall etc. [2]. Metalliferous environments are often contaminated by more than one metal in potentially toxic concentrations that may have synergistic, additive or antagonistic effects on plants [3].

Cadmium is highly toxic and persistent environmental poison for plants and animals [17]. Cadmium has been classified as group I human carcinogen by the International Agency for Research on Cancer [4]. Cd²⁺ released into the environment tends to concentrate in soils and sediments where it is potentially available to rooted plants. The available Cd²⁺ thereby enters biogeochemical cycle, becomes bioconcentrated [5] and even affects human health e.g. the itai - itai disease caused by cadmium-contaminated rice in Japan. Cd²⁺ induces biochemical [6,7] and genetic [8] changes in plant metabolism and causes a number of toxic symptoms in plants such as inhibition in seed germination [9], growth [10], and nitrogen assimilation [11, 12].

Zn²⁺ is needed as a micronutrient and is an important component of many vital enzymes having a catalytic, cocatalytic and structural role as well as being a structural stabilizer for proteins, membranes and DNA binding proteins (Zn-fingers) [13]. Higher concentrations of heavy metals cause reduction in plant growth and development [14, 15, 16, 17]. Cadmium and zinc (IIB transition elements) have a similar electronic configuration and valence state, possessing equal affinities for sulphur, nitrogen and oxygen ligands and hence similar geochemical and environmental properties [18]. In the recent years, various workers have documented the responses of plants to combinations of Zn^{2+} and Cd^{2+} in soil as well as in solution culture [19, 20].

Copper is also known as essential nutrient for plant growth and development. It is a component of Cu/Zn superoxide dismutase. Despite its role in cellular metabolism the range of Cu²⁺ concentration suitable to an optimum growth of plant is very narrow. Beyond the upper limit the Cu²⁺ is strongly toxic for photosynthetic organisms [21, 22] by affecting the morphology and anatomy of plant organs, photosynthetic and respiratory process, structure and function of membranes, nutrients uptake [23], and nitrogen metabolism [24]. Cu²⁺ is a potent inducer of DNA damage (Hartwing & Schwerdtle, 2002). Various workers reported that combination of Cu²⁺ and Cd²⁺ induced more pronounced toxicity to plant growth and nitrogen assimilation as compared to their isolated treatments [25, 26].

In Bareilly region, *Vigna radiata* (L.) Wilczek (mungbean) is a main cultivated pulse crop. Bareilly city has a number of industries which are releasing heavy metals into the waste water. These heavy metals contaminate the soil of agricultural field and affect the yield and quality of crop plants growing in that soil. It has been analyzed that waste water of Bareilly city contains non-essential heavy metal Cd²⁺ (0.2mg L⁻¹) and essential heavy metals Cu²⁺ (7.5mg L⁻¹) and Zn²⁺ (7.3mg L⁻¹). Therefore, present investigation has been designed to evaluate the cytogenetic effects of individual treatments of Cd²⁺, Cu²⁺, and Zn²⁺ and combined treatment of Cd²⁺ with Cu²⁺ and Zn²⁺ in *Vigna radiata* (L.) Wilczek.

Materials and Methods

The seeds of two cultivars i,e. PDM-139 and K-851 of Vigna radiata (L.) Wilczek were presoaked in distilled water for 8 hours and then soaked for 12 hour with individual doses of Cd²⁺ (0.2mg L⁻¹), Cu²⁺ (6.5, 7.5 and 8.5mg L⁻¹), and Zn²⁺ (6.3, 7.3 and 8.3mg L^{-1}) and combined doses of Cd^{2+} (0.2mg L^{-1}) with Cu²⁺ (6.5, 7.5 and 8.5mg L⁻¹) and Zn²⁺ (6.3, 7.3 and 8.3mg L⁻¹). The heavy metal soaked seeds were thoroughly washed with distilled water. Some of the heavy metal treated seeds were transferred on moist filter paper in Petri dishes to examine the germination percentage, mitotic index and mitotic anomalies. The mitotic index and mitotic anomalies were studied by squash preparation of root tip cells in 2% acetotocarmine stain. To examine the cytogenetic effects of these metals on plant height, fresh and dry weight, number of nodules, fresh and dry weight of nodules, pollen fertility and seed fertility, some of the heavy metal treated seeds were also sown in the field.

Results and Discussion

Germination Percentage

The seeds of both the cultivars of *Vigna radiata* (L.) treated with individual doses of Cd^{2+} , Cu^{2+} and Zn^{2+} showed a marked reduction in germination percentage. Treatments of Cu^{2+} were more toxic than Cd^{2+} and Zn^{2+} . In both the cultivars, combination of Cu^{2+} with Cd^{2+} significantly enhanced the Cd^{2+} induced reduction in germination percentage however combined doses of Zn^{2+} and Cd^{2+} significantly reduced the inhibition in germination percentage as compared to Cd^{2+} alone (Table 1). Such inhibition in seed germination is probably due to the result of interference of heavy metals with the respiratory activity and mobilization of reserves [27] the changes in cellular permeability, inhibition of protease activity and / or direct toxicity to the embryo [9].

Plant Height, Fresh Weight and Dry Weight

Plant height, fresh weight and dry weight of both the cultivars were significantly decreased with the treatment of individual doses of Cd^{2+} , Cu^{2+} and Zn^{2+} . Both the cultivars were more susceptible to Cu^{2+} than Cd^{2+} and Zn^{2+} treatments. Cd^{2+} generated reductions in plant height, fresh weight and dry weight were significantly enhanced due to Cu^{2+} supplementation but significantly reduced with Zn^{2+} supplementation. The inhibition in plant growth by metal supply may be a consequence of inhibition of some primary physiological processes i.e. photosynthesis, nitrogen assimilation and other metabolic processes [25]. The higher

concentrations of heavy metals have been reported to retard cell division, cell differentiation and their elongation affecting plant growth and development [28]. Heavy metals also interfere with nutrients uptake responsible for better plant growth [29].

Number, Fresh Weight and Dry Weight of Root Nodules

Treatments of individual doses of Cd2+, Cu2+ and Zn2+ caused significant reduction in number, fresh weight and dry weight of nodules in both the cultivars. Cu²⁺ was found to be more toxic than Cd^{2+} and Zn^{2+} treatments. In both the cultivars the reductions in these parameters were significantly enhanced with combined doses of Cu2+ and Cd2+ as compared to individual doses of Cd^{2+} however combined doses of Zn^{2+} and Cd²⁺ significantly recovered the Cd²⁺ induced reduction in these parameters (Table 1,2). Treatment of heavy metal suppresses the nitrogen metabolism inhibiting the activities of nitrogen assimilating enzymes [30]. The main toxic effects of heavy metal on nodule structure and function were the occlusion with glycoprotein of intracellular spaces of nodule cortex, alterations in symbiosomes, enrichment in Cd of cell walls and oxidative stress [31]. Higher heavy metal concentrations reduce the nitrogen fixing area and nitrogen fixing cells [32].

Pollen Fertility and Seed Fertility:

A pronounced reduction in pollen and seed fertility of both the cultivars was noticed under the influence of individual doses of Cd^{2+} , Cu^{2+} and Zn^{2+} . The treatments of Cu^{2+} were more effective than Cd^{2+} and Zn^{2+} . In both the cultivars combined treatment of Cu^{2+} with Cd^{2+} significantly increased the Cd^{2+} induced pollen and seed fertility reduction however, Zn^{2+} supplementation significantly suppressed the Cd^{2+} induced reduction in these parameters (Table 2). Similar results of pollen and seed fertility under the influence of these heavy metals were also observed by various workers [7,33].

Mitotic Index and Mitotic Anomalies

The individual doses of Cd^{2+} , Cu^{2+} and Zn^{2+} were significantly able to reduce the mitotic index but increased the mitotic anomalies in both the cultivars. Cu2+ was found to be more effective than $Cd^{2\scriptscriptstyle +}$ and $Zn^{2\scriptscriptstyle +}$ to cause such effects. Supplementation of Cu²⁺ to the Cd²⁺ significantly reduced the mitotic index but enhanced the mitotic anomalies as compared to the individual dose of Cd^{2+} . On the other hand, Zn^{2+} supplementation significantly alleviated the Cd2+ induced inhibition in mitotic index and decreased the Cd2+ generated mitotic anomalies (Table 2,3). Induction of mitotic anomalies under different heavy metal treatments may be due to chromatin agglutination [34] enhanced disturbances of spindle function [27], inhibition of DNA synthesis at S-phase of cell cycle, stickiness of chromosomes due to polymerization of chromosomal nucleic acid, bridge formation due to chromosomal stickiness or due to chromosomal breakage and reunion, and origin of micronuclei from lagging chromosome or form a chromosome fragment [35].

Thus, the heavy metals reaching to the soil through city waste water and industrial waste water contaminate the soil and are toxic to the plants growing in that area. This toxicity especially with heavy metal Cd^{2+} is altered when it is mixed up with other heavy metals i.e. Cu^{2+} and Zn^{2+} . It is interesting to note that the toxicity caused by Cd^{2+} is enhanced

by $Cu^{2_{\rm +}}$ but recovered in the presence of $Zn^{2_{\rm +}}.$ So the application of $Zn^{2_{\rm +}}$ may be useful to recover the toxicity

induced by $Cd^{2_+}.$ Further the lower doses of Zn^{2_+} are more effective in the recovery of Cd^{2_+} induced toxicity.

Table 1. Effects of individual and combined doses of Cd ²⁺ , Cu ²⁺ , Zn ²⁺ in Vigna radiata (L.) Wilczek	<
---	---

Heavy Metal conc. (mg	Germination	Plant Height	Fresh Weight	Dry Weight (gm.)	Number of
L-1)	Percentage	(cm.)	(gm.)		Nodules
PDM-139	_				
Control (Distilled Water)	92.4±1.08	61.44±0.95	49.23±0.72	16.22±0.36	23.2±0.52
Cd ²⁺ 0.2	66.2*±0.95	42.20*±0.68	31.19*±0.58	12.00*±0.41	12.4*±0.36
Cu ²⁺ 6.5	62.0*±0.89	40.26*±0.90	29.00*±0.41	11.20*±0.35	11.8*±0.52
Cu ²⁺ 7.5	58.4*±0.83	36.38*±0.98	25.41*±0.53	9.70*±0.36	11.0*±0.40
Cu ²⁺ 8.5	54.2*±0.77	31.26*±0.49	22.88*±0.61	8.82*±0.41	9.8*±0.33
Zn ²⁺ 6.3	75.8*±1.21	52.20*±0.67	37.43*±0.72	14.13*±0.39	19.4*±0.67
Zn ²⁺ 7.3	71.2*±0.72	46.94*±0.65	36.01*±0.64	13.43*±0.36	16.6*±0.36
Zn ²⁺ 8.3	68.4*±1.19	44.40*±0.44	32.88*±0.69	12.90*±0.34	13.8*±0.44
Control (Cd ²⁺ 0.2)	66.2±0.95	42.20±0.68	31.19±0.58	12.00±0.41	12.4±0.36
Cu ²⁺ 6.5 + Cd ²⁺ 0.2	56.8*±0.82	35.12*±0.56	25.36*±0.44	8.70*±0.30	10.6*±0.46
Cu ²⁺ 7.5 + Cd ²⁺ 0.2	53.2*±1.04	30.38*±0.44	22.36*±0.52	7.80*±0.29	9.6*±0.36
Cu ²⁺ 8.5 + Cd ²⁺ 0.2	50.4*±0.92	26.94*±0.61	20.05*±0.50	6.80*±0.17	8.0*±0.40
Zn ²⁺ 6.3 + Cd ²⁺ 0.2	80.2*±1.04	55.32*±0.79	40.40*±0.61	15.30*±0.37	21.0*±0.49
Zn ²⁺ 7.3 + Cd ²⁺ 0.2	74.4*±0.61	51.44*±0.75	38.91*±0.74	14.21*±0.29	17.8*±0.52
Zn ²⁺ 8.3 + Cd ²⁺ 0.2	71.0*±0.80	47.30*±0.73	37.01*±0.42	13.50*±0.35	14.8*±0.44
<u>K-851</u>					
Control (Distilled Water)	95.0±1.02	69.20±0.26	53.02±0.51	18.54±0.27	21.6±0.46
Cd ²⁺ 0.2	67.2*±0.77	44.06*±0.83	33.43*±0.68	11.40*±0.31	11.8*±0.34
Cu ²⁺ 6.5	64.0*±1.10	41.38*±0.78	30.21*±0.80	11.02*±0.39	11.0*±0.40
Cu ²⁺ 7.5	59.8*±0.77	36.34*±0.91	26.92*±0.58	9.91*±0.37	9.4*±0.22
Cu ²⁺ 8.5	55.2*±0.66	32.42*±0.48	24.34*±0.50	8.96*±0.31	8.6*±0.22
Zn ²⁺ 6.3	79.2*±0.91	53.86*±0.72	41.42*±0.71	15.24*±0.37	16.6*±0.61
Zn ²⁺ 7.3	71.4*±1.08	49.94*±0.84	38.06*±0.67	13.60*±0.33	14.0*±0.63
Zn ²⁺ 8.3	68.4*±1.19	47.20*±0.43	36.37*±0.52	13.02*±0.34	12.4*±0.36
Control (Cd ²⁺ 0.2)	67.2±0.77	44.06±0.83	33.43±0.68	11.40±0.31	11.8±0.34
Cu ²⁺ 6.5 + Cd ²⁺ 0.2	60.4*±0.96	37.16*±0.65	26.39*±0.59	9.40*±0.36	10.0*±0.28
Cu ²⁺ 7.5 + Cd ²⁺ 0.2	56.0*±0.75	31.38*±0.56	22.40*±0.61	8.50*±0.18	8.0*±0.28
Cu ²⁺ 8.5 + Cd ²⁺ 0.2	50.2*±0.52	28.24*±0.77	21.07*±0.49	7.70*±0.26	7.4*±0.22
Zn ²⁺ 6.3 + Cd ²⁺ 0.2	84.8*±1.15	59.32*±0.76	44.40*±0.67	16.42*±0.35	18.0*±0.57
Zn ²⁺ 7.3 + Cd ²⁺ 0.2	75.2*±1.04	54.12*±0.55	43.03*±0.56	15.01*±0.39	15.4*±0.54
Zn ²⁺ 8.3 + Cd ²⁺ 0.2	72.4*±0.78	49.80*±0.70	39.36*±0.53	13.81*±0.28	13.6*±0.46

* significant at 5% leve

Table 2. Effects of individual and combined doses of Cd²⁺, Cu²⁺, Zn²⁺ in Vigna radiata (L.) Wilczek

Heavy Metal conc. (mg L ⁻¹)	Fresh Weight of Nodules (gm.)	Dry Weight of Nodules (gm.)	Pollen Fertility (%)	Seed Fertility (%)	Mitotic Index (%)
PDM-139	(giii)	Houdios (gill)	(70)		(//)
Control (Distilled Water)	0.173±0.018	0.067±0.014	96.28±1.24	4.62±0.23	10.22±0.31
Cd ²⁺ 0.2	0.114*±0.010	0.034*±0.004	75.42*±0.85	3.10*±0.13	6.40*±0.21
Cu ²⁺ 6.5	0.110*±0.010	0.033*±0.006	71.34*±0.93	2.92*±0.16	6.32*±0.22
Cu ²⁺ 7.5	0.091*±0.013	0.027*±0.006	66.08*±0.77	2.70*±0.17	5.88*±0.19
Cu ²⁺ 8.5	0.082*±0.011	0.022*±0.003	59.26*±0.89	2.44*±0.11	5.20*±0.14
Zn ²⁺ 6.3	0.143*±0.017	0.050*±0.006	85.90*±0.90	3.72*±0.17	8.62*±029
Zn ²⁺ 7.3	0.130*±0.014	0.045*±0.009	81.12*±0.97	3.52*±0.26	7.40*±0.23
Zn ²⁺ 8.3	0.121*±0.012	0.039*±0.007	77.06*±0.62	3.20*±0.21	6.74*±0.25
Control (Cd ²⁺ 0.2)	0.114±0.010	0.034±0.004	75.42±0.85	3.10±0.13	6.40±0.21
Cu ²⁺ 6.5 + Cd ²⁺ 0.2	0.084*±0.013	0.028*±0.006	66.40*±0.78	2.62*±0.15	5.60*±0.16
Cu ²⁺ 7.5 + Cd ²⁺ 0.2	0.070*±0.012	0.022*±0.004	59.14*±0.87	2.30*±0.10	5.02*±0.18
Cu ²⁺ 8.5 + Cd ²⁺ 0.2	0.062*±0.015	0.018*±0.006	55.06*±0.66	2.02*±0.11	4.10*±0.19
Zn ²⁺ 6.3 + Cd ²⁺ 0.2	0.160*±0.012	0.058*±0.011	90.16*±0.92	4.02*±0.26	9.12*±0.29
Zn ²⁺ 7.3 + Cd ²⁺ 0.2	0.151*±0.014	0.050*±0.009	86.38*±0.63	3.70*±0.21	7.88*±0.24
Zn ²⁺ 8.3 + Cd ²⁺ 0.2	0.130*±0.013	0.044*±0.009	81.06*±0.90	3.52*±0.13	7.14*±0.28
<u>K-851</u>					
Control (Distilled Water)	0.182±0.019	0.068±0.011	97.04±0.92	5.10±0.20	11.00±0.31
Cd ²⁺ 0.2	0.110*±0.009	0.034*±0.006	70.18*±0.98	3.32*±0.15	7.20*±0.24
Cu ²⁺ 6.5	0.110*±0.010	0.031*±0.006	67.20*±0.83	3.10*±0.15	7.02*±022
Cu ²⁺ 7.5	0.100*±0.012	0.028*±0.005	63.28*±0.91	2.78*±0.16	6.54*±0.24
Cu ²⁺ 8.5	0.090*±0.011	0.023*±0.003	59.86*±0.50	2.40*±0.12	5.30*±0.17

Zn ²⁺ 6.3	0.140*+0.016	0.051*+0.010	86.30*+0.86	4.02*+0.19	8.84*+0.29
Zn ²⁺ 7.3	0.134*±0.014	0.045*±0.009	78.32*±0.67	3.80*±0.21	8.10*±0.27
Zn ²⁺ 8.3	0.123*±0.011	0.041*±0.007	73.06*±0.47	3.42*±0.17	7.54*±0.21
Control (Cd ²⁺ 0.2)	0.110±0.009	0.034±0.006	70.18±0.98	3.32±0.15	7.20±0.24
Cu ²⁺ 6.5 + Cd ²⁺ 0.2	0.092*±0.014	0.028*±0.006	62.40*±0.94	2.72*±0.14	6.40*±0.20
Cu ²⁺ 7.5 + Cd ²⁺ 0.2	0.084*±0.015	0.023*±0.003	57.94*±0.72	2.54*±0.14	5.62*±0.18
Cu ²⁺ 8.5 + Cd ²⁺ 0.2	0.070*±0.012	0.019*±0.005	53.06*±0.60	2.00*±0.15	4.40*±0.20
Zn ²⁺ 6.3 + Cd ²⁺ 0.2	0.164*±0.013	0.057*±0.011	91.16*±0.57	4.32*±0.19	9.38*±0.30
Zn ²⁺ 7.3 + Cd ²⁺ 0.2	0.150*±0.014	0.051*±0.008	85.38*±0.81	4.10*±0.20	8.40*±0.24
Zn ²⁺ 8.3 + Cd ²⁺ 0.2	0.142*±0.014	0.046*±0.008	78.10*±0.82	3.82*±0.18	7.92*±0.26

* significant at 5% level

Heavy Metal conc. (mg L ⁻¹)	Laggards	Bridges	Stickiness	Clumping	Total mitotic anomalies (%)
PDM-139	_				
Control (Distilled Water)	0.00	0.00	0.00	0.00	0.00
Cd ²⁺ 0.2	0.21	0.31	0.67	0.73	1.92
Cu ²⁺ 6.5	0.00	0.72	0.29	1.01	2.02
Cu ²⁺ 7.5	0.32	0.00	0.77	1.13	2.22
Cu ²⁺ 8.5	0.00	0.80	0.20	1.40	2.40
Zn ²⁺ 6.3	0.43	0.00	0.25	0.64	1.32
Zn ²⁺ 7.3	0.20	0.33	0.81	0.26	1.60
Zn ²⁺ 8.3	0.50	0.55	0.00	0.75	1.80
Control (Cd ²⁺ 0.2)	0.21	0.31	0.67	0.73	1.92
Cu ²⁺ 6.5 + Cd ²⁺ 0.2	0.00	0.35	0.72	1.13	2.20
Cu ²⁺ 7.5 + Cd ²⁺ 0.2	0.34	0.53	0.21	1.40	2.48
Cu ²⁺ 8.5 + Cd ²⁺ 0.2	0.00	0.40	0.83	1.49	2.72
Zn ²⁺ 6.3 + Cd ²⁺ 0.2	0.43	0.48	0.21	0.00	1.12
Zn ²⁺ 7.3 + Cd ²⁺ 0.2	0.19	0.40	0.49	0.30	1.38
Zn ²⁺ 8.3 + Cd ²⁺ 0.2	0.27	0.73	0.00	0.60	1.60
K-851					
Control (Distilled Water)	0.00	0.00	0.00	0.00	0.00
Cd ²⁺ 0.2	0.29	0.17	0.51	0.85	1.82
Cu ²⁺ 6.5	0.00	0.82	0.00	1.08	1.90
Cu ²⁺ 7.5	0.42	0.46	0.40	0.96	2.24
Cu ²⁺ 8.5	0.30	0.11	0.70	1.39	2.50
Zn ²⁺ 6.3	0.32	0.52	0.36	0.00	1.20
Zn ²⁺ 7.3	0.63	0.30	0.18	0.47	1.58
Zn ²⁺ 8.3	0.12	0.30	0.51	0.79	1.72
Control (Cd ²⁺ 0.2)	0.29	0.17	0.51	0.85	1.82
Cu ²⁺ 6.5 + Cd ²⁺ 0.2	0.00	0.34	0.50	1.28	2.12
Cu ²⁺ 7.5 + Cd ²⁺ 0.2	0.20	0.38	0.79	1.07	2.44
Cu ²⁺ 8.5 + Cd ²⁺ 0.2	0.12	0.19	1.10	1.39	2.80
Zn ²⁺ 6.3 + Cd ²⁺ 0.2	0.34	0.44	0.22	0.00	1.00
Zn ²⁺ 7.3 + Cd ²⁺ 0.2	0.38	0.30	0.00	0.64	1.32
Zn ²⁺ 8.3 + Cd ²⁺ 0.2	0.50	0.00	0.44	0.56	1.50

References

- [1] Prasad, M.N.V. & Hagemeyer, J. (1999). Heavy metal stress in plants from molecules to ecosystems. Springer-Verlage, Heidelberg.
- [2] Shyamala, D. & Rao, D.R.R. (1999). Mercury accumulation in certain plant species exposed to cement dust pollution. *Curr. Sci.* 76: 1075-1076.
- [3] Siedlecka, A. (1995). Some aspects of interactions between heavy metals and plant mineral nutrients. *Acta Soc. Bot. Pol.* **3**: 265-272.
- [4] Waalkes, M. (2000). Cadmium carcinogenesis in review. *J. Inorg. Biochem.* **79**: 214-244.
- [5] Devi, M.; Thomas, DA., Barber, J.T. & Fingerman, M. (1996). Accumulation and physiological and biochemical effects of cadmium in a simple aquatic food chain. *Ecotox. Environ. Safety* **33**: 38-43.

- [6] Aravind, P. & Prasad, M.N.V. (2005). Cadmium zinc interactions in a hydroponic system using *Ceratophyllum demersum* L.: adaptive ecophysiolgoy, biochemistry and molecular toxicology. *Brazilian. J. Plant Physiol.* 17(1): 1-26.
- [7] Kumari, M. (2008). Combined effects of Cu²⁺ and Zn²⁺ on Cd²⁺ induced toxicity in *Vigna radiata* (L.) Wilczek. Ph.D. Thesis. M.J.P. Rohilkhand University, Bareilly, India.
- [8] Banerjee, S. & Rozas, H.F. (2005). Cadmium inhibits mismatch repair by blocking the ATPase activity of the the MSH2-MSH6 complex. *Nucleic Acids Research* 33(4): 1410-1419.
- [9] Al-Yemini, M.N. (2001). Effect of Cd⁺⁺, Hg⁺⁺ and Pb⁺⁺ on seed germination and early seedling growth of *Vigna ambacensis* (L.). *Indian J. Plant Physiol.* 6(2): 147-151.
- [10] Wang, C.C. & Shen, Z.G. (2001). Uptake of Cd by three species of plants and responses of mungbean to Cd

toxicity. J. Nanjing Agric. Uni. 24(4): 9-13.

- [11] Keshan V. (1999). Effects of cadmium on ammonia assimilating enzymes and ultrastructures of leaf and nodule in mungbean *Vigna radiata* L. Wilczek. *Indian J. Exp. Biol.* **37(12)**: 1227-1233.
- [12] Garg, R. (2005). Phytotoxic, cytogenetic and biochemical effects of heavy metals (Cu⁺⁺ & Cd⁺⁺) in *Vigna mungo* (L.) Hepper. Ph.D. Thesis, M.J.P. Rohilkhand University, Bareilly, India.
- [13] Vallee, B.L. & Falchuk, K.H. (1993). The biochemical basis of zinc physiology. *Phys. Rev.* **73**: 79-118.
- [14] Manivasagaperumal, R. & Vijayarengen, P. (2005). Influence of zinc on the biochemical constituents of *Vigna radiata* (L.) Wilczek. *Plant Archives* 5(2): 489-492.
- [15] Sinhal, V.K. (2007). Phytotoxic and cytogenetic effects of Zn²⁺ and Pb²⁺ in *Vicia faba* (L.). *Poll. Res.* 26(3): 417-420.
- [16] Sinhal, V.K.; Gupta; S.K.; Srivastava, A.; Singh, U.P. & Singh, V.P. (2007). Effect of zinc on growth and NR activity in black gram antagonized by magnesium and sucrose. *Indian J. Plant Physiol.* **12(1)** New Series: 95-99.
- [17] Fergusson, I.E. (1991). The heavy elements: Chemistry, environmental impact and health effects. Pergamon Press, Oxford, Newyork, pp. 329-406.
- [18] Nan, Z.; Li, J.; Zhang, J. & Cheng, G. (2002). Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. *Sci. Total Environ.* 285: 187-195.
- [19] Wu, F. & Zhang, G. (2002). Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. *J. Plant Nutr.* 25(12): 2745-2761.
- [20] Sharma, R.K.; Agrawal, M. & Agrawal, S.B. (2008). Interactive effects of cadmium and zinc on carrots: growth and biomass accumulation. *J. Plant Nutr.* **31(1)**: 19-34.
- [21] Shen, Z.; Zhang, F. & Zhang, F. (1998). Toxicity of Copper and zinc in seedlings of mung bean and inducing accumulation of polyamine. *J. Plant. Nutr.* (USA) 21(6): 1153-1162.
- [22] Sosse, B.A. (2004). Effect of copper on growth in cucumber plants (*Cucumis sativus*) and its relationships with carbohydrate accumulation and changes in ion contents. 166(1): 1213-1218
- [23] Demidchik, V.V.; Sokolik. A.L. & Yurin, V.M. (2001). Toxicity of copper excess and tolerance of plants. Uspekhi Sovremennoi Biologii 121(5): 511-525.
- [24] Singh, R.P.; Bharti, N. & Kumar, G. (1994). Differential

toxicity of heavy metals to growth and nitrate reductase activity of *Sesamum indicum* seedlings. *Phytochem.* **35** (5): 1153-1156

- [25] Bharti, N. & Singh, R.P. (1994). Antagonistic effect of sodium chloride to differential heavy metal toxicity regarding biomass accumulation and nitrate assimilation in *Sesamum indicum* seedlings. *Phytochem.* 35(5): 1157-1161
- [26] Youn, J.A., Young, M.K.; Tae, I.K. & Seung, W.J. (2004). Combined effect of copper, cadmium, and lead upon *Cucumis sativus* growth and bioaccumulation. *Sci. Total Envicon.* 326(1-3): 85-93.
- [27] Jain, R.; Srivastava, S. & Madan, V.K. (2000). Influence of chromium on growth and cell division of suger cane. *Indian J. Plant Physiol.* 5(3): 228-231.
- [28] Kastori, R., Plesnicar, M.; Sakae, Z.; Pankovic, D. & Arsenijevic, L.I. (1998). Effect of excess lead on sunflower growth and photosynthesis. *J. Plant Nutr.* 21: 75-85.
- [29] Shukla, U.C.; Singh, J.; Joshi, P.C. & Kakkar, P. (2003). Effect of bioaccumulation of cadmium on biomass productirity, essential trace elements, chlorophyll biosythesis, and macromolecules of wheat seedings. *Biol. Trace Element Res.* **92(3)**: 257-273
- [30] Sinhal, V.K.; Singh, V.P. & Srivastava, A. (2006). The effects of Zn²⁺ and Pb²⁺ on the nitrogen metabolism in *Vigna mungo* (L) Hepper. *I. Indian Bot. Soc.* 85: 56-60.
- [31] Carpena, R.; Vazquez, S.; Esteban; E.; Fernandez. P.M.; Resario, D.F.M. & Zornora, P. (2003). Cadmium stress in white lupin: Effects on nodule structure and functioning. *Plant Physiol. Biochem.* **41(10)**: 911-919.
- [32] Chen, Y.X.; He, Y.F.; Yang, Y.; Yu, Y.L.; Zheng, S.J.; Tian, G.M.; Luo, Y.M. & Wang, M.H. (2003). Effect of cadmium on nodulation and N₂ fixation of soybean in contaminated soils. *Chemosphere* **50(6)**: 781-787.
- [33] Sinhal, V.K. (2005). Phytotoxic, cytogenetic and biochemical effects of heavy metals (Zn⁺⁺ & Pb⁺⁺) in *Vigna mungo* (L.) Hepper. Ph.D. Thesis. M.J.P. Rohilkhand University, Bareilly, India.
- [34] Verma, U. & Purnima (1992). Analysis of malathion induced meiotic anomalies in *Brassica juncea* cv. Kranti. *Proc. Conf. Gyto. Cenet.* **3**: 56-63.
- [35] Kumar, G. & Tripathi, A. (2003). Comparative mitotoxicity and mutagenicity of two heavymetals in *Alliumcepa* (L.). *J. Cytol.Genet.***4**:169-173.