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SUMMARY 

Plant growth promoting rhizobacteria (PGPR) are usually applied to a wide range of 
agricultural crops for the purpose of growth enhancement, including increased seed 
germination, plant weight, and harvest yields. PGPR colonization triggers plant growth 
by bacterial synthesis of plant hormones including indole-3- acetic acid, cytokinin, and 
gibberellins as well as by increased mineral and nitrogen availability in the soil. Some of 
them were also known to protect their host plant from pathogenic microorganisms. The 
role played by PGPR in relation to medicinal plants and their effect on the production of 
botanicals is an area remaining naive.  This paper brings out the possible PGPR – 
medicinal plant interactions which could improve the potency of the medicinal plant, 
particularly the cultivated one.  Endophytic microorganisms of medicinal plants and 
their role in relation to bioactive potentials in the generation of phytochemicals also have 
been discussed. 
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1. Introduction 
The World Health Organization (WHO) 

estimated that 80% of the population of 
developing countries relies on traditional 
medicines, mostly plant drugs, for their 
primary health care needs (Farnsworth, 1990). 
Also, modern pharmacopoeia contains at 
least 25% drugs derived from plants. Many 
other are synthetic analogues built on 
prototype compounds isolated from plants. 
Demand for medicinal plant is increasing in 
both developing and developed countries 
due to growing recognition of natural 
products, being non-toxic, having no side-
effects and affordable prices. Allopathic 
medicine also owes a tremendous debt to 
medicinal plants: one in four prescriptions 
filled in a country like the United States is 
either a synthesized form of or derived from 
plant materials.  Habitat loss and 
deforestation coupled with over harvesting 

has resulted in dwindling population of 
important medicinal plants around the world.  
So, direct extraction of natural products from 
wild medicinal plants to satisfy the current 
requirement is fast becoming an unrealistic 
goal.  Domestic cultivation of medicinal 
plants was thought as a viable alternative. 
But, certain drawbacks including variability 
in yield and difference in phytochemical 
profile over wild one are making it as a last 
resort (Kala, et al., 2006).  Hence, this article is 
aimed to throw light on the alternative 
approaches like investigating plant microbe 
interactions with medicinal plants and to 
produce desired or enhanced levels of 
phytochemicals exploiting this relationship 
or to use the interacting microorganism per se 
as a source of phytochemical.  
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Problems associated with the production of 
phytochemicals through tissue culture 

Compounds derived from primary 
pathways make up the bulk of a plant. These 
are polysaccharides, sugars, proteins and fats, 
which are the building blocks for plant 
growth. Present at a much lower 
concentration are the secondary products, 
which include alkaloids, terpenoids, 
phenolics, steroids and flavonoids, and these 
have a wide diversity in structure and size 
and are found in very large numbers 
throughout the plant kingdom. It is 
estimated that there are approximately 
100,000 different plant-derived compounds, 
with a large number of new ones being 
added to the list every year (Verpoorte et al., 
1998). Besides direct extraction from plants, 
and chemical synthesis to provide those 
compounds or derivatives with similar uses, 
plant cell culture has been developed as an 
alternative for producing metabolites that are 
difficult to be obtained by chemical synthesis 
or plant extraction (Table 1).  

However, in spite of four decades of 
efforts, production of plant secondary 
metabolites by plant cell culture technology 
is still facing many biological and 
biotechnological limitations. One of the 
major obstacles is the low yield of plant 
secondary metabolites in plant cell cultures. 
When, Gloriosa superba L. was raised in vitro, 
the plant did not produce even nanogram 
quantity of the 24 or so alkaloids listed 
including colchicines and colchicoside 
(Sivakumar et al., 2004).  The production of 
Shikonin by Lithospermum erythrorhizon 
Siebold & Zucc. cell cultures and of 
Taxol/Paclitaxel by Taxus cell cultures are 
the only successful commercial examples so 
far. The culture of plant cells on a large scale 
has been regarded as a convenient, reliable 
and potential source of secondary products 
than intact plants but the success list is small 
because only a few compounds harvested 
from tissue culture satisfy the commercial 
and biological criteria imposed on the 
product i.e. a high value and low volume, a 
strong commercial demand, a high yield in 
culture and the maintenance of a high yield 
in large-scale culture.  Since the major roles 
of plant secondary metabolites are to protect 

plants from attack by insect, herbivores and 
pathogens, or to survive other biotic and 
abiotic stresses, some strategies for culture 
production of the metabolites based on this 
principle have been developed to improve 
the yield of such plant secondary metabolites. 
These include treatment with various 
elicitors, signal compounds and abiotic 
stresses (Yukimune et al., 1996; Zhao et al., 
2000, 2001a,b,c and Zhang et al., 2004). 
Constant efforts are being made by 
researchers in the following lines to improve 
the situation: 

• improving chemical 
processing and bioreactor performance 
or employing elicitors, abiotic stresses 
and other approaches, regardless of 
their mechanisms (Zhong, 2001) 

• studying signal transduction 
pathways leading to biosynthesis of 
target secondary metabolites (Zhao et 
al., 2005) 

• studying transcription factors 
and their regulation mechanisms, 
including genetic manipulation of 
regulator genes to improve production 
of target secondary metabolites 
(Memelink et al., 2001) 

• cloning of secondary 
metabolite biosynthetic genes and 
genetic modification of key genes to 
engineer the metabolic flux to target 
compounds (Verpoorte and Memelink, 
2002) 

• studying metabolic flux and 
profiling metabolic intermediates to 
understand whole pathways and 
overall regulation of target compound 
accumulation (Sumner et al., 2003) 

• studying gene transcripts for 
plant secondary metabolism by 
profiling and analyzing global gene 
expression under different conditions 
to understand the regulation of plant 
secondary metabolism in a whole sense 
(Goossens et al., 2003). 

In addition to these approaches, employing 
microorganisms as co-cultures by biotization is 
tried. Biotization is a metabolic response of in 
vitro-grown plant material to a microbial 
inoculant(s), leading to the developmental and 
physiological changes enhancing biotic and 
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abiotic stress resistance of the derived 
propagules.  When plantlets were co-cultured 
with PGPR it has been reported to produce 
more biomass and secondary metabolites. The 
Origanum vulgare L. plantlets when co-cultured 
with Pseudomonas spp. lowered the water 

content and contained more phenolics and 
chlorophyll than non bacterized controls 
(Nowak, 1998).  Generally, biotization can be 
done as a bioassay experiment for short listing 
the PGPR isolates for their growth promoting 
properties.

  
Table 1: Problems associated with direct secondary metabolite isolation from some source plants 

 

S. 
No. Plant Secondary 

Metabolite Use Problem Reference 

1 Podophyllum 
hexandrum Royle Podophylloxin Anticancer Endangered 

species 

Alfermann and 
Petersen,  1995 
 

2 Pilocarpus 
jaborandis Holmes Pilocarpine 

Treatment 
of  
glaucoma 
 

Endangered 
species 

Alfermann and 
Petersen, 1995 

3 Catharanthus roseus 
(L.) G. Don 

Vinblastine, 
Vincristine  

Anticancer 
drug 

Low yield 
 Collin, 2001 

4 Catharanthus roseus 
(L.) G. Don Ajmalcine 

Treatment 
of 
circulatory 
disorders 
 

Low yield Collin, 2001 

 

Plant associated microorganisms and their 
use as biotic elicitors 

Plant-associated microorganisms (PAMs) 
play essential roles in agricultural and food 
safety contributing to the environmental 
equilibrium. Both aerial and subterranean 
plant organs are constantly exposed to 
intimate contacts with diverse 
microorganisms.  Plant microbe interactions 
occur at phyllosphere (aerial plant part), 
rhizosphere (zone of influence of the root 
system) and endosphere (internal transport 
system). Interactions involving plant roots in 
the rhizosphere include root-root, root-insect 
and root-microbe interactions. Rhizosphere, 
the layer of soil influenced by the root, is 
much richer in bacteria than the surrounding 
bulk soil (Hiltner, 1904). Studies based on 
culture independent molecular analysis have 
estimated more than 4,000 microbial species 
per gram of soil (Montesinos, 2003). These 
rhizosphere microbes benefit because plant 
roots secrete metabolites that can be utilized 
as nutrients. This rhizosphere effect is caused 
by the fact that a substantial amount of the 
carbon fixed by the plant, 5–21%, is secreted, 

mainly as root exudates (Marschner, 1995). 
Root exudation includes the secretion of ions, 
free oxygen and water, enzymes, mucilage 
and a diverse array of carbon-containing 
primary and secondary metabolites (Uren, 
2000 and Bertin et al., 2003). The population 
dynamics of the rhizosphere microorganisms 
can change as the root structure and patterns 
of root exudation alter during development 
and as environmental conditions such as 
water availability and temperature alter. 
Adding to the complexity of the rhizosphere 
are the interactions among the members that 
take place including the competition for 
nutrients, colonization sites, scavenging and 
the production of antibiotics and bacteriocins 
that inhibit growth. When multiple bacterial 
species co-exist they do not colonize in 
distinct areas as pure cultures but as complex 
communities known as biofilms and this is 
thought to be the case also for rhizosphere 
bacteria living on plant roots (Pierson and 
Pierson, 2000). Rhizosphere microorganisms 
may also depend on other members of the 
community to provide nutrient sources as 
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one bacterium may convert a plant exudate 
into a form that can be used by another. 

Plant–microbial interactions can be 
classified into three basic groups: (i) negative 
(pathogenic) interactions; (ii) positive 
interactions, in which either both partners 
derive benefits from close association 
(symbiosis), both partners derive benefits 
from loose association or only one partner 
derives benefits without harming the other 
(associative); and (iii) neutral interactions, 
where none of the partners derives a direct 
benefit from interaction and in which neither 
is harmed (Singh et al., 2004).  Rhizobacteria 
that exert beneficial effects on plant growth 
and development are referred to as Plant 
Growth Promoting Rhizobacteria (PGPR). 
PGPR can affect plant growth either 
indirectly or directly; indirect promotion of 
plant growth occurs when PGPR lessen or 
prevent the deleterious effects of one or more 
phytopathogenic organisms; while direct 
promotion of plant growth by PGPR involves 
either providing plants with a compound 
synthesized by the bacterium or facilitating 
the uptake of certain nutrients from the 
environment. General mechanisms of plant 
growth promotion by PGPR include: 
associative nitrogen fixation, lowering of 
ethylene levels, production of siderophores, 
production of phytohormones, induction of 
pathogen resistance in the plant, 
solubilization of nutrients, promotion of 
mycorrhizal functioning, decreasing (organic 
or heavy metal) pollutant toxicity, etc (Glick 
et al., 1999).  

Elicitors are chemicals or biofactors from 
various sources that can induce physiological 
changes of the target living organism.  In a 
broad sense, elicitors, for a plant refer to 
chemicals from various sources that can 
trigger physiological and morphological 
responses and phytoalexin accumulation. It 
may include abiotic elicitors such as metal 

ions and inorganic compounds and biotic 
elicitors from fungi, bacteria, viruses or 
herbivores, plant cell wall components as 
well as chemicals that are released at the 
attack site by plants upon pathogen or 
herbivore attack. It is well known that 
treatment of plants with elicitors, or attack by 
incompatible pathogens, causes an array of 
defense reactions, including the 
accumulation of a range of plant defensive 
secondary metabolites such as phytoalexins 
in intact plants or in cell cultures. Signal 
perception is the first committed step of the 
elicitor signal transduction pathway and 
much effort has been put into isolation of 
effective elicitor signal molecules from 
fungal and plant cell extracts or other sources 
and identification of the corresponding 
receptors from plant plasma membranes. 
Thus, PAMs can produce elicitors which in 
turn will induce the synthesis of secondary 
products in plants. Elicitation is used to 
induce the expression of genes often 
associated with enzymes responsible for the 
synthesis of secondary metabolites. Jasmonic 
acid and its methyl ester are signal 
transducers in a wide range of plant cell 
cultures and these compounds accumulated 
rapidly and transiently when plant 
suspension cultures of Rauvolfia canescens L. 
and Eschscholtzia californica Cham. were 
treated with a yeast elicitor (Roberts and 
Shuler, 1997). Exogenously applied methyl 
jasmonate was shown to induce the 
production of secondary metabolites in 36 
different plant species. In the past few years, 
jasmonic acid and methyl jasmonate have 
been shown to be inexpensive effective 
elicitors of secondary metabolite production 
in many other systems, including Taxus. 
Some PGPR or their components uses as 
biotic elicitor is given (Table 2).
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Table 2.  Some PGPRs reported as biotic elicitors 

 
S. 
No 

Plant Treatment Nature
of the 
PGPR 

PGPR Species Metabolite 
induced in 
the plant 

Reference 

1 Catharanthus roseus (L.) 
G. Don. 

Seedling 
Treatment 
by soil 
drenching 

Non-
native 

Pseudomonas 
fluorescens Ajmalicine Jaleel et al., 2007

2.  Catharanthus roseus (L.) 
G. Don. 

Seedling 
Treatment 
by soil 
drenching 

Non-
native 

Pseudomonas 
fluorescens Serpentine Jaleel et al., 2009

3.  Hyoscyamus niger L. 

Seedling 
radicle and 
culture 
media for  
 in vitro 
growth 

Non-
native 

Pseudomonas 
putida and P. 
fluorescens 

Hyoscyamine 
and 
Scopolamine 

Ghorbanpour et 
al., 2010 

4.  Crocus sativus L.  

Soaking 
corms and 
soil 
drenching 

Non-
native Bacillus subtilis 

Picrocrocin, 
Crocetin and 
Safranal 
compounds 

Eldin et al., 
2008 

5.  Calendula officinalis L., 
Cell 
Suspension 
culture 

Non-
native 

Trichoderma 
viride 
homogenate 

Oleanolic 
acid 

Wiktorowska 
et al., 2010 

6.  Salvia miltiorrhiza 
Bunge 

Hairy Root 
culture 

Non-
native 

Bacillus cereus 
polysaccharide 
fraction 

Tanshinone Zhao et al., 
2010 

 

Endophytes as source of secondary plant 
products 

The term endophyte (Gr. endon, within; 
phyton, plant) was first coined by De Bary 
(De Bary, 1866) and an endophyte is a 
bacterial or fungal microorganism, which 
spends the whole or part of its life cycle 
colonizing inter- and/or intra-cellularly 
inside the healthy tissues of the host plant, 
typically causing no apparent symptoms of 
disease (Sturtz et al., 2000; Wilson, 1995). The 
relationship between the endophyte and its 
host plant may range from latent 
phytopathogenesis to mutualistic symbiosis 
(Strobel and Long, 1998). Several endophyte 
species are usually associated with a single 
plant and among them, at least one species 
show host specificity. From the nearly 
300,000 plant species in the globe, each one 
hosts several to hundreds of endophytes 
(Tan and Zou, 2001), creating an enormous 
biodiversity. Endophytic bacteria originate 

from the rhizosphere, seeds or plant material 
(Hallmann et al., 1997). A subset of 
rhizobacteria may enter the interior of the 
root by hydrolysing wall-bound cellulose, 
through auxin-induced tumours, with water 
flow, through wounds or through lateral 
branching sites (Hallmann et al., 1997; 
Siciliano et al., 1998).   

Evidence of plant associated microbes 
has been discovered in the fossilized tissues 
of stems and leaves and these endophytic 
relationships may have begun to evolve from 
the time that higher plants first appeared on 
the earth, hundreds of millions of years ago 
(Taylor and Taylor, 2000). As a result of these 
long-held associations, it is possible that 
some of these endophytic microbes devised 
genetic systems allowing for the transfer of 
information between themselves and the 
higher plant and vice versa (Stierle et al., 1993). 
Obviously, this would permit a more rapid 
and reliable mechanism for the endophyte to 
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deal with ever changing environmental 
conditions and perhaps allow for more 
compatibility with the plant host. Probably it 
may be for this reason they evolved 
biochemical pathways resulting in the 
production of plant growth hormones. Each 
of the five classes of these substances (auxins, 
abscisins, ethylene, gibberellins and kinetins) 
is, in fact, known to be synthesized from a 
list of a range of representative plant-
associated fungi and bacteria (Goodman et al., 
1986). However, the most fascinating nature 
of endophytes seems to be their adaption to 
their plant host by evolving to a point where 
they could contribute to the relationship by 
carrying out such functions as protection 
from pathogens, insects and grazing animals,  
leading to symbiosis and ultimately to host 
specificity (Fisher and Petrini, 1993).  

The endophytes are now recognized as 
important sources of a variety of structurally 
novel and biologically active secondary 
metabolites, including terpenoids, steroids, 
alkaloids and isocoumarins derivatives. For 
example, Taxol, an effective antitumor drug 
produced by bark of the yew tree, Taxus 
brevifolia, could also be produced by 
endophytic fungi Taxomyces andreanae 
(Pezzato, 1996).  These trees are rare, slow 
growing and a large amount of bark may 
have to be processed to obtain a small 
amount of the drug. The amount of taxol 
found in yews is relatively small, ca 0.01–
0.03% dry weight and this has been a major 
factor in contributing to its high price in 
market (Stierle et al., 1993). Furthermore, 
Pestalotiopsis microspora (Strobel et al., 1996), 
Periconia sp. (Li et al., 1998), Bartalinia 
robillardoides and Colletotrichum gloeosporioides 
(Gangadevi and Muthumary 2008a, b) 
residing in plants other than Taxus species 
were also found to produce taxol. Fungal 
endophyte Trametes hirsuta isolated from 
Podophyllum sp. produces lignans 
(podophyllotoxin) with anticancer activity. 
Derivatives of podophyllotoxin, etoposide 
and teniposide are currently used in cancer 
chemotherapy. (Puri et al., 2006). The fungus 
isolated from inner bark of Nothapodytes 
foetida (Wight) Sleumer., produces the 
anticancer phytochemical camptothecin (Puri 
et al. 2005). Some other tropical plants that 

have been studied for endophytes include 
tropical palms (Frohlich and Hyde, 1999; 
Taylor and Crous, 1999; Rungjindamai et al., 
2008), tropical fruit trees (Azevedo et al., 
2000), banana (Photita et al., 2001), Amomum 
siamense Criab. (Bussaban et al., 2001), teak 
trees (Chareprasert et al.2006), Aegle marmelos 
(L.) Corr. Serr. (Gond et al., 2007), mangrove 
plants (Lin et al., 2005 and Xu et al., 2009), 
Rhizophora apiculata Blume. (Kumaresan and 
Suryanarayanan 2002), Camptotheca acuminata 
Decne. (Lin et al., 2007), three Artemisia 
species (Huang et al., 2009) and 29 traditional 
Chinese medicinal plant species (Huang et al., 
2008). While literally hundreds of reports 
have appeared on many new endophytic 
microorganisms, the complex chemical and 
biochemical mechanisms that govern the 
biology of the endophytic processes are yet 
to be understood fully.  In fact, it is becoming 
increasingly clear that host specificity is a 
bonafide phenomenon in endophyte higher 
plant relationships (Bacon and White, 2000). 
Knowledge of such interactions can provide 
guidance as to which endophytes might be 
selected in the search for novel medicinal 
natural products. The contribution of the 
endophyte to the plant may be to provide 
protection to it by virtue of antimicrobial 
compounds that it produces. Some of these 
compounds may be of interest medicinally, 
since they possess antifungal, antibacterial, 
antimalarial and a host of other biological 
activities.  
 
2. Concluding Remarks 

The process of medicinal plants 
cultivation thus creates the need for 
interdisciplinary studies on rhizosphere 
biology, microbiology, ecology and 
agricultural technology of medicinal plant 
species to develop effective methods of 
biomass production and obtaining quality 
material enriched with phytochemicals. If, 
phytochemials are prospected and produced 
from microorganisms the unwanted 
destruction of medicinal plants can be 
prevented protecting the green cover.  The 
products can also be produced at large scale 
at economic pricings. 
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