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Abstract

The ecological role of plant growth promoting bacteria associated with plant root environment is 
currently gaining increased attention. The tremendous use of chemical fertilizers and pesticides 
which are environmentally harmful can be replaced with the microbes generally called as Plant 
Growth Promoting Rhizobacteria (PGPR). These microbes can be developed as biofertilizers 
because they are eco-friendly, cost effective and are natural living organisms. The advantages of 
these microorganisms rely on their production of novel bioactive metabolites that inhibit various 
pathogens in the soil as well as their vast mechanisms in improving growth, productivity and 
yield in agriculturally important crops. Apart from this, their role in nutrient acquisition, soil 
fertility improvement and stress tolerance are also inevitable. This review represents the present 
scenario of beneficial bacteria as plant growth agents and disease control tools. They have been 
extensively studied for plant disease suppression, plant growth modulation, and interaction with 
plants. Here, some mechanisms employed by plant growth promoting bacteria from different 
environments are discussed.
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Introduction

Rhizosphere is the term defined to the region 
of the soil bound by plant roots extending 
a few millimetres from root surface or in 
association with the roots and plant-produced 
materials (Arroyave et al. 2018). Studies based 

on metagenomics estimate that more than 
5,000 microbial species are present per gram 
of soil, but a major portion of microbial 
population is unculturable. Plant root exudates 
such as sugars and aminoacids provide a 
rich supply of nutrients and energy for the 
development of various bacterial communities 

Journal of Spices and Aromatic Crops 
Vol. 28 (2) : 77-95 (2019)             Indian Society for Spices
doi : 10.25081/josac.2019.v28.i2.6071

Dr. Y R Sarma memorial lecture series
REVIEW



78

in the rhizosphere, establishing more microbial 
populations in rhizosphere region. Hellriegel & 
Wilfarth (1888) discovered the root colonization 
of rhizobacteria in legumes and grasses which 
could convert atmospheric nitrogen to a usable 
form. Kloepper & Schroth (1978) coined the term 
‘rhizobacteria’ based on their investigations on 
radishes. The term can be collectively applied 
to the soil bacterial community that colonises 
plant roots and stimulate growth and thereby 
diminishing the incidence of diseases. PGPR 
can be defined as the crucial part of rhizosphere 
region that when grown in symbiotic association 
with the host plants can trigger the growth of 
the host.

According to Whipps (2001), rhizobacterial 
interactions between the rhizobacteria and 
plants can be neutral, negative or positive. 
Beattie (2006) stated that the rhizobacteria 
associated with the plants are symbionts in 
which the rhizobacteria establish a healthy 
relationship with the host plants displaying 
no noticeable effect on the growth as well as 
the physiology of the host. In case of negative 
interactions, the pathogenic rhizobacteria 
produce toxic substances which negatively 
influence the growth and physiology of host 
plants. Apart from this, many beneficial PGPRs 
make use of a positive effect on the plant by 
many direct mechanisms viz., solubilization 
of nutrients, production of growth regulators, 
nitrogen fixation, etc. or by indirect mechanisms 
viz., suppression of phytopathogens, stimulation 
of mycorrhizae associations and removal of 
toxic substances (Fig. 1). Based on the degree 
of association with the plant roots, beneficial 
PGPRs can be divided into intracellular plant 
growth promoting rhizobacteria (iPGPR) 
and extracellular plant growth promoting 
rhizobacteria (ePGPR) (Ankati & Podile 2018). 
The iPGPRs generally exist inside the specialized 
structures of root cells, usually endophytes. 
On the other hand, the ePGPRs exist either 
in the rhizosphere or on rhizoplane or in the 
intercellular spaces of root cortex (Bhattacharyya 
& Jha 2012).

Use of PGPRs as plant growth promoting 
agents and disease-suppressive agents is 

gaining attention nowadays to alleviate the 
toxic effects posed by chemical fertilizers 
and pesticides. These organisms support 
plants by modulating plant growth and other 
developmental processes thereby enhancing 
yield. Positive results mediated by these PGPR 
bacteria have been explained in a wide variety 
of plants cultivated under different stress 
conditions, including crops such as wheat 
(Kumar et al. 2018), maize (Berger et al. 2018; 
Ke et al. 2019), rice (Kotoky et al. 2019; Suarez 
Moreno et al. 2019), legumes (Sathya et al. 2017) 
and vegetable crops (Bader et al. 2019; He et al. 
2019). Several PGPR formulations currently 
commercialized are meant for plant growth 
modulation as biofertilizers and plant disease 
suppression as bioprotectants or plant hormone 
production as biostimulants. Development of 
bioformulation has been most successful to 
deliver biological control agents i.e., microbes 
capable of destroying phytopathogens to the 
agricultural fields. New reports related to 
PGPR role in plant growth promotion, nutrient 
management and disease resistance in various 
crops is depicted in Table 1.

Bacteria as PGPRs

Bacteria belonging to the genus Alcaligenes, 
Agrobacter ium,  Azospir i l lum,  Azoarcus, 
Azotobacter, Arthrobacter, Bacillus, Brevibacterium, 

Fig. 1.  Mechanisms exhibited by plant growth 
promoting bacteria as plant growth 
promoters and disease suppressing agents
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Bradyrhizobium, Burkholderia, Caulobacter, 
Chromobacterium, Leucobacter, Enterobacter, 
Erwinia, Flavobacterium, Herbaspirillum, Klebsiella, 
Shewanella, Mesorhizobium, Micrococcus, 
Pantoea, Pseudomonas, Paenibacillus, Providencia, 
Rhizobium, Stenotrophomonas, Rhodococcus, 
Serratia, Streptomyces and Variovorax are those 
bacterial species that reported for plant growth 
enhancement and yield (Ahemad & Kibret 2014). 
They are generally isolated from the rhizoplane 
or rhizosphere soil as root activities are higher 
in this area. Other than culturable bacteria, 
unculturable genera such as Aquificae, Cholorobi, 
Bacteroidetes, Deinococcus-Thermus, Firmicutes, 
Chloroflexi, Gemmatimonadetes, Fusobacteria, 
Nitrospira ,  Proteobacteria ,  Spirochaetes , 
Planctomycetes and Verrucomicrobiae have also 
been reported (Goel et al. 2018). Many of the 
genera also exist as endophytes which inhabit 
inside the plant parts. Many actinobacteria are 
also reported for the interaction with plants 
including endophytes (Palaniyandi et al. 2013a). 
Among the actinobacterial group, Actinomadura, 
Actinoplanes, Corynebacterium, Microbispora, 
Micromonospora, Mycobacterium, Nocardiopsis, 
Nonomurea, Rhodococcus, Saccharopolyspora,  
Streptomyces and Verrucosispora have been greatly 
studied and explored for various applications 
(Sathya et al. 2017). They are found abundantly 
in bulk or rhizospheric soils and inhabit as either 
epiphyte or endophyte in different plant tissues 
including rice, barley, wheat, maize, soybean, 
ginger, cowpea, chickpea, banana, tomato, 
mangroves and medicinal plants.

Fungi as plant growth promoters

Most of the plant growth promoting fungi are 
endophytes that inhabit the internal tissues 
of plants without imparting any deleterious 
effects. The genera such as Trichoderma, 
Fusarium, Penicillium and Phoma are considered 
as source of novel bioactive compounds, 
however, the full potential of endophytic fungi 
remains underexplored (Shah et al. 2019). Most 
endophytic fungi isolated from plants are 
members of the Ascomycota, or their anamorphs, 
with only a few reports of mycorrhizal fungi 

(Varma et al. 2012). For the first time ever, 
some fungal species like Aspergillus awamori, 
Acremonium terricola, Piriformospora indica, 
Phomatropica, Tetraploaaristata and Trichoderma 
virens were isolated as plant growth promoting 
fungi (Contreras-Cornejo et al. 2009; Yadav 
2019).

PGP traits of microbes

Production of plant growth regulators

Auxins

Plant hormones (phytohormones) play a major 
role in plant growth and development. Auxin, 
one of the main phytohormone also referred as 
indole-3-acetic acid (IAA) has been produced 
by more than 80% of rhizospheric as well as 
endophytic bacteria since it is very essential for 
plant-rhizobacterial interactions. L-tryptophan 
is the main precursor for IAA synthesis and 
there are different pathways such as indole-
3-acetamide, indole-3-pyruvate, tryptamine, 
indole-3-acetonitrile and tryptophan side-
chain oxidase pathways discovered in many 
microorganisms (Numponsak et al. 2018). This 
phytohormone is involved in cell division and 
differentiation, seed stimulation and tuber 
germination, development of adventitious 
and lateral roots, effect light and gravity 
responses, photosynthesis, pigment formation, 
synthesis of various metabolites and resistance 
to biotic as well as abiotic stresses (Spaepen & 
Vanderleyden 2011).

IAA formation through indole-3-pyruvic 
acid and indole-3-acetic aldehyde pathway 
have been reported in many bacteria such as 
Erwinia herbicola and certain representatives 
of Agrobacterium, Azospirillum, Bradyrhizobium, 
Enterobacter, Klebsiella, Pseudomonas and 
Rhizobium. The conversion of tryptophan 
into indole- 3-acetic aldehyde involve an 
alternative pathway where tryptamine is 
produced as found in pseudomonads and 
azospirilla. On the other hand, IAA synthesis 
via indole-3-acetamide pathway is reported 

Dileep Kumar & Jacob
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in bacteria such as A. tumefaciens, E. herbicola 
and Pseudomonas syringae, P. fluorescens and P. 
putida. IAA biosynthesis involving tryptophan 
conversion to indole-3-acetonitrile is reported in 
a cyanobacterium, Synechocystis. A tryptophan-
independent pathway commonly found 
in plants is also present in azospirilla and 
cyanobacteria (Prasanna et al. 2010).

In Streptomyces, IAA production is through 
indole-3-acetamide via L-tryptophan dependent 
pathway as described by Lin & Xu (2013). An 
endophytic Streptomyces strain isolated from 
Azadirachta indica has been reported to induce 
plant growth in tomato plants as described by 
Verma et al. (2011). Myo et al. (2019) investigated 
the optimization of IAA production from 
Streptomyces fradiae NKZ-259 and its formulation 
as a plant growth promoter to enhance economic 
and agricultural development. It is also noted 
that the lateral root development, root hair 
formation and release of nutrients are the 
responses of IAA in plants as reported by Davies 
(2004). Root colonizing bacteria depends on 
sugars exuded from the plant roots as a nutrient 
source (Dakora & Phillips 2002) and affirm 
the advantage of plant growth and disease 
suppression (Kunkel & Harper 2017).

Ethylene

Ethylene is also important to plant growth 
and development because it is involved in 
many biological phenomena such as root 
initiation, seed germination, fruit ripening, 
lowering of wilt incidence, production of 
various phytohormones and leaf abscission 
promotion (Glick et al. 2012). One of the 
direct effects of PGPRs is the biosynthesis of 
ACC (1-aminocyclopropane-1-carboxylate 
deaminase), an enzyme that control ethylene 
production by catalysing ACC (precursor of 
ethylene biosynthesis) into α-ketobutyrate and 
ammonia. Jaemsaeng et al. (2018) investigated 
Streptomyces sp. GMKU which improved salt 
tolerance in rice as well as enhanced flood 
tolerance in mung bean through conversion of 
ACC into ammonia and α-ketobutyrate thereby 
reducing the ethylene level. Since ethylene is 

required for the induction of systemic resistance 
in plants elicited by pathogens, it is assumed that 
treating plants with ethylene-lowering bacteria 
would prevent this induction (Ghosh et al. 2018). 
Ethylene is also called stress hormone (Abeles et 
al. 1992) and the increased synthesis is typically 
associated with various environmental stresses 
such as extreme temperatures, intensified light, 
flood, drought, presence of organic pollutants 
and toxic metals, radiation, wound, insect attack, 
high salinity and attack of phytopathogens 
(Glick 2012).

Cytokinins and gibberellins

Some PGPR strains are also capable to produce 
cytokinins and gibberellins and their application 
to the growing plants can modify plant’s 
phytohormone composition. Cytokinins 
stimulate plant cell division, enlargement and 
tissue expansion and also modulate stomatal 
conductivity. Selvakumar et al. (2018) reported 
that inoculation of tomato seedlings with a 
cytokinin producing plant growth promoting 
rhizobacterium B. amyloliquefaciens enhanced 
tomato growth and alleviated water stress. 
Cytokinin has also been shown to be produced 
by several PGPRs. This hormone has been 
identified in some strains of Azotobacter spp., 
Bacillus subtilis, Paenibacillus polymyxa, Pantoea 
spp., Pseudomonas fluorescens, Rhizobium spp., 
Rhodospirillum rubrum and Streptomyces (Joshi 
&Loria 2007). Nonetheless, it should be noted 
that PGPRs produce lower cytokinin levels than 
phytopathogens so that the effect of the PGPRs on 
plant growth is stimulatory. On the other hand, 
the action of the cytokinins from pathogens is 
inhibitory. But, a detailed understanding of 
the mode of action of bacterially synthesized 
hormones and how the these plant hormone 
production is regulated is not currently known 
(Kunkel & Harper 2017). 

Conversion and mobilization of nutrients

Phosphate solubilization

Organic phosphorus is the predominant 
form of phosphorus and contribute up to 
90% of the total P in soil (Khan et al. 2009). 
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Therefore, P mineralisation is a prerequisite 
for conversion of organic P into a plant 
available form and the reaction is catalysed by 
extracellular phosphatases produced by some 
microorganisms and plants. Further, much of 
the soluble inorganic phosphorus to be used 
as chemical fertiliser is immobilised soon 
after it is applied to soil. Many PGPRs possess 
the capacity to solubilise insoluble inorganic 
phosphates such as dicalcium phosphate, 
tricalcium phosphate, rock phosphate and 
hydroxyapatite. Organic acids produced by 
these bacteria convert the insoluble phosphorus 
compounds to di- and mono-basic phosphates 
that can easily be absorbed by the plant. Bacterial 
genera such as Achromobacter, Agrobacterium, 
Bacillus, Burkholderia, Erwinia, Flavobacterium, 
Micromonospora, Pseudomonas, Rhizobium 
and Streptomyces are reported as phosphate 
solubilizers (Roychowdhury et al. 2015). 
Phosphate solubilization has been reported in 
actinobacteria such as Kitasatospora, Micrococcus 
and Thermobifida (Franco-Correaa et al. 2010). On 
the other hand, Phosphorus-Mobilizing Bacteria 
(PMB) can effectively mobilize phosphorus 
through solubilization of phosphorus pools 
and mineralization of organic phosphorus 
compounds which are not readily available to 
the plant. Therefore, application of phosphate 
solubilizing bacteria to agriculture soils will 
be a promising approach for improvement of 
phosphorus fertilization in fields.

Zinc solubilization 

The importance of zinc (Zn) in plants 
corresponds to nodulation process, nitrogen 
fixation, modulation of plant growth as well as 
yield. Zinc is present in the unavailable form 
in soil. Unfortunately, only a small portion of 
soil microbes can transform insoluble Zn to an 
available form. PGPRs with Zn solubilization 
potential can act as alternatives for Zn supplements 
in agricultural fields. Microorganisms such as B. 
subtilis, Pseudomonas sp., Thiobacillus thiooxidans 
and Saccharomyces sp. help in the solubilization 
of zinc from compounds such as zinc oxide 
(ZnO), zinc carbonate (ZnCO3) and zinc sulfide 
(ZnS) (Saravanan et al. 2011).

Potassium mobilization

Microorganisms involving in the solubilization 
of potassium (K) are known as Potassium 
Solubilizing Microorganisms (KSM). Various 
genera of Aspergillus, Azospirillum, Clostridium, 
Bacillus, Phosphobacteria, Paenibacillus, Azotobacter 
and Rhizobacteria are reported so far to possess 
this trait (Velázquez et al. 2016). Frateuria aurantia 
was also shown to solubilize K into an usable 
form. In another study, B. pseudomycoides isolated 
from tea growing soil could mobilize K from 
bound form in soil  when applied along 
with mica waste (Pramanik et al. 2019). The 
mechanism of K solubilization and perspectives 
of KSM is best reviewed by Sattar et al. (2019).

Silicate solubilization

Silicon (Si) also act as advantageous plant 
nutrient functioning as plant growth enhancer 
and contributor of tolerance to both biotic and 
abiotic stresses. This insoluble, polymeric silica 
found in soils is solubilised during weathering 
process to release monosilicic acid, the available 
form of silicon to be absorbed by the plants. 
Microbes such as Bacillus globisporus Q12, 
Bacillus sp. and Rhizobium sp. are known for 
silicate solubilization (Chandrakala et al. 2019). 

Nitrogen fixation

Nitrogen (N2) is the main plant nutrient and 
a limiting factor in agricultural ecosystems 
because of the loss through mineral leaching or 
rainfall. Nitrogen fixation is the process whereby 
atmospheric nitrogen is converted to ammonia 
which can be utilized by plants for the synthesis 
of various nitrogenous compounds. Different 
PGPR strains like Azoarcus sp., Beijerinckia 
sp., Frankia sp., Klebsiella sp., Pantoea sp., 
Rhizobium sp. and Streptomyces sp. are reported 
to fix atmospheric N2 in soil (Jiao et al. 2015; 
Gopalakrishnan et al. 2015). Nitrogen fixing 
organisms are generally divided into symbiotic 
N2 fixers including members of the Rhizobiaceae 
that forms symbiotic association (e.g. rhizobia) 
with many leguminous plants and non-
leguminous trees (e.g. Frankia). Frankia is the 
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best studied actinobacteria that live in symbiosis 
with many dicot plants called actinorhizal plants 
by the formation of root nodules with nitrogen 
fixing ability (Yamaura et al. 2010).

Azotobacter is a genus of non-symbiotic, aerobic, 
free-living heterotrophic N2 fixing bacteria. 
This bacterium colonizes the plant roots and 
fixes N2 and the yield in these crops can be 
increased up to 50% (Kızılkaya 2008). Azotobacter 
vinelandii, A. beijerinckii, A. armeniacus, A. 
insignis, A. nigricans, A. chroococcum, A. paspali 
and A. macrocytogenes are commonly employed 
as biofertilizers. Azotobacter was used for 
plant growth as well as yield improvement in 
both cereal and millet crops like rice, wheat, 
sorghum, sugarcane, maize, pearl, millet, 
sesame, cotton and vegetables (Wani et al. 2007). 
Moreover, actinobacteria such as Streptomyces, 
Thermomonosporaceae and Micromonosporaceae 
were also reported for their nitrogen fixing 
capacity in different crop plants (Valdés et al. 
2005).

Siderophore production

Iron, despite the fact that it is the fourth most 
abundant element on earth, it is not readily 
absorbed by either plants or bacteria because 
of the predominant insoluble form, Fe3+ (ferric 
ion). In nature, the amount of available iron for 
assimilation by living organisms is very low. 
Microorganisms as well as plants require high 
iron concentration and obtaining the same is 
tricky in the rhizosphere since plant, bacteria 
and fungi compete for iron. In order to survive 
with such a limited supply of iron, bacteria 
synthesize low-molecular mass siderophores 
(∼400-1500 Da) as well as membrane receptors 
that are able to bind the Fe-siderophore complex, 
thereby facilitating iron uptake (Hider & Kong 
2010). Currently, there are over 500 known 
siderophores and the chemical structures of 
270 of these compounds have been determined 
(Fig. 2).

PGPR secrete low molecular weight siderophores 
with iron-chelating ability, making it very 
difficult for other microbes to access iron. 

Siderophores bind the soluble form of iron 
from soil to make it available to plants and 
this siderophore-Fe complex is taken up by 
plant roots making the soil environment 
Fe-deficient for phytopathogens. Under Fe 
limiting conditions, many pathogens especially 
fungi are unable to thrive under normal 
conditions. Siderophores synthesized by 
Pseudomonads have high Fe chelating ability 
and thus make them potential biocontrol agents 
(Chincholkar et al. 2000). Siderophores secreted 
by many microorganisms include Pseudomonas 
(pyoverdins), Agrobacterium (catechols), Erwinia 
(catechols and hydroxamates) and R. meliloti 
(rhizobactin). Arthrobacter maltophilia has also 
been reported to reduce Fe3+ to Fe2+ which 
enhances bioavailability of Fe and promote 
growth in many plants (Valencia-Cantero et 
al. 2007). Many root colonizing actinobacteria 
were also reported to produce siderophores as 
suggested by Palaniyandi et al. (2013a). Improved 
iron acquisition and wheat growth promotion 
under saline conditions by a siderophore-
producing Streptomyces strain designated as C 
is reported by Sadeghi et al. (2012). In this case, 
application of strain C to wheat plants enhanced 
N, P, Fe and Mn concentrations in their shoots, 
when grown in normal and saline soil though, 
there were no significant differences in the 
concentration of macro and micronutrients in 
wheat shoots treated with this strain.

Enhancement of microbial community

PGPRs play an important role in developing the 

Fig. 2.  Various siderophore structures discovered 
in different bacteria. The chemical structures 
were drawn with Chem DrawPro12.0 
Cambridgesoft, USA.
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indigenous microbial community structure in 
their habitat. Piromyou et al. (2011) reported the 
positive effect of putative genera Pseudomonas 
sp. SUT 19 and Brevibacillus sp. SUT 47 in species 
diversity of the rhizosphere and demonstrated 
that dominant species in microbial community 
structure were not interfered by PGPR, but 
strongly influenced by plant development. 
Recently, Luo et al. (2019) showed that inoculation 
with plant growth promoting Sphingomonas sp. 
Cra20 changed Arabidopsis thaliana rhizosphere 
indigenous bacterial community under salt 
stress.

Plant disease suppression and induction of systemic 
resistance

Many PGPR genera have been well exploited 
by many researchers for the management 
of plant diseases in economically important 
agricultural and horticultural crop plants. In 
nature, interactions between the pathogenic and 
beneficial microbes decides the survival of the 
pathogen in rhizosphere. This interaction can 
lead to the development of innate immunity 
responses through the expression of defence 
related genes in host plants thereby diminishing 
pathogen infection.

In nature, plants exhibit a non-specific defence 
which give resistance to a broad spectrum of 
pathogens attacking them. These responses are 
of two types viz., induced systemic resistance 
(ISR) and systemic acquired resistance (SAR). 
ISR is the term used for resistance induced by 
rhizobacteria and the one induced by plant 
pathogens is called SAR (Schuhegger et al. 2006). 
ISR does not target specific pathogens whereas 
it is effective in controlling diseases caused by 
different pathogens. On the other hand, induced 
systemic resistance does not need any direct 
interaction between PGPRs and pathogen. 
Usually, ISR mediates through jasmonate and 
ethylene signalling pathways in host plants 
and these hormones trigger the host’s defence 
responses to pathogen. Along with ethylene 
and jasmonate, other bacterial molecules such 
as O-antigenic side chain of lipopolysaccharide 
(LPS) region of bacterial outer membranes, 

flagellar proteins, pyoverdine, b-glucans, chitin, 
cyclic lipopeptides and surfactants have all 
been reported to act as signals for the induced 
systemic resistance.

Sharma et al. (2019) showed that seed inoculation 
with a halotolerant rhizobacteria, Klebsiella 
MBE02 provided systemic resistance to the 
peanut plants against Aspergillus infection 
under controlled as well as field environment. 
Another report by Zhao et al. (2012) exhibited 
that Streptomyces bikiniensis HD-087 was able to 
induce systemic resistance against Fusarium wilt 
in cucumber plants caused by F. oxysporum f. sp. 
cucumerinum. The treatment increased different 
enzyme activities such as phenylalanine 
ammonia-lyase (PAL), peroxidase (POX) and 
b-1,3 glucanase in cucumber leaves. The levels 
of total chlorophyll and soluble sugars were 
also found to be increased in this investigation. 
Mishra et al. (2014) confirmed that the tea cuttings 
treated with two fluorescent Pseudomonas strains 
and fungal pathogens responsible for brown 
root rot (Fome slamoensis) and charcoal stump rot 
(Ustulina zonata) resulted in better plant growth 
promotion and disease suppression under both 
gnotobiotic and nursery conditions. In another 
investigation, Dutta et al. (2008) reported the 
induction of systemic resistance against wilt 
caused by Fusarium udum in pigeon pea with 
the application of BS 03 (Bacillus cereus), RRLJ 
04 (Pseudomonas aeruginosa) and RH 2 (Rhizobial 
strain). The levels of defence-related enzymes 
such as peroxidase (POX), phenylalanine 
ammonia lyase (PAL), and polyphenol oxidase 
(PPO), were also increased in inoculated plants. 

Production of antibiotics

Antibiotic production is an indirect mechanism 
of plant growth promotion where PGPRs 
produce bioactive metabolites like antibiotics 
to suppress phytopathogens by competing 
for  nutrients  in  plant  exudates .  This 
phenomenon becomes beneficial to the plant 
because this will suppress the incidence of 
disease. Antibiotics produced by antagonist 
bacteria include volatile compounds (alcohols, 
aldehydes, hydrogen cyanide, sulphides and 

Dileep Kumar & Jacob



85

ketones) and non-volatile antibiotics such as 
polyketides (diacetyl phloroglucinol, DAPG 
and mupirocin), heterocyclic nitrogenous 
compounds like pyocyanin, phenazine-1-
carboxylic acid (phenazine derivatives) and 
hydroxy phenazines (Bouizgarne 2013). It 
is discovered that the Bacillus strains could 
produce a variety of lipopeptide antibiotics 
such as bacillomycin, iturins, surfactin, and 
Zwittermicin A (Sansinenea & Ortiz 2011).

Various species belonging to Pseudomonas 
genera also produce several antibiotic molecules 
with antifungal abilities in vitro. Phenazines 
produced by fluorescent pseudomonads were 
described as biocontrol agents of different plant 
diseases (Weller & Cook 1983). Other antibiotic 
producers are actinomycetes, which produce 
about 45% of the antibiotics used now a days 
(Berdy 2012). From actinomycetes, antibiotics 
like cycloheximide and streptomycin produced 
by Streptomyces griseus were the first to be used 
as biocontrol agents against fungal and bacterial 
diseases in plants (Leben & Keitt 1954). Phenazine 
like antibiotics produced by Streptomyces 
griseoluteus P510 as reported by Luo et al. (2015) 
exhibited strong antifungal activity against plant 
pathogens. Calderon et al. (2019) investigated 
the production of 2-hexyl-5-propyl resorcinol 
(HPR) by a rhizobacterium Pseudomonas 
chlororaphis PCL1606 and its role in fungal 
antagonism against Rosellinia necatrix and 
biocontrol activity in protecting avocado 
plants. Structures of some bioactive metabolites 
produced by Bacillus sp., Pseudomonas sp. and 
Streptomyces sp. are illustrated in Fig. 3.

Production of volatile antibiotics

Volatile HCN production is a mechanism 
exhibited by beneficial bacterial strains to protect 
plants from pathogenic attack (Ahmad et al. 2008). 
Voisard et al. (1989) reported that P. flourescens 
can excrete several bioactive molecules such as 
pyoverdine, DAP, pyoluteorin, and HCN with 
antifungal properties. Moreover, this strain 
exhibited enhanced root growth in tobacco 
plants and inhibition of Thielaviopsis basicola 
responsible for tobacco black root rot under 

gnotobiotic conditions. It was also proposed that 
HCN might induce a stress in plants, increasing 
their resistance to fungal diseases. Similarly, 
volatile compounds produced by Streptomyces 
sp. also have great potential as biofumigants in 
agriculture. For example, volatile compounds 
produced by Streptomyces alboflavus TD-1 
suppressed the growth of storage fungi such 
as Aspergillus flavus, A. ochraceus, A. niger, 
Fusarium moniliforme and Penicillum citrinum in 
vitro. Furthermore, GC-MS analysis detected 
27 different compounds including dimethyl 
disulfide which proved inhibition towards F. 
moniliforme in vitro (Wang et al. 2013). Boukaew 
et al. (2013) studied Streptomyces philanthi 
RM-1-138 having inhibitory action towards 
many phytopathogens such as Bipolaris oryzae, 
Fusarium fujikuroi, R. solani and Pyricularia grisea.

Production of cell wall degrading enzymes

Pal & Gardener (2006) showed that biocontrol 
strains that produce hydrolytic enzymes are 
capable of attacking fungal and bacterial 

Fig. 3.  Some of the bioactive metabolites produced by 
Bacillus sp. (Bacillysin, Difficidin, Macrolactin 
and 3,4-dihydroxybenzoic acid), Pseudomonas 
sp. (Pyocyanin, 1-hydroxyphenazine and 
Phenazine 1-carboxamide) and Streptomyces 
sp.  (Aranciamycin  I ,  Pyr idine-2 ,5-
Diacetamide and Borrelidin). The chemical 
structures were drawn using Chem Draw 
Pro12.0 Cambridgesoft, USA.
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cell walls, cell membrane proteins and some 
extracellular virulence factors have been 
involved in the management of plant diseases. 
Enzymes such as cellulase, chitinase, protease, 
glucanase and phospholipase are produced 
by many biocontrol agents. They can destroy 
spores of pathogenic fungi and influence both 
spore germination and germ-tube formation in 
contributing to the biocontrol properties. Akocak 
et al. (2015) observed a positive relationship 
between antifungal activity and chitinase 
enzyme production in P. fluorescens. Likewise, 
the biocontrol property of S. cavourensis SY224 
has been attributed to glucanase and chitinase 
production against the causative agent for 
anthracnose in pepper (Lee et al. 2012). In 
another study, a chitinolytic actinomycete 
strain Streptomyces vinaceusdrappus S5MW2 
isolated from Chilika Lake, India with in 
vitro antifungal activity against the sclerotia 
producing pathogen R. solani in a dual culture 
assay has been reported. Here chitinase enzyme 
played significant role in resistance in tomato 
plants (Yandigeri et al. 2015). Some of the plant 
growth and biocontrol traits exhibited by PGPRs 
are illustrated in Fig. 4. Chalotra et al. (2019) 
detected Pseudomonads possessing biocontrol 
properties with the production of chitinase, 
lipase and protease cell wall/coat protein 
hydrolysing enzymes. 

Hyperparasitism

Both bacteria and fungi exhibit hyperparasitism 
on various phytopathogenic fungi. In case of 
bacteria, hyperparasitism is rarely reported. 
Davies (2009) studied Pasteuria penetrans, 
an endospore forming bacterium, a hyperparasite 
of root nematode, Meloidogyne spp. an important 
pest of a wide range of crops. A biocontrol 
actinobacteria, Streptomyces griseus  has 
been recorded to parasitize Colletotrichum 
lindemuthianum and exhibited a sponge-like 
appearance and growth on the hyphal surface. 
This strain also exhibited internal parasitism of 
host which resulted in the formation of several 
blebs like structures in hyphae. Another strain, 
S. griseoviridis penetrated the mycelial wall with 
disintegration of Pythium hyphae. Palaniyandi 

et al. (2013b) demonstrated mycoparasitism by 
S. phaeopurpureus ExPro138 as a mechanism of 
inhibition towards plant fungal pathogens. This 
is supported by mycoparasitism exhibited by 
S. kanamyceticus B-49 and S. flavotricini Z-13 as 
reported by Xue et al. (2013).

Competition

Plant root surfaces are rich in several nutrients 
such as amino acids, sugars, organic acids, 
vitamins, nucleosides, enzymes, inorganic 
ions and gases,  phenolics,  flavonoids, 
phytosiderophores and root border cells (Dakora 
& Phillips 2002). Out of these substances, 
phenolics and flavonoids influence symbiosis 
with beneficial rhizobacteria. On the other hand, 
compounds such as aminoacids, organic acids, 
inorganic ions, sugars, purines, and vitamins 
act as essential nutrients for rhizosphere 
microorganisms. These microorganisms 
compete for these essential nutrients which 
serve as one of the mechanisms of suppression of 
phytopathogens. Inhibition of the pathogens by 

Fig. 4.  Plant growth promotion attributes exhibited 
by PGPRs. A, IAA production; B, Ammonia 
production; C, cellulase production; D, 
amylase production; E, Pectinase production; 
F, protease production; G, phosphate 
solubilization and H, volatile production; + 
indicates positive production.
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rhizobacteria is mostly achieved by production 
of antibiotics (Fig. 5) and/or hydrolytic enzymes. 
Neeno-Eckwall et al. (2001) reported that 
competition and antibiosis by non-pathogenic S. 
scabies and S. diastatochromogenes are responsible 
for the suppression of potato scab disease.

Another type of competition was examined in 
pathogen suppression upon competition for iron 
through the production of siderophores. Several 
rhizobacteria are involved in the suppression 
of pathogens through the production of 
siderophores (Verma et al. 2011). As reported by 
Macagnan et al. (2008), siderophores produced 
by Streptomyces sp. can inhibit the germination 
of Moniliophthora perniciosa .  In another 
investigation, application of Sphingomonas sp. 
protected Arabidopsis plants from developing 
disease symptoms caused by Pseudomonas 
syringae pv. tomato under gnotobiotic system 
(Innerebner et al. 2011).

Plant - microbe interactions

The most important factor of soil quality lies in 
the diversity of microbial community present in 
it. Any alteration in the activity of microbes is 
proposed to be a sensitive indicator of human 
interactions on soil ecology (Shi et al. 2002). 
Interaction of plant and microbes can occur 
at endosphere, phyllosphere and rhizosphere. 
Phyllosphere is the term for the aerial parts 
of a plant and endosphere is its internal 
transport system. Plant-root interactions occur 

at rhizosphere are categorized as root-microbe, 
root-root and root-insect interactions. This 
interaction leads to the production of more root 
exudates that results in maximum microbial 
populations in this region known as rhizosphere 
engineering. There are different molecular 
techniques merged to study the changes in root 
associated community structures including 
‘omics’ tools employing polymerase chain 
reaction (PCR) followed by sequencing and 
phylogenetic analysis (Krishna et al. 2019). Better 
understanding of the microbial community 
structure provides an insight into the interaction 
between the plants and the environment and 
thus essential for beneficial interactions of 
plants with soil-borne microorganisms. The 
root associated bacteria may depend on other 
microbes for nutrients because one microbe 
may convert plant exudates into a usable form. 
Hence, rhizosphere region has appeared as 
a dynamic environment of profound plant-
microbe interactions exploiting essential macro 
and micro-nutrients affecting plant growth 
(Haldar & Sengupta 2015). It is also noted 
that the root colonization process is related 
to different parameters such as biotic and 
abiotic factors and bacterial traits. In many 
rhizospheric interactions, rhizobacteria are 
known to colonize plant roots and stimulate the 
plant growth. The colonization of rhizosphere 
by various genera such as Azospirillum sp., 
Bacillus sp., and Pseudomonas sp., has been well 
studied so far. Investigation by Lugtenberg 
et al. (2001) reported many cell surface 

Fig. 5.  Suppression of Rhizoctonia solani, a causative agent of sheath blight disease in rice by some plant 
growth promoting strains
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molecules responsible for better rhizosphere 
colonization. Thus, rhizospheric colonization is 
considered as a critical step in the application of 
microorganisms for biotechnological scopes like 
phytoremediation, biofertilization, biocontrol, 
phytostimulation, etc. It is noted that the 
colonization of rhizosphere by PGPRs is not 
an uniform process. For example, in case of 
Kluyvera ascorbata, it colonized the upper two-
thirds of the surface of canola roots, but no 
bacteria were detected around the root tips as 
described by Wenbo et al. (2001). Plant growth 
promotion exhibited by some PGPR strains in 
rice is shown in Fig. 6.

Formulations

As discussed earlier, PGPRs exhibit many 
mechanisms of biocontrol and plant growth 
promotion. Formulation is necessary for 
sustainable agriculture practices in order to 
utilize the beneficial effects exerted by these 
bacteria. Formulation is the act of mixing 
microbes or its products such as their bioactive 
secondary metabolites and/or cell wall-
degrading enzymes with inactive substances 
to boost their viability as well as activity during 
storage and field applications. There are several 
studies attributed to the loss of bioformulation 
and its consistency under field conditions due 
to the lack of suitable formulations. 

If PGPR suspensions are inoculated into the 
soil without a suitable carrier, the applied 

bacterial population may decline rapidly. This 
can lead to less bacterial biomass production 
and the physiological status of the introduced 
bacteria at the time of application, can prevent 
the development of sufficient PGPR population 
in the rhizosphere. The heterogeneity in soil 
microbial population is the key obstacle, where 
introduced microbes sometimes cannot cope 
with the new environmental conditions and 
survive in the soil. The introduced bacteria must 
compete with the native microbial population 
and overcome predation by soil microfauna. 
Hence, proper formulation of inoculants plays 
a pivotal role in providing more suitable 
microenvironment as well as physical protection 
for a prolonged period to suppress a rapid 
decline of introduced bacteria (Bashan et al. 
2014).

Formulations using Rhizobium are commercially 
produced worldwide, especially in developed 
countries. But most developing countries 
are facing problems with no or little impact 
on productivity under field conditions with 
inoculant technology, especially with PGPR. 
A suitable bioformulation should have the 
property of improving the growth of specific 
microorganisms and ensuring viable counts for 
a particular period. The formulation should also 
release enough beneficial bacteria at the time of 
application. Moreover, the type of formulation 
relies on the nature of the biocontrol agent, 
site of application and the susceptibility to 
target pathogen. Usually, bioformulations are 

Fig. 6.  Plant growth promotion exhibited by some PGPR strains (individual and in combination) in O. sativa 
(rice plant) after 28 days of treatment compared to control
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prepared as liquids or powders. Formulations 
in dry form are usually acceptable because 
of easy transportation, ease of use as this 
can be dispersed in either water or oil and 
extended shelf life. Moreover, an efficient 
bioformulation must not be toxic, compatible 
with other fertilizers, inexpensive, soluble in 
water and withstand adverse environmental 
conditions.  Mycostop containing S. griseoviridis 
was the first actinobacterial bioformulation 
developed for crop protection against soil 
borne pathogens such as Alternaria, Fusarium, 
Pythium and Rhizoctonia and marketed as wet-
table powder. Other than live microbes, the 
secondary metabolites like phytohormones, 
lipochito-oligosaccharides were also employed 
for the development of bioformulations (Morel 
et al. 2016).

Conclusion and future prospects

The use of PGPRs is an important part of 
agricultural practices which is not new to the 
world. It clearly appears that microorganisms 
exhibit diverse mechanisms in their interaction 
with plants. More studies are required to 
establish a strong involvement of PGPR strains 
in agriculture. In addition to this, physiological 
and molecular studies on the interaction between 
bacterial endophytic isolates and host plants 
are also required. Development of suitable 
formulations and scale up of microbial strains 
for the enhancement of disease suppression and 
plant growth promotion in various agricultural 
crops have been successfully tested. However 
carefully controlled field trials of crop plants 
inoculated along with rhizobacterial strains are 
necessary for their application as bioinoculants 
for plant growth promotion and disease control.

Furthermore, research should focus on improved 
innovative techniques in root environments, 
especially with respect to the mode of action 
and adaptability to stress conditions. Use of 
rhizo-engineering, meta-transcriptomics, next 
generation sequencing and DNA microarrays 
will be the focus areas of the researchers in the 
near future.
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