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Abstract

Fluorescent pseudomonads were selectively isolated from black pepper (Piper nigrum) roots
and screened for volatile and non-volatile metabolite production and inhibition in growth
of Phytophthora capsici, the causal organism of foot rot disease. Among the isolates tested,
the inhibition of P. capsici varied from 36.3% to 70.0% by non-volatile metabolites and from
2% to 23% by volatile-metabolites.  Isolate IISR-51 caused maximum inhibition of P. capsici
by production of non-volatile and volatile metabolites. Many of the isolates produced hy-
drogen cyanide, which limited the growth of P. capsici. The study indicated the involve-
ment of siderophore-mediated antagonism in fluorescent pseudomonads. The fluorescent
pseudomonads could systemically invade black pepper cuttings upon root bacterization.

Key words: biological control, black pepper, fluorescent pseudomonads, Phytophthora capsici,
Piper nigrum.

Introduction

Foot rot disease of black pepper (Piper nigrum)
caused by Phytophthora capsici, causes severe
crop losses (Sarma 2003). Though chemical
control measures are effective, biological
control is a viable strategy for sustainable
disease management, considering the cost of
chemical pesticides and the environmental
hazards involved. Further, the need for
production of pesticide-free black pepper is
important  for  export .  F luorescent
pseudomonads have been widely tested

against fungal pathogens because of their
rapid growth rate and their ability to colonize
rhizosphere to a large extent, besides their
ability to suppress soil-borne pathogens
(Fukui et al .  1994) .  Understanding the
mechanisms of biocontrol of plant diseases is
critical to the eventual improvement and
effective use of biocontrol agents. In addition
to competition for limited carbon sources in
the rhizosphere, antagonism can be mainly
attributed to the production of secondary
metabolites like antibiotics (Ahl et al. 1986;
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Gardner et al. 1984; Stutz et al. 1986; Weller
1988), siderophores and cyanides (Kloepper
et al.1980a, b; Kloepper & Schroth 1981).
Introduced biocontrol bacteria that can reside
within  the plant system as  endophytes
provide added advantage (Hallmann et al.
1997).  Mahaffee & Kloepper (1997) have
shown that biological control by endophytic
bacteria is possible and can involve induced
resistance to soil-borne pathogens.

The present study was undertaken to under-
stand the in vitro antagonistic action of fluo-
rescent pseudomonads against P. capsici. Out
of the 200 isolates of fluorescent pseudomonads
isolated from rhizosphere soils collected from
different agro-climatic regions in India, 12
isolates were short-listed based on inhibition
of P. capsici in dual culture assay. These 12
isolates were tested for the production of
volatile metabolites, hydrogen cyanide and
siderophores. The endophytic nature of fluo-
rescent pseudomonad isolate IISR-34 was also
studied.

Materials and methods

The experiment was carried out at the Indian
Institute of Spices Research, Calicut, Kerala.

Isolation and preservation of fluorescent
pseudomonads

Root bits collected from healthy black pep-
per vines in diseased gardens from different
agro-climatic regions of India were plated on
King�s B agar medium, supplemented with
Ampicillin (40 mg ml-1) + Cycloheximide (100
mg ml-1) + Chloramphenicol (15 mg ml-1)
(Raai jmakers  et al.  1999) .  F luorescent
pseudomonads were isolated and preserved
at �80 O  C  using glycerol  (20%) as
cryoprotectant.

In vitro assay for non-volatile metabolites

A dual culture technique (Dennis & Webster
1971) was adopted for short listing the iso-
lates based on inhibition of radial growth of
P. capsici. The P. capsici isolate 99-101 used
for the present study was obtained from the
National Repository of Phytophthora main-
tained at the Indian Institute of Spices Re-

search, Calicut. Nine mm disc of P. capsici,
cut from the growing edge of the colony
raised in carrot agar plate was placed at the
center of a PDA plate. Streaks of the test bac-
teria were done, 1.5 cm away from both sides
of the P. capsici disc and the plates were in-
cubated at 25 ± 20C for 72 h. Radial growth
inhibition of P. capsici was calculated using
the  formula:

Radial  growth inhibit ion =  Rc �  Ri   x  100
where,                            Rc
Rc=Radial growth in control plates; Ri=Radial
growth in inoculated plates.

In vitro assay for volatile metabolites

The centre of a carrot agar plate was inocu-
lated with a 9 mm disc of P. capsici (isolate
99-101). The plate with P. capsici was placed
up side down over another plate containing
fluorescent pseudomonad culture in sterile
King�s B broth (25 ml). This assembly was
sealed airtight with parafilm and after 72 h
of incubation on a shaking platform, the ra-
dial growth of P. capsici was measured and
compared with that of control.

Production of hydrogen cyanide

Production of hydrogen cyanide (HCN) by
isolates of fluorescent pseudomonads was de-
termined using the method of Kloepper et al.
(1991) with modifications.  Isolates of fluo-
rescent pseudomonads were spread plated
on to King�s B agar supplemented with 4.4 g
l-1 of glycine.  Filter paper strips soaked in
picric acid solution (2.5 g picric acid + 12.5 g
Na2CO3 in 1 l of water) were placed on the
lid of each plate.  The dishes were sealed with
parafilm and incubated for 72 h.  Production
of HCN was indicated by the change in colour
of the filter paper strips from yellow to
brown. The intensity of the colour was re-
corded visually.

Production of siderophores

Two isolates of fluorescent pseudomonads
were tested for their iron dependent produc-
tion of siderophores.  50 mM to 300 mM of
FeCl3 was incorporated to King�s B broth and
inoculated with fluorescent pseudomonads
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and incubated for 72 h in an orbital shaking
incubator at 150 rpm.  Centrifuging at 7000
rpm for 15 min pelleted the cells out. The ab-
sorbance of cell-free culture filtrate measured
at 366 nm indicated the concentration of
siderophores released by the bacterial strains
to the culture media (Kloepper et al. 1980b).

The iron dependent production of
siderophores by fluorescent pseudomonads
was studied by growing the bacteria in King�s
B agar with a range of iron concentrations
[regulated by amending EDTA (100�1000 mg
ml-1) and FeCl3 (20�80 mM)]. 10 ml of 12 h old
bacterial culture was spot inoculated at the
centre of the iron regulated King�s B plates
and incubated for 72h at 280C and the colo-
nies were observed under UV light in an Al-
pha Imager-Multi Image Light Cabinet and
compared the fluorescence produced by the
bacteria.

Different concentrations of EDTA (100�1000
mg ml-1) or FeCl3 (20�80 mM) were incorpo-
rated to carrot agar to get a range of iron
concentrations in the medium. Nine mm discs
of P. capsici taken from the growing margins
of a 48 h old culture was placed at the centre
of the plates. The plates were incubated for
72 h and the diameter of the colony was mea-
sured.  A graph was plotted with diameter
of growth of P. capsici against the concentra-
tion of iron.

Endophytic nature of fluorescent pseudomonads

Fluorescent pseudomonad isolates, IISR-34
(Rif 100+) and IISR-51 (Kan 50+, Rif 100+ , Nal 40+ )
were mass multiplied separately in nutrient
broth and incubated for 24 h at 150 rpm. The
cells were pelleted at 7000 rpm and re-sus-
pended in 10 mM MgSO4. Roots of black pep-
per (cv. Karimunda) were dipped in the bac-
terial suspension (108 cells ml-1) for 30 min and
the cuttings were planted in sterile potting
mix. After 3 months, the plants were exca-
vated and roots, leaves and stems were col-
lected.  The stems were cut to 2 cm pieces
and weighed separately. Three leaves from
the base of the plant along with the stem
pieces and 1 g of root were surface sterilized
by immersing the samples in 0.1% HgCl2 for

10 min and then washed thrice in sterile wa-
ter. The samples were then immersed in 70%
ethanol for 10 min and washed five times in
sterile water, macerated aseptically using
sterile pestle and mortar in 10 ml of 10 mM
MgSO 4.  From this, aliquots were spread,
plated on to King�s B agar and nutrient agar
and incubated at 26 ± 20 C for 48 h. Colonies
of fluorescent pseudomonad isolates IISR-34
(Rif100+) and IISR-51 (Kan 50+, Rif 100+ , Nal 40+ )
that appeared in the antibiotic amended plates
were enumerated.  In order to make sure that
the surface sterilization was complete, the
samples, after surface sterilization were
plated as such, without maceration on to nu-
trient agar.

Results and discussion

In vitro assay for non-volatile and volatile inhibi-
tory metabolites

The short- l is ted isolates  of  f luorescent
pseudomonads were found to suppress P.
capsici through different modes namely, pro-
duction of volatile and non-volatile inhibitory
metabolites including HCN, and siderophore
mediated antagonism. In the in vitro assay
performed for non-volatile inhibitory me-
tabolites, the isolates showed varying degrees
of inhibition of P. capsici in dual culture which
ranged from 36.3% to 72.0% (Figs. 1 and 2).
All the 12 isolates tested for production of
volatile metabolites proved positive and the
best was isolate IISR-51 (Figs. 1 and 3). Ef-
forts focused worldwide, on the mechanism
of action of  f luorescent pseudomonads
against plant pathogenic fungi, stress on the
involvement of production of antifungal me-
tabolites  by f luorescent pseudomonads
(Loper et al. 1994).  These anti-fungal metabo-
lites produced by fluorescent pseudomonads
may be 2 ,  4 ,  diacetyl  phloroglucinol
(Raaijmakers et al. 1999; Keel et al . 1992;
Vincent et al. 1991), oomycin A and phena-
zine (Thomashow & Weller 1995).

In pseudomonad species, HCN is released by
the decarboxylation of glycine (Wissing 1974).
As described by Kloepper et al. (1991), the
HCN formed a brownish red compound with
sodium picrate and the intensity of the colour

Antagonism of fluorescent pseudomonads
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increased with the amount of HCN. In the
present study, different isolates produced
different intensities of colour indicating dif-
ferent amounts of HCN produced, the high-
est being produced by the isolate, IISR-51
(Table 1). Among the isolates tested, three
isolates (IISR-50, IISR-10 and IISR-12) did not
produce HCN. Defago et al. (1990) demon-
strated by mutational analysis and comple-
mentation that  production of  HCN by
Pseudomonas fluorescens  strain, CHAO, ac-
counted for about 60% of the biocontrol ac-
tivity. They suggested that since CHAO also
colonized the root cortex, the strain may pro-
duce a stress effect in the plant leading to cya-
nide resistant respiration and possible modi-
fication of tobacco metabolism resulting in
enhanced host resistance mechanisms.

Production of siderophores

The fluorescent pseudomonads were charac-
terized by their production of yellow-green
pigments that fluoresce under UV irradiation
and function as  s iderophores  termed
pyoverdins and pseudobactins (Meyer &
Abdallah 1978).  The iron dependent produc-
tion of s iderophores by the fluorescent
pseudomonad isolates was found to be in
agreement with the findings of Kloepper et
al. (1980b). As the concentration of iron in-

Fig. 1.  Suppression of Phytophthora capsici by volatile and non-volatile
metabolites of fluorescent pseudomonads in vitro

Fig. 2. In vitro  antagonism  by f luorescent
pseudomonads on Phytophthora capsici
(a) Phytophthora capsici x fluorescent pseudomonad

IISR-6    (b) Phytophthora capsici  alone

Fig. 3. Reduced growth of Phytophthora capsici, ex-
posed to volatiles of fluorescent pseudomonads
(a) Unexposed    (b) Exposed
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creased, the production of siderophores by
the isolates decreased (Fig. 4).  A similar
trend was also observed in the King�s B agar
plate wherein iron chelating EDTA (1000 mg
ml -1)  am ended plates  of  f luorescent
pseudomonad showed higher fluorescence
under UV light indicating higher level of
production of siderophores whereas FeCl3 (80
mM) amended plates showed no fluorescence
(Fig. 5).

Fig. 4. Iron regulated production of siderophores by two strains of fluorescent pseudomonads
For isolate IISR-57, Y=0.509-0.00046 X, r=-0.788; For isolate IISR-34, Y=1.424-0.0027 X, r=-0.937

Table 1. Production of hydrogen cyanide by
fluorescent pseudomonads
Isolate Intensity of colour
IISR-51 +++
IISR-11 ++
IISR-8 ++
IISR-6 ++
IISR-36 +
IISR-34 +
IISR-50 _
IISR-10 _
IISR-12 _
+++=D ark brow n; ++=Brow n; +=Yellow ish
brown; � =Yellow
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Fig. 5. Iron dependant production of siderophores
by fluorescent pseudomonad IISR-57
(a) King�s B Plate amended with EDTA (1000 mg

ml-1); (b) King�s B Plate amended with FeCl3

(80 mM)
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Fig. 6. Role of iron on the growth of Phytophthora capsici in vitro
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Studies on the effect of iron chelation on
growth of P. capsici revealed that at 1000 mg
ml-1 of EDTA, the growth was completely in-
hibited (Figs. 6 and 7) due to deficiency of
available iron.  The increased production of
siderophores by fluorescent pseudomonads
as well as the limited growth of P. capsici at
lower concentrations of iron in the medium
indicated the involvement of siderophores in
fluorescent pseudomonad-P. capsici antago-
nistic system. Weller (1988) suggested that
siderophore, produced by the fluorescent
pseudomonad strain 2-79 supplies essential
iron needed for the production of phenazine,
an antifungal metabolite,  indicating the iron
regulated production of antibiotics by the
fluorescent pseudomonads.

Endophytic nature of fluorescent pseudomonads

Experiments on the endophytic nature of
fluorescent pseudomonads showed that it
could reside within the internal tissues of the
plant. The population of strains IISR-51and
IISR-34 in the root ranged from 103 to 104 cells
g-1 of the root tissue.  The shoot tissue con-
tained up to 103 cells g-1 of the introduced

fluorescent pseudomonad cells. There were
only 101 to 102 cells g-1 of the isolate IISR-51
of the leaf tissue as endophytes, whereas in
the case of isolate IISR-34, no cells were de-
tected in the leaf tissue (Table 2).  The popu-
lation of the bacteria inside the stem de-
creased with height of the plant and the re-
gion close to the collar sustained a popula-
tion of 104 cells g-1 of shoot tissue. According
to MclnRoy & Kloepper (1995), the popula-
tion  density of bacterial endophytes is high-
est in the root and lower in the  stem and
decreases acropetally and the common popu-
lations vary from 103 to 106 cells. Systemic
spread of the endophytic bacteria has been
demonstrated for Erwinia spp., which was
recovered from cotton roots, stems and un-
opened flowers (Misaghi &  Donndelinger
1990).  Mahaffee &  Kloepper  (1997) described
that although both bacterial endophytes,
Pseudomonas fluorescens and Endobacter asburiae
colonized the cortical and vascular root tis-
sues of common bean, only E. asburiae colo-
nized the stem tissue following seed applica-
tion. The main entry for endophytic bacteria
may be through wounds that naturally occur

µµ
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as a result of plant growth or through root
hairs and at epidermal conjunctions (Sprent
& Faria 1998). Chen et al. (1994) suggested
that biocontrol effect of endophytic strains
within plant tissues mainly result from en-
hanced host defence rather than from bacte-
rial metabolites.

The multifarious action of antagonism by fluo-
rescent pseudomonads, namely, production
of volatile and non-volatile inhibitory com-
pounds, HCN and siderophores and its en-
dophytic  nature makes  it  an eff ic ient
biocontrol agent of P. capsici of black pepper.
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