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Abstract  
Systems biology is a new biological science applied to biomedical and biological scientific research. This new field of systems 
biology is changing the way biology has been perceived classically. This field not only needs scientists and mathematicians 
but also calls for engineers willing to embrace fresh challenges. This review outlines the new opportunities available in this 
nascent field for significant engineering-related advances. It is anticipated that engineers will be at the forefront to motivate 
and lead new developments in this field via theoretical systems approaches. The aim of this article is to divert the attraction of 
engineers towards biological science as they can revolutionize the field of biology. 
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INTRODUCTION 
 

Systems biology is a newly emergent field with its origins in the 
early years of the 21st century. The field was formally inaugurated by 
the publication of a book [1] and two papers in the leading journals 
Science and Nature [2-3]. Further impetus was provided by the 
prescient perspective of Stokes [4]. 
The highlight of this new field of systems biology are its 
multidisciplinary and integrative approaches. While the era of genetic 
engineering was dominated by a reductionist approach with the 
focus being on a handful of genes or a handful of proteins, the focus 
of systems biology is to understand biological processes at the 
systems level, i.e., to take into consideration the functioning of 
complex biological system as a whole [5]. What is equally important 
is that the field combines approaches from diverse areas of science 
such as biology, chemistry, physics, mathematics, engineering, 
cybernetics and computer science [6-13]. This review attempts to 
examine the various opportunities for engineers to contribute to this 
exciting new field of research. 
 
HISTORY 
 

The pre-1950s traditional biology occupied itself with botany, 
zoology and ecology. Later came biochemistry and molecular biology 
and the emphasis was shifted to the structure of proteins, the 
structure of DNA and RNA, principles of DNA replication as well as 
transcription and translation, and function of membranes. A massive 
body of knowledge had been gathered by the biochemists and the 
molecular biologists. Thus the field was set to make the next step, 
i.e., a holistic view towards a systematic investigation of cells, organs 

and organisms and of (mainly) cellular processes such as cellular 
communication, cell division, homoeostasis and adaptation. This 
systems-oriented perspective of biological processes is termed 
systems biology. 

 But this step cannot be taken by biologists alone. While systems 
biology is deeply rooted in biology, it is also about modeling, network 
analysis and data integration. These are areas in which engineers 
excel and can contribute significantly. 

A systems-level understanding of biological systems is a recurrent 
theme in science. The pioneering work of D’Arcy Thompson entitled 
On Growth and Form [14] was one of the first to elucidate general 
scientific and geometric principles running through the immense 
variety displayed by nature. Norbert Wiener was a pre-1950 
proponent of a systems-level understanding of biological processes 
and this led to the field of “Cybernetics” [15]. Ludwig von Bertalanffy 
applied general systems theory to various scientific fields, including 
biology, but the theory was too abstract for practical applications [1]. 
Walter Cannon, in 1933, proposed the concept of homoeostasis, with 
remarkably prescient intuition about the systematic behaviour of the 
organism as a whole [1]. 

Turing [16] proposed a pioneering systems-level description of the 
chemical basis of morphogenesis in biology. The Prigogine school 
[17-18] has shown that several aspects of life can be explained 
through the concept of “dissipative structures” which exist in “far from 
equilibrium” situations. 

It must be noted that, in the pre-1950s era, due to limited 
knowledge of molecular biology, most of the descriptions and 
analyses of biological systems has been at the physiological level [1]. 
Systems biology departs from these past attempts in that it seeks a 
systems level understanding directly at the molecular level such as 
genes and proteins. Thus genomics and proteomics are the pillars 
on which the field of systems biology rests [19]. 
 
IMPACT OF SYSTEMS BIOLOGY  
 

As emphasized in Klipp et al [7], systems biology though rooted in 
biology also steps upwards to model development of networks while 
encompassing the features of modularity and robustness (more on 
this later) and also towards integration of data delivered by high-

  

Received: March, 2013; Revised: May, 2013 ; Accepted: May, 2013 

 
*Corresponding Author 

 
Anand V. P. Gurumoorthy * 
 

Chemical Engineering Division,  
School of Mechanical and Building Sciences, VIT University, Vellore-632014, 

Tamil Nadu, India 



 

 

throughput technologies such as DNA microarrays [20], 2D gels, 
mass-spectrometry etc. 

 Engineers can play an important role by effecting the following 
impacts via systems biology: 

1. A systems-level understanding of natural biological systems 
(animals, plants, microorganisms). This understanding need not only 
be structural and static, but also possibly about the dynamics. This 
can also intrude into the domains of metabolic engineering [21-23], 
proteomic network modeling [24], sensitivity analysis [25] and 
bifurcation analysis. 

2. A systems-level understanding of pathology and malfunction 
leading to the ability to control the state from the cell to the whole 
body. This has important implications for toxicogenomics and 
pharmacogenomics [26-28]. 

3. The development of a systems-level approach in biotechnology 
which may, from a futuristic point of view, design biological systems 
having desired properties not existing in nature [29]. 

ELEMENTS OF SYSTEMS BIOLOGY  

A major component of systems biology is network analysis. This 
includes network identification. Along with this comes mathematical 
modeling to understand system behavior (including system 
identification through linear and nonlinear methods), followed by 
control of biological processes via robust techniques in the face of 
model uncertainities. These topics are discussed in more detail 
below. 

 
Networks 
 

Network analysis is one of the strongholds of engineers. Electrical 
and electronics engineers frequently deal with complex electrical and 
electronic circuits. Chemical engineers deal with complex reaction 
networks regularly [30]. Central to the analysis of biological systems 
are biological circuits, namely regulatory and metabolic networks 
[13],[31]. It has been suggested that understanding network 
connectivity may usher in a new revolution more important than the 
current “omics” measurement revolution [32]. 

 Especially in biological systems, a form of “nested complexity” 
emerges when networks of interactions form a complex pyramid [33]. 
At a lower level, the interactions are between molecular components 
such as genes, RNA, proteins and metabolites. These interactions 
are, in turn, integrated into interacting motifs that eventually give rise 
to an organism’s response. Examples are (i) the DNA-mRNA-
enzyme-metabolite cascade or (ii) the signal transduction cascades 
consisting of covalent modification cycles [7],[34]. These networks 
exhibit additional systemic properties and dynamic characteristics 
that often cannot be deduced from the individual properties of the 
elements. 

 As Doyle and Stelling [35] point out, many components of the 
networks have direct analogues in system engineering architecture. 
For instance, the Escherischia coli regulatory network shows the 
following features [36]: 

- autoregulation: regulation of a gene by its gene product 

- coherent feedforward loop: in this, one transcription factor regulates 
another factor, and in turn, the two jointly regulate a third 
transcription factor. 

- Single input module (SIM): which contains a single input, multiple 
output block architecture. 

- Densely overlapping regulons: which contains a multiple input, 
multiple output (MIMO) block architecture. 

Similar resemblances have also been seen in S. cerevisiae [37]. 
Indeed, according to Alon [13], the above four motif families appear 
to account for almost all of the interactions in sensory transcription 
networks. 

 Moreover, gene networks have been found to exhibit various 
classes of behaviour such as positive feedback, integral feedback, 
negative feedback, time delay and multistate oscillations. These 
studies indicate that cell functions (both prokaryotic and eukaryotic) 
are controlled by a sophisticated network of control loops which are 
interconnected with other control loops [35],[38]. It becomes clear 
that such systems cannot be studied by the reductionist approaches 
of biochemistry and molecular biology but must be treated via the 
integrative perspective of systems biology.  

 An important problem in systems biology is network identification. 
Biological networks can, as a first approximation, be described as 
linear systems. Linear models (state-space models) capture the local 
dynamics in the vicinity of a steady state. 

 In contrast to linear approximations mentioned above, 
mechanistic models are usually nonlinear systems. The identification 
of such models is extremely challenging and comes at a very high 
computational cost [35]. 

 
Systems behavior 
 

Understanding the behaviour of complex biological networks is an 
extremely challenging task [1],[13]. Computer simulation is 
indispensible to provide in-depth knowledge on the mechanisms 
behind the circuits. 

 For a successful simulation, the intrinsic dynamic features of 
biophysical networks need to be described mathematically. Models 
can be of three types: (i) first-principles models, (ii) empirical models, 
and (iii) a hybrid model combining the above two approaches. Such 
mathematical models can be constructed using a combination of 
algebraic equations and ordinary differential equations, concepts 
familiar to most engineers. However, since biosystems are complex, 
self-organizing, highly adaptive, operating at several levels of 
hierarchy and are higly nonlinear, it is highly challenging to apply 
mathematical modeling tools to living systems [32]. Encouragingly, 
models at the signal transduction pathway level have been 
developed yielding ordinary differential equations [35]. Mechanistic 
models have also been attempted for entire biological systems such 
as the bacteriophage system [39]. 

 
System control 
 

Various control schemes used in complex engineering systems 
(e.g. feed-forward and feedback control) are found in biological 
systems. Indeed robustness can be related to the feedback control 
mechanisms prevalent almost ubiquitously at all levels [38]. An 
important example is the discovery of integral feedback control in 
bacterial chemotaxis [40]. Future developments in this area may 
address the challenging problem of transforming malfunctioning cells 
into healthy cells and also regulating apoptosis [1]. 

 
STOCHASTIC SIMULATION  

A deterministic viewpoint is very suitable for analyzing certain 
events, such as some metabolic reactions, which frequently occur 
simultaneously [41]. However, there are processes that are not 
amenable to deterministic simulation, especially in gene regulatory 



Anand V. P. Gurumoorthy 

 

8

systems where the copy number  of some key species (e.g. 
transcription factors) is very low.  

 For such systems, stochastic simulation has been proposed as a 
solution [42-44]. Arkin and co-workers have also demonstrated the 
application of stochastic models to a class of biochemical reactions 
(enzymatic futile cycles). Gunawan et al. [45] have developed 
methods to characterize robustness properties of stochastic systems. 
Experimental methods have been devised for quantifying the 
characteristics of biological noise [46-48]. For instance, Raser and 
O’Shea [48] analyze eukaryotic systems with both cis- and trans-
acting mutations to distinguish between the noise effects that are 
intrinsic to transcription as opposed to upstream processes. Ao [22] 
has proposed a general systems approach to model metabolic 
network dynamics in a stochastic manner. 

 
ROBUSTNESS  
 

As in engineering systems, in biology too, robustness refers to the 
maintenance of functional properties by a system in the presence of 
uncertainty [1],[35]. Robustness is a very much desired property of 
biological processes as they are subjected to constant uncertainty in 
the form of stochastic phenomena [42]. Recent reviews on 
robustness in cellular functions are by Stelling et al [49-50]. 

 In engineering systems, robustness and stability are achieved by 
[35]: 

- back-up systems (redundancy) 

- disturbance attenuation by feedback and feedforward control 

- structuring of network systems into semi-autonomous 
functional units (modular design) 

- reliable coordination of network elements through hierarchical 
ordering 

It is hypothesized that such an approach is adapted by complex 
biological systems too [1]. 

 It is clear that robustness is a fertile ground for further research 
by engineers. The field of robust control [51] holds many results that 
may be applicable to describe interactions in biological systems. 

CONCLUSION 

It is evident from the above discussion that the field of systems 
biology possesses tremendous potential for the creative engineer. At 
the same time, the pitfalls of this new field should not be overlooked. 
A fundamental assumption of systems biology is that the cell is a 
machine and can be measured in parallel by using high throughput 
technologies. An additional assumption is that by perturbing the cell 
and observing its change in state, one can learn about the 
mechanism of the cell [52]. The assumptions rely heavily on the 
soundness of the database. But this may not always be the case. 
Drawbacks in DNA microarray analysis [20], for instance, can lead to 
misleading results. Even if the database is sound, different labs often 
give different results [52]. This makes cross-experimental 
comparison very challenging, requiring advanced statistical 
techniques. These are issues to be looked into. 

 Finally, this new field of systems biology requires a new kind of 
researcher, one who is not only well-versed in biological concepts 
but also in mathematical, chemical and computer science oriented 
concepts. This calls for tailor-made courses at the undergraduate 
and postgraduate levels in all engineering streams. Kumar [53], for 
instance advocates a co-operative-learning strategy in which 
students of different backgrounds are arranged in groups so that the 

students can complement each other’s individual weaknesses 
leading to synergistic results.  

According to Dhurjati and Mahadevan [32], one needs to have a 
whole new generation of students who are equally adept at 
mathematics and biology just as chemical engineering students are 
adept in mathematics and chemistry. Until then, one has to manage 
by taking individuals who are well trained in mathematics and 
computational sciences and provide them with biology domain 
knowledge. In short, education of engineers on the elements of 
systems biology is the need of the day. 
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