Recursive method for inversion of lower triangular matrix

B. Rami reddy

HOD of mathematics,Hindu college,Guntur-522002 ,AP, India.

Abstract

Algorithm for finding by recursion, the inverse of a lower triangular matrix of order n is developed, using its last row and the sub matrix obtained by deleting the last row and last column. In these algorithms the hitherto using double suffix notation for the entries of amatrix is replaced by single suffix notation. The necessary results are established.

Keywords: Lower triangular matrix, Recursive method, Single suffix

INTRODUCTION

The algebra of lower triangular matrices of order n can be identified with the space $\mathrm{R}^{\mathrm{n}(\mathrm{n}+1) / 2 \text {. This identification enables one to }}$ switch over to single suffix notation from the double suffix notation for the entries of a matrix. As the underlying sets are bijective vector multiplication on $\mathrm{R}^{(n+1) / 2}$. can be suitably defined using matrix multiplication, so that these are isomorphic as algebras. This observation leads to simplification of computational procedure for inversion. In this paper I discussthese aspects and present algorithm for recursive method.

Notation

For any positive integer n, let $S_{n}=n(n+1) / 2$. We denote the vectors in $R^{S n}$ by ($\left.a^{1}, a^{2}, \ldots . . a^{n}\right)$ where $a i=\left(a_{l+1}, a_{1+2}, a_{l+i}\right)$ and $i=S_{i-1} . R^{S n}$ is a vector space with component wise addition and scalar multiplication. Before defining multiplication between vectors in $R^{S_{n}}$ we introduce the following notation.

If $A_{n}=\left(a^{1}, a^{2}, \ldots, a^{n}\right)$ we write $A_{n-1}=\left(a^{1}, a^{2}, \ldots, a^{n-1}\right)$
$\mathrm{a}^{\mathrm{n}}=\left(\mathrm{a}, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}\right)$ Where $^{\mathrm{a}=\left(\mathrm{a}_{\mathrm{N}+1}, \mathrm{a}_{\mathrm{N}+2}, \ldots, \mathrm{a}_{\mathrm{N}+\mathrm{n}-1}\right) \text { and } \mathrm{N}=\mathrm{S}_{\mathrm{n}-1} .}$
When $n=1, \quad A_{1}, B_{1} \in R^{1}$. We write $A_{1}, B_{1}=\left(a_{1}, b_{1}\right)$, where $\mathrm{A}_{1}=\left(\mathrm{a}_{1}\right), \mathrm{B}_{1}=\left(\mathrm{b}_{1}\right)$
If $b^{n} \in R^{n}$ we write $b^{n}=\left(b_{1}, b_{2}, \ldots, b_{n-1}, b_{n}\right)=\left(b^{n-1}, b_{n}\right)$.
If $A_{n}=\left(A_{n-1}, a, a_{S_{n}}\right) \in R^{S_{n}}$, we define
$b^{n} A_{n}=\left(b^{n-1}, b_{n}\right)\left(A_{n-1}, a, a_{S_{n}}\right)=\left(b^{n-1} A_{n-1}+b_{n} a, b_{n} a_{S_{n}}\right)$
This gives us the definition of $b^{n} A_{n}$ inductively for all n.

$$
\text { Let } A_{n}=\left(A_{n-1}, a, a_{S_{n}}\right)_{\text {and }} B_{n}=\left(B_{n-1}, b, b_{S_{n}}\right)
$$

Received: Feb 08, 2012; Revised; March 15, 2012; Accepted: April 25, 2012.
*Corresponding Author
B. Rami reddy

HOD of mathematics, Hindu college,Guntur-522002, AP, India.
Tel: +91-9440757826
Email: rbhavanamr@rediffmail.com

If $n=1, \quad A_{1}=\left(a_{1}\right), B_{1}=\left(b_{1}\right), A_{1} B_{1}=\left(a_{1} b_{1}\right)$.
If A_{n-1}, B_{n-1} are defined, we define
$A_{n} B_{n}=\left(A_{n-1} B_{n-1}, a B_{n-1}+a_{S_{n}} b, a_{S_{n}} b_{S_{n}}\right)$

Theorem

$R^{S n}$ is an algebra with identity $I_{n}=\left(I_{n-1}, 0,1\right)$ and $I_{1}=(1)$
Proof when $n=1, R^{S_{n}}=R^{1}$ and $A_{1}=\left(a_{1}\right)$
\therefore we identify A_{1} with a_{1}
Vector addition coincides with addition in R , the scalar multiplication and vector multiplication coincide with multiplication in R. thus R^{1} is an algebra with identity $\mathrm{I}_{\mathrm{n}-1}$.
$\mathrm{A}_{\mathrm{n}}=\left(\mathrm{A}_{\mathrm{n}-1}, \mathrm{a}, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}\right)_{\text {and }} \mathrm{B}_{\mathrm{n}}=\left(\mathrm{B}_{\mathrm{n}-1}, \mathrm{~b}, \mathrm{~b}_{\mathrm{S}_{\mathrm{n}}}\right) \in \mathrm{R}^{\mathrm{S}_{\mathrm{n}}}$
$A_{n}+B_{n}=\left(A_{n-1}+B_{n-1}, a+b, a_{S_{n}}+b_{S_{n}}\right)$
$A_{n} B_{n}=\left(A_{n-1} B_{n-1}, a B_{n-1}+a_{S_{n}} b, a_{S_{n}} b_{S_{n}}\right)$ and $\alpha \mathrm{A}_{\mathrm{n}}=\left(\alpha \mathrm{A}_{\mathrm{n}-1}, \alpha \mathrm{a}, \alpha \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}\right), \quad \forall \alpha \in \mathrm{R}$.

By induction hypothesis $\mathrm{R}^{\mathrm{Sn}-1}$ is algebra with identity $\mathrm{I}_{\mathrm{n}}=\left(\mathrm{I}_{\mathrm{n}-1}, 0,1\right)$

Theorem

$A \in R^{S n}$ is invertibleiff $\exists B \in R^{s_{n}}$ such that $A b=I_{n}$.
Proof It is enough to show that $A B=I_{n} \Leftrightarrow B A=I_{n}$. When $n=1$, $S_{n}=1$ and in this case the statement is true.
Assume for n -1. Let
$\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{a}, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}\right) \in \mathrm{R}^{\mathrm{S}_{\mathrm{n}}}, \mathrm{B}=\left(\mathrm{B}_{1}, \mathrm{~b}, \mathrm{~b}_{\mathrm{S}_{\mathrm{n}}}\right) \in \mathrm{R}^{\mathrm{S}_{\mathrm{n}}}$
$A B=\left(A_{1} B_{1}, a B_{1}+a_{S_{n}} b, a_{S_{n}} b_{S_{n}}\right)$,
$B A=\left(B_{1} A_{1}, \mathrm{bA}_{1}+\mathrm{b}_{\mathrm{S}_{\mathrm{n}}} \mathrm{a}, \mathrm{b}_{\mathrm{S}_{\mathrm{n}}} \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}\right)$
Assume that $A B=I_{n}=\left(I_{n-1}, 0,1\right)$. Then $A_{1} B_{1}=I_{n-1}$,
$a B_{1}+a_{S_{n}} b=0, a_{S_{n}} b_{S_{n}}=1$.
By induction hypothesis $A_{1} B_{1}=I_{n-1}$. Hence it is enough to prove that $\mathrm{bA}_{1}+\mathrm{b}_{\mathrm{S}_{\mathrm{n}}} \mathrm{a}=0$.

Since
$\mathrm{aB}_{1}+\mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \mathrm{b}=0$
$\mathrm{aB}_{1}=-\mathrm{a}_{\mathrm{s}_{n}} \mathrm{~b} \Rightarrow \mathrm{aB}_{1} \mathrm{~A}_{1}=-\mathrm{a}_{\mathrm{s}_{n}} \mathrm{bA}_{1} \Rightarrow \mathrm{aI}_{\mathrm{n}-1}=-\mathrm{a}_{\mathrm{s}_{\mathrm{n}}} \mathrm{bA}_{1}$
$\mathrm{b}_{\mathrm{S}_{\mathrm{n}}} \mathrm{a}=-\mathrm{b}_{\mathrm{S}_{\mathrm{n}}} \mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \mathrm{bA}_{1}=-\mathrm{bA} A_{1} \Rightarrow \mathrm{~b}_{\mathrm{S}_{\mathrm{n}}} \mathrm{a}+\mathrm{bA}_{1}=0$.

Theorem

$\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{a}, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}\right) \quad$ is invertible iff $\mathrm{a}_{\mathrm{s}_{1}}, \mathrm{a}_{\mathrm{s}_{2}}, \ldots, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \neq 0$. In this case $A^{-1}=\left(A_{1}^{-1}, x, a_{S_{n}}^{-1}\right)_{\text {where }} \quad x=-a_{S_{n}}^{-1} A_{1}^{-1}$.
Proof we prove by induction on n.
If $n=1, S_{n}=1, R^{S_{n}}=R^{1}=R$ and in this case the statement is clearly true. Assume the validity of the statement for $n-1$. Let
$A=\left(A_{1}, a, a_{S_{n}}\right)$ be any vector in $R^{s_{n}}$.
Clearly $\mathrm{a}_{\mathrm{S}_{1}}, \mathrm{a}_{\mathrm{S}_{2}}, \ldots, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \neq 0$ if $\mathrm{a}_{\mathrm{S}_{1}}, \mathrm{a}_{\mathrm{S}_{2}}, \ldots, \mathrm{a}_{\mathrm{S}_{n-1}} \neq 0 \neq \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}$.
By induction hypothesis $A_{1} \in R^{S_{n-1}}$ is invertible
iff $\mathrm{a}_{\mathrm{S}_{1}}, \mathrm{a}_{\mathrm{S}_{2}}, \ldots, \mathrm{a}_{\mathrm{S}_{\mathrm{n}-1}} \neq 0$.
Now we assume that $a_{\mathrm{s}_{1}}, \mathrm{a}_{\mathrm{s}_{2}}, \ldots, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \neq 0$.
$\left(\mathrm{A}_{1}, \mathrm{a}, \mathrm{a}_{\mathrm{s}_{\mathrm{n}}}\right)\left(\mathrm{A}_{1}^{-1}, \mathrm{x}, \mathrm{a}_{\mathrm{s}_{\mathrm{n}}}^{-1}\right)=$
$\left(\mathrm{A}_{1} \mathrm{~A}_{1}^{-1}, \mathrm{aA}_{1}^{-1}+\mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \mathrm{X}, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}^{-1}\right)=\left(\mathrm{I}_{\mathrm{n}-1}, 0,1\right)_{\mathrm{I}} \mathrm{I}_{\mathrm{n}}$.
Hence A is invertible.
Conversely assume that A is invertible and let
$\mathrm{A}^{-1}=\mathrm{B}=\left(\mathrm{B}_{1}, \mathrm{~b}, \mathrm{~b}_{\mathrm{S}_{\mathrm{n}}}\right)$ then
$\mathrm{AB}=\left(\mathrm{A}_{1}, \mathrm{a}, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}\right)\left(\mathrm{B}_{1}, \mathrm{~b}, \mathrm{~b}_{\mathrm{S}_{\mathrm{n}}}\right)=\left(\mathrm{A}_{1} \mathrm{~B}_{1}, \mathrm{aB}_{1}+\mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \mathrm{b}, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \mathrm{b}_{\mathrm{S}_{\mathrm{n}}}\right)$
$\Rightarrow A_{1} B_{1}=I_{n-1}, \quad a B_{1}+a_{S_{1}} b=0, a_{S_{n}} b_{S_{n}}=1 \Rightarrow A_{1}$ is
invertible and $\mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \neq 0$
$\Rightarrow \mathrm{a}_{\mathrm{S}_{1}}, \mathrm{a}_{\mathrm{S}_{2}}, \ldots, \mathrm{a}_{\mathrm{S}_{\mathrm{n} \cdot 1}} \neq 0 \neq \mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \Rightarrow \mathrm{a}_{\mathrm{S}_{1}}, \mathrm{a}_{\mathrm{S}_{2}}, \ldots, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}} \neq 0$.
$\varphi\left(\mathrm{A}_{\mathrm{n}}\right)=\mathrm{L}_{\mathrm{n}}$ (L for lower triangular) where L_{n} is the lower triangular matrix of order n , with first I entries of the ith row coinciding with the corresponding entries of ai. By partitioning Lntthrough bordering at the last row and last column and ignoring the zero column in the bordered matrix, we can represent $\mathrm{L}_{\mathrm{n}}=\left(\mathrm{L}_{\mathrm{n}_{-1}, l} l, \mathrm{a}_{\mathrm{s}_{\mathrm{n}}}\right)$ where $\left(l, \mathrm{a}_{\mathrm{s}_{\mathrm{n}}}\right)=\mathrm{a}^{\mathrm{n}}$. This representation enables us to write $\mathrm{L}_{\mathrm{n}}=\varphi\left(\mathrm{A}_{\mathrm{n}}\right)=\varphi\left(\mathrm{A}_{\mathrm{n}-1}, l, \mathrm{a}_{\mathrm{S}_{\mathrm{n}}}\right)$. It is now clear that addition, scalar multiplication and vector multiplication in R^{n} correspond to the corresponding operations in the algebra of lower triangular matrices. Thus we have the followings

Theorem

The algebra $\mathrm{R}^{\mathrm{S}_{\mathrm{n}}}$ is isomorphic to L_{n}, the algebra of lower triangular matrices of order n .

Corollary

let $\mathrm{L}_{\mathrm{n}}=\left(\mathrm{L}_{\mathrm{n}-1}, l, l_{n n}\right)_{\text {be a lower triangular matrices of order } \mathrm{n} \text { where, }}$, L_{n-1} is the lower triangular matrices of order $\mathrm{n}-1$ formed by the first n 1 rows and columns of L_{n} and $\left(l, l_{n}\right)$ is the last row of L_{n}. L_{n} is nonsingular if L_{n-1} is nonsingular and $\ln _{n} \neq 0$. In this case $\mathrm{L}_{\mathrm{n}}^{-1}=\left(\mathrm{L}_{\mathrm{n}-1}^{-1}, \mathrm{x}, l_{n n}^{-1}\right)$ where $\mathrm{x}=-l_{n m}^{-1} \mathrm{~L}_{\mathrm{n}-1}^{-1}$.
Proof Follows from theorems (1.5) and (1.6).

Remark

The above identification of a lower triangular matrix of order n with a vector in $R^{S_{n}}$ enables us to adopt single suffix notation for entries in triangular matrix instead of the present double suffix notation. The corollary (1.7) yields a recursive method for finding the inverse of a nonsingular lower triangular matrix. We present below an algorithm for this recursive method.

Algorithm Recursive algorithm for inversion of a lower triangular matrix of order n.

Write $\quad \mathrm{S}_{\mathrm{i}}=\mathrm{i}(\mathrm{i}+1) / 2, \quad 0 \leq \mathrm{i} \leq \mathrm{n}$
$l^{i}=\left(l_{I+1}, l_{I+2}, . ., l_{I+i-1}, l_{S_{i}}\right)$, and $\quad \mathrm{I}=\mathrm{S}_{\mathrm{i}-1}$
$\mathrm{L}_{1}=\left(l^{1}\right)=\left(l_{1}\right), \mathrm{x}^{1}=\left(\mathrm{x}_{1}\right)=\left(l_{1}^{-1}\right), \mathrm{L}_{1}^{-1}=\left(\mathrm{x}^{1}\right)$
Let $2 \leq \mathrm{i} \leq \mathrm{n}_{\mathrm{x}_{I+j}}=-l_{S_{i}}^{-1} \sum_{k=j}^{n-1} l_{I+k} \mathrm{x}_{K+j}$, where $\mathrm{I}=\mathrm{S}_{\mathrm{i}-1}$,
$\mathrm{K}=\mathrm{S}_{\mathrm{k}-1}, \quad 1 \leq \mathrm{j} \leq \mathrm{i}-1$
$\mathrm{x}_{\mathrm{S}_{\mathrm{i}}}=l_{\mathrm{S}_{\mathrm{i}}}^{-1}, \mathrm{X}^{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{I}+1}, \mathrm{x}_{\mathrm{I}+2}, . ., \mathrm{x}_{\mathrm{I}+\mathrm{i}-1}, \mathrm{x}_{\mathrm{S}_{\mathrm{i}}}\right)$ where $\mathrm{I}=\mathrm{S}_{\mathrm{i}-1}$
$L_{i}^{-1}=\left(L_{i-1}, x^{i}\right)$
Example Let $\mathrm{L}_{4}=\left[\begin{array}{llll}1 & & & \\ 2 & 4 & & \\ 1 & 0 & 3 & \\ 0 & 0 & 2 & 1\end{array}\right]$
Step $1 \quad \mathrm{~L}_{1}=(1), \mathrm{L}_{1}^{-1}=(1)$
Step $2 L_{2}=\left[\begin{array}{ll}1 & \\ 2 & 4\end{array}\right]$,
$l^{2}=\left(l_{2}, l_{3}\right)=\left(\begin{array}{ll}2 & 4\end{array}\right), \quad \mathrm{x}^{2}=\left(\begin{array}{ll}\mathrm{x}_{2} & \mathrm{x}_{3}\end{array}\right) \quad$ where
$\mathrm{x}_{2}=-l_{3}^{-1} l_{2} \mathrm{x}_{1}=-0.5, \quad \mathrm{x}_{3}=l_{S_{2}}^{-1}=l_{3}^{-1}=0.25$,
$\mathrm{L}_{2}^{-1}=\left(\mathrm{L}_{1}^{-1}, \mathrm{x}^{2}\right)=\left[\begin{array}{cc}1 & \\ -0.5 & 0.25\end{array}\right]$.
Step $3 L_{3}=\left[\begin{array}{lll}1 & & \\ 2 & 4 & \\ 1 & 0 & 3\end{array}\right]$
$l^{3}=\left(\begin{array}{lll}1 & 0 & 4\end{array}\right), \quad \mathrm{x}^{3}=\left(\begin{array}{lll}\mathrm{x}_{4} & \mathrm{x}_{5} & \mathrm{x}_{6}\end{array}\right)$ where
$\mathrm{x}_{4}=-0.25, \mathrm{x}_{5}=0, \mathrm{x}_{6}=0.25$
$\mathrm{L}_{3}^{-1}=\left(\begin{array}{ll}\mathrm{L}_{2}^{-1} & \mathrm{x}^{3}\end{array}\right)=\left[\begin{array}{ccc}1 & & \\ -0.5 & 0.25 & \\ -0.25 & 0 & 0.25\end{array}\right]$.
Step $4 \mathrm{~L}_{4}=\left[\begin{array}{llll}1 & & & \\ 2 & 4 & & \\ 1 & 0 & 3 & \\ 0 & 0 & 2 & 1\end{array}\right]$
$l^{4}=\left(\begin{array}{llll}0 & 0 & 2 & 1\end{array}\right), \quad \mathrm{x}^{4}=\left(\begin{array}{llll}\mathrm{x}_{7} & \mathrm{x}_{8} & \mathrm{x}_{9} & \mathrm{x}_{10}\end{array}\right)$
where $\mathrm{x}_{7}=0.5 \quad \mathrm{x}_{8}=0 \quad \mathrm{x}_{9}=-0.5 \quad \mathrm{x}_{10}=1$

$$
\mathrm{L}_{4}^{-1}=\left(\mathrm{L}_{3}^{-1}, \mathrm{x}^{4}\right)=\left[\begin{array}{cccc}
1 & & & \\
-0.5 & 0.25 & & \\
-0.25 & 0 & 0.25 & \\
0.5 & 0 & -0.5 & 1
\end{array}\right]
$$

CONCLUSION

The formulae for finding the inverse of the lower triangular matrices are obtained in vector form and necessary algorithms are developed. This facilitates adoption of a single suffix notation for matrix computations, there by save the computer memory and
computational time.

REFERENCES

[1] Good,I.J.1970,"The inverse of centrosymmetric matrix", Technometrices (12) 925-928.
[2] Ramabhadrasarma I, et al., 1996. "A recursive method for finding the inverse of a CSP matrix", Information Sciences , 87-93.
[3] Weaver, J.R.. 1985, "Centrosymmetric (Cross symmetric) matrices, their basic properties, eigen values and eigen vectors", American Math Monthly, Vol. 92, No. 10.

