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Abstract  
This paper deals with a mathematical model of gonorrhea among hetero-sexual. This model composed of males and 
females is characterizes growth rates of promiscuous population (P), Infective male population ( I1), and Infective female 

population (I2). In all three equilibrium points are identified for the system under investigation, t h e  criterion for the 

asymptotic stability of all three possible equilibrium points is derived of those, purely healthy  state is stable  under  the  
condition F.M <1 and co-existence state  is stable with the condition F.M >1. 
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INTRODUCTION 
 
     Mathematical model of infectious diseases is a large sub 
field of mathematical biology. Mathematical models provide an 
explicit framework to understand biological systems that cannot 
be observed directly. Seminal mathematical work was done by 
Hethcote,York [5] on gonorrhea transmission of the disease in  
the form of a set of three simultaneous nonlinear  first  order  
differential equations. Cook  and  York [4] developed  a  
model  for gonorrhea involving susceptibles, infectives  and  
removals. The model of gonorrhea for heterogeneous population 
was given by Braun [3].Stability of gonorrhea is given by Beretta 
and Capasso [2]. N.C Sreenivas and N.Ch. Pattabhi 
Ramacharyulu [8] investigated stability of time delay gonorrhea. 
R.Ramakishore, N.Ch.PattabhiRamacharyulu [6] derived the 
stability  criteria  for gonorrhea in heterogeneous  population  
by considering time dependent population as variable. 
     As gonorrhea symptoms can be identified earlier in male 
then the females [5]. Male infective cure rate is greater that for 
females. The present investigation is an analytical study of 
gonorrhea among Hetero-sexual population. We have identified 
biologically feasible equilibria for the system namely (1) Trivial 
study state (2) Disease free steady state (3) Endemic equilibrium 
state. 
 
Notation adopted 
 

P(t) → Total number of promiscuous individuals in the population. 
P1(t)→Number of promiscuous males in the population.(αP ) 
P2(t) →Number of promiscuous females in the population. 

     ((1 − α)P ) 
I1(t) → Number of infective males in population. 
I2(t) → Number of infective females in population. 
a1→ Natural g r ow th  rate of total  promiscous population. 
a11→Natural s e l f  inhibition coefficient of total promiscuous 
   population. 
b1 →Infective rate in susceptible male population. 
b2 →Infective rate in susceptible female population. 
c1→Cure rate in infective male population. 
c2→Cure rate in infective female population. 
k →Carrying Capacity (a1/a11) for the total population. 
M→ Maximal Male contact rate. 
F→ Maximal Female contact rate. 
     here a1, a11, c1, c2, b1, b2 are assumed to be non negative 
constants  and 0 < α < 1 . 
 
Basic Equations 
 
     The model equations for Hetero-Sexuals are governed by 
the following system of nonlinear ordinary differential equations. 
 
I. Equation for the logistic growth rate of promiscuous population 
(P) 
                                    

1 11( )  
dP

a a P P
dt

= −                          (3.1) 

II. Equation fo r  growth rate of Infective male population (I1 ) 
                                   

1
1 2 1 1 1( ) I

dI
b P I I c

dt
α= − −

                        (3.2) 

III. Equation fo r  growth rate of Infective female population (I2) 

                                  

2
2 1 2 2 2( ) I  

dI
b P I I c

dt
α= − −                    (3.3) 

Equilibrium Points 
 
     The system has three equilibrium points: 

1. Trivial steady state 
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  1 20,  I 0,  I 0P = = =  

2. Disease free steady state
                             1

1 2

11

(  ),  I 0,  I 0 
a

P say k
a

= = =  

3. Endemic equilibrium state 
                 2 2

1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 2 1

(1 ) (1 )
,  I ,  I

(1 )

b b P c c b b P c c
P k

b b P c b b b P c b

α α α α

α α α

− − − −
= = =

− + +
 

 
Stability Criteria of Equilibrium States 
 
     let u , v and  w are  small  perturbations  from any  

of equilibrium  levels say 1 2( ,  I ,  I )P  of P(t),I1(t),I2(t) respectively. 

i.e. 1 1 2 2,  ,  +wP P u I I v I I= + = + =   
after neglecting higher order terms of u, v, w, we get the system of 

linearized perturbed equa t i ons  are given by dX
AX

dt
=

 

where A = 
1 11

1 2 1 2 1 1 1

2 1 2 2 2 1 2

2 0 0

( ) ( )

(1 ) ((1 ) ) ( )

a a P

b I b I c b P I

b I b P I b I c

α α

α α

 −
 

− + + 
 

− − + − +  

 

and X = [u, v, w]
T 

 
     Theequilibrium state is stable if all eigen values of the 
characteristic matrix A are negative or have negative real parts 
according as the roots are real or complex. 
 
Trivial Steady state 
 

i.e. 1 20,  I 0,  I 0P = = =  
 
Corresponding linearized perturbed equa t io n s  are 
 

1 1 2
,    ,      

du dv dw
a u c v c w

dt dt dt
= = − = −               (5.1.1) 

 

and A= 
1

1

2

0 0

0 0

0 0

a

c

c

 
 

− 
 − 

 

 
     The characteristic roots are a1, -c1, -c2 which are all non 
negative.  Hence this equilibrium point is repulsive in u-t plane 
and attracting in v-t and w-t plane and it is a saddle point.  
Hence it is unstable. 
By solving the equations (5.1.1) we get 
                               

1 1 2

0 0 0
,    v ,     wa t c t c t

u u e v e w e
− −

= = =  
 
     Where u o , v o ,w o  are the initial values of u, v and w 
respectively.  
 
Trajectories of the perturbations: 
 
Trajectories o f  above equations in u-v and v-w planes are given 

by 

1 1

1 1

0 0

a cu v

u v

−

   
=   

   
 and 

1 2

1 1

0 0

c cv w

v w

− −

   
=   

   
 

⇒
 

1 2 1 2 1 1

0 0 0

c c a c a c

u v w

u v w

− −

     
= =     

     
 

 
Disease Free Steady State 
 

i.e 1 2 ,  I 0,  I 0 P k= = =   
 
Corresponding linearized perturbed equa t io n s  are 

1 
du

a u
dt

= − ,  1 1

dv
c v b kw

dt
α= − + , 2 2(1 )  

dw
b kv c w

dt
α= − − (5.2.1)

   
 

here A= 
1

1 1

2 2

0 0

0  

0 (1 )  

a

c b k

b k c

α

α

 
 

− 
 − −   

 
Characteristic roots of which are 

1 1 1 2 1 1 2

1 1
 ,  [ ( )],  [ ( )]  

2 2
a R c c R c c

−
− + + − +  

Where
2 2

1 1 2 1 2 ( ) 4 (1 )R c c b b kα α= − + −          5.2.1   
 

Case 1 :- If 1 1 2R c c> +  

i.e.  

2

1 2

1 2

(1 )
1

b b k

c c

α α−
>  This can be interpreted as F.M  > 1 

here  F = 
1

2

b k

c

α  is maximal  female contact  rate 

and M = 2

1

(1 )b k

c

α−  is maximal  male contact rate 

roots are 1 1 1 2 1 1 2

1 1
,  [ ( )],  [ ( )]

2 2
a R c c R c c

−
− + + − +

 

hence the state is unstable 
 
By solving the equations (5.2.1) we 

get
 

 
1 1 2 1 2

0 1 2 3 4,    v ,     w  
a t t t t t

u u e Ae A e A e A e
λ λ λ λ−

= = + = +
   (5.2.1.1)  

 

Where
0 2 1 1 0

1

1 2

( )

( )

v c b kw
A

λ α

λ λ

+ +
=

−
, 

0 2 2 1 0
2

2 1

( )

( )

v c b kw
A

λ α

λ λ

+ +
=

−
, 

0 1 1 1 0
3

1 2

( ) (1 )

( )

w c b kv
A

λ α

λ λ

+ + −
=

−

0 1 2 2 0
4

2 1

( ) (1 )

( )

w c b kv
A

λ α

λ λ

+ + −
=

−
, 

1 1 1 2

1
[ ( )]

2
R c cλ

−
= + + , 2 1 1 2

1
[ ( )]

2
R c cλ = − +  

 
Trajectories of perturbed equations 
 
     Trajectories o f  above equations are given by 

1 1 2

1 1

0 1 2

a c cu v

u A A

− −

+   
=   
  

 and 
1 21 2

11

1 2 3 4

c cc cv w

A A A A

−−

++   
=   

   
 

⇒
2

1 2 1 1 21 1 2( ) ( )( )

0 1 2 3 4

c c a c ca c c

u v w

u A A A A

− + − +− +

    
= =    
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Where A1, A2, A3, A4 are same as above mentioned. 
 
Case 2 :- If R 1 = c 1 + c 2  

i.e. 
2

1 2

1 2

(1 )
1

b b k

c c

α α−
=  This can be interpreted as F.M= 1The 

characteristic roots are 1 1 2,  -( ),  0a c c− +  hence the state is 
unstable. 
By solving the equations (5.2.1) we get  

1 1 2 1 2( ) ( )

0 1 2 3 4,    v ,    wa t c c t c c t
u u e A e A A e A

− − + − +
= = + = +     (5.2.2.1) 

 
Trajectories of perturbed equations 
 

T rajectories o f  above equations are given by 
 

2
1 2 1 1 21 1 2( ) ( )( )

0 1 2 3 4

c c a c ca c c

u v w

u A A A A

− + − +− +

    
= =    
    

 

Where A1, A2, A3, A4 are same as above mentioned. 
 

Case 3 :- If R 1 < c 1 + c 2  
 

i.e. 
2

1 2

1 2

(1 )
1

b b k

c c

α α−
<  This can be interpreted as F.M  < 1 

The characteristic  roots are 

1 1 1 2 1 2 1

1 1
,  [ ( )],  [( ) ]

2 2
a R c c c c R

− −
− + + + − hence the state is stable.  

Hence we can state following theorem 
 
Theorem-1: The system (3.1), (3.2), (3.3) is stable around the 
disease free study state (k, 0, 0) when F.M < 1. 
By solving the above equations we get 
 

1

0

a t
u u e

−
= , 

1 2

1 2v
t t

A e A e
λ λ

= + ,
1 2

3 4w t t
A e A e

λ λ
= +

     (5.2.3.1) 
where A 1 ,A 2 ,A 3 ,A 4  are same as above. 
 
Trajectories of perturbations: 
 
Trajectories o f  above equations are given by 

1 1 2

1 1

0 1 2

a c cu v

u A A

− −

+   
=   
  

    and     
1 21 2

11

1 2 3 4

c cc cv w

A A A A

−−

++   
=   

   
 

⇒

 

2
1 2 1 1 21 1 2( ) ( )( )

0 1 2 3 4

c c a c ca c c

u v w

u A A A A

− + − +− +

    
= =    
    

 

Where A1, A2, A3, A4 are same as above mentioned. 
 

Endemic equilibrium state 
 

i.e. 

2 2

1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 2 1

(1 ) (1 )
,  I ,  I

(1 )

b b P c c b b P c c
P k

b b P c b b b P c b

α α α α

α α α

− − − −
= = =

− + +  

This exist only when 
2

1 2 1 2
(1 ) 0b b k c cα α− − >  i.e F.M > 1. 

Corresponding linearized perturbed equa t i on s  are 

1

du
a u

dt
= − ,   1 2 1 1( )

dv
b I u M v N w

dt
α= − + ,   

2 1 2 2
( (1 ) )

dw
b I u N v M w

dt
α= − + −

            
(5.3.1) 

weith  A= 

1

1 2 1 1

2 1 2 2

0 0

 

(1 )  

a

b I M N

b I N M

α

α

 
 

− 
 

− −   

here 
2 1 1

1

2 2

[ (1 ) ]kb b k c
M

b k c

α α

α

− +
=

+
, 

1 2 2
2

1 1

(1 ) [ ]kb b k c
M

b k c

α α

α

− +
=

+
 

1 1 2 2
1

2 1 1

[ ]

[(1 ) ]

c b b k c
N

b b k c

α

α

+
=

− +
, 

2 2 1 1
2

1 2 2

[ (1 ) ]

[ ]

c b b k c
N

b b k c

α

α

− +
=

+  

and roots are 1 2 1 2 2 1 2

1 1
,  [ ( )],  [ ( )] 

2 2
a R M M R M M

−
− + + − +  

here 
2

2 1 2 1 2( ) 4R M M c c= − +  

in this case  2 1 2
R M M< +  since 
2

1 2 1 2(1 ) 0b b k c cα α− − >  
all roots are negative, hence the state  is stable. 
Hence we can state following theorem 
 
Theorem-2: The system (3.1), ( 3.2), ( 3.3) is stable around the 
Endemic equil ibr ium state when F.M > 1. 
By solving the equations (5.3.1) we get 

1

0

a t
u u e

−
=

,
1 1 2

5 6 7v a t t t
A e A e A e

λ λ−
= + +

,   

1 1 2

8 9 10w a t t t
A e A e A e

λ λ−
= + +

            (5.3.2) 

Here 
1 1 0

5

1 1 1 2

( )

( )( )

a a v a b
A

a aλ λ

− +
=

+ +
, 

1 1 0
6

1 1 1 2

( )

( )( )

v a b
A

a

λ λ

λ λ λ

+ +
=

+ −
,     

 

2 2 0
7

1 2 2 1

( )

( )( )

v a b
A

a

λ λ

λ λ λ

+ +
=

+ −
, 1 1 0

8

1 1 1 2

( )

( )( )

a a w p q
A

a aλ λ

− +
=

+ +
,     

 

1 1 0
9

1 1 1 2

( )

( )( )

w p q
A

a

λ λ

λ λ λ

+ +
=

+ −
,    

2 2 0
10

1 2 2 1

( )

( )( )

w p q
A

a

λ λ

λ λ λ

+ +
=

+ −
. 

 

0 2 1 1 1 0
( )a v M a L N w= + + +

,           

0 2 1 2 1 1 0 1 1 2
b v M a M L N w a N L= + + +

0 1 1 2 2 0
( )p w M a L N v= + + +

,           

0 1 1 1 2 2 0 1 1 1
q w M a M L N v a N L= + + +

1 2 1 2

1
[ ( )]

2
R M Mλ = − + + ,            

2 1 2 2

1
[( ) ]

2
M M Rλ = − + −  

 
Trajectories of the perturbed equations 
 
Trajectories of above equations are given by 

1 1 2 1

1 1

0 5 6 7

a M M au v

u A A A

− −

+ +   
=   

   
 and 

1 2 1 1 2 1

1 1

5 6 7 8 9 10

M M a M M av w

A A A A A A

− −

+ + + +   
=   

   
 

1 1 2 1 1 2 1

1 1 1

0 5 6 7 8 9 10

a M M a M M au v w

u A A A A A A

− − −

+ + + +     
= =     
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Where A5, A6, A7, A8, A9, A10 are same as above mentioned. 
 
A Numerical approach 
 
     Solving equation (3.1) and substituted in (3.2) and (3.3) then 
we get 

11

01
1 1 2 1 1

0 0
( )

a kt

P kdI
b I I c I

dt P k P e

α
−

 
= − − 

+ − 
      (I) 

11

02
2 2 1 2 2

0 0

(1 )

( )
a kt

P kdI
b I I c I

dt P k P e

α
−

 −
= − − 

+ − 
     (II) 

 
     Numerical solutions of these equations is obtained by 
employing Runge-Kutta method of fourth order with initial conditions 
I1 (t0) =I10 and I2(t0)=I20 . The interval is to assume d to range over (0, 
50) to investigate the behavior of males and females of this model. 
     Here we have considered values for all parameters of this 
model, among all the possible Cases nine interesting cases are 
illustrated below. 
 

S.No a11 alp P0 k I10 I20 c1 c2 b1 b2 

1 0.01 0.5 10 15 2 1 0.2 0.1 0.1 0.09 

2 0.01 0.5 10 15 2 2 0.2 0.1 0.09 0.09 

3 0.01 0.5 10 15 1 2 0.2 0.1 0.1 0.09 

4 0.01 0.5 10 10 2 1 0.2 0.1 0.1 0.09 

5 0.01 0.5 10 10 2 2 0.2 0.1 0.09 0.09 

6 0.01 0.5 10 10 1 2 0.2 0.1 0.15 0.17 

7 0.01 0.5 10 2 2 1 0.2 0.1 0.1 0.09 

8 0.01 0.5 10 2 2 2 0.2 0.1 0.1 0.09 

9 0.01 0.5 10 2 1 2 0.2 0.1 0.1 0.09 
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1.(a11=0.01,alp=0.5,p0=10,k=15,I10=2,I20=1,c1=0.2,c2=0.1,b1=0.1,b2=0.09) 

(p0 < k, I10 > I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) 
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2.(a11=0.01,alp=0.5,p0=10,k=15,I10=2,I20=2,c1=0.2,c2=0.1,b1=0.09,b2=0.09) 

(p0 < k, I10 = I20, c1 > c2, b1 = b2, c1 > b1, c2 > b2) 
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3.(a11=0.01,alp=0.5,p0=10,k=15,I10=1,I20=2,c1=0.2,c2=0.1,b1=0.1,b2=0.09) 

(p0 < k, I10 < I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) 

 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

time

P
o
p
u
la
ti
o
n

 

 

Promiscuous Population

Infective Males

Infective Females

 
4.(a11=0.01,alp=0.5,p0=10,k=10,I10=2,I20=1,c1=0.2,c2=0.1,b1=0.1,b2=0.0) 

(p0 = k, I10 > I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) 
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5.(a11=0.01,alp=0.5,p0=10,k=10,I10=2,I20=2,c1=0.2,c2=0.1,b1=0.09,b2=0.09) 

(p0 = k, I10 = I20, c1 > c2, b1 = b2, c1 > b1, c2 > b2) 
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6.(a11=0.01,alp=0.5,p0=10,k=10,I10=1,I20=2,c1=0.2,c2=0.1,b1=0.15,b2=0.17) 

(p0 = k, I10 < I20, c1 > c2, b1 < b2, c1 > b1, c2 > b2) 

 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

time

P
o
p
u
la
ti
o
n

 

 

Promiscuous Population

Infective Males

Infective Females

 
7.(a11=0.01,alp=0.5,p0=10,k=2,I10=2,I20=1,c1=0.2,c2=0.1,b1=0.1,b2=0.09) 

(p0 > k, I10 > I20, c1 > c2, b1 > b2, c1 > b1, c2 >b2) 
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8.(a11=0.01,alp=0.5,p0=10,k=2,I10=2,I20=2,c1=0.2c2=0.1,b1=0.1,b2=0.09) 

(p0 > k, I10 = I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) 
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9.(a11=0.01,alp=0.5,p0=10,k=2,I10=1,I20=2,c1=0.2,c2=0.1,b1=0.1,b2=0.09) 

(p0 > k, I10 < I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) 

 

Conclusions  

1. Initial infective males are greater than initial infective female and 
cure rate and infective rate of males are greater than females:  
(p0 < k, I10 > I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) In this 
case number of infective males more than number of infective 
females up to sometime after that infective female exists more 
than infective males. 

2. Initial infective males are equal to initial infective females and 
cure rate of males are greater than females and infective rate is 
equal in both: (p0 < k, I10 = I20, c1 > c2, b1 = b2, c1 > b1, c2 > 
b2) Here infective females are exists more than males 
throughout the time even they are equal in their number initially. 

3. Initial infective males are less than initial infective females and 
cure rate and infective rate  of males are greater than females: 
(p0 < k, I10 < I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) In this 
case infective females exist more than infective males 
throughout the time. 

4. Initial infective males are greater than initial infective females and 
cure rate and infective rate  of males are greater than females: 
(p0 = k, I10 > I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) In this 
case infective male dominates females up to some time, after 
that infective females dominates males throughout the time. 

5. Initial infective males are equals to initial infective females and 
cure rate of males greater than females and infective rate  of 
males and females are some: (p0 = k, I10 = I20, c1 > c2, b1 = 
b2, c1 > b1, c2 > b2) In this case infective female exist more 
than males constantly even they are equal initially. 

6. Initial number of infective males less than initial number of 
infective females and cure rate of males greater than females 
and infective rate  of males is less than females: (p0 = k, I10 < 
I20, c1 > c2, b1 < b2, c1 > b1, c2 > b2) Here infective male 
dominates female throughout the time. 

7. Initial infective males are greater than initial infective females and 
cure rate and infective rate  of males are greater than females: 
(p0 > k, I10 > I20, c1 > c2, b1 > b2, c1 > b1, c2 >b2) In this case 
infective male dominates females up to some time, after that 
infective females dominates males throughout the time. 

8. Initial infective males are equal to initial infective females and 
cure rate and infective rate of males greater than females: (p0 > 
k, I10 = I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) Here infective 
females are exists more than males throughout the time even 
they are equal in their number initially. 

9. Initial infective males are less than initial infective females and 
cure rate and infective rate of males greater than females: (p0 > 
k, I10 < I20, c1 > c2, b1 > b2, c1 > b1, c2 > b2) Here infective 

male dominates male and after some time both equal in their 
number and exist both together. 
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