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Abstract  
A simple mathematical deterministic model of dysfunctions of eye- tracking is presented in this paper. The model is 
formulated as a second order nonlinear ordinary differential equation, incorporating non Hookesien cubic restoring force. 
Perturbation technique with the nonlinear restoring force coefficient as the perturbation parameter is employed for solving the 
basic nonlinear equation. Numerical estimation of the angular displacement and angular velocity is computed for a wide 
spectrum of the eye dysfunction. The significance of the effects of the time, frequency and amplitude of the exiting force on 
angular displacement and angular velocity has been discussed by adopting ANOVA technique. The table shows the critical 
levels of time (τ), amplitude (Γ) and frequency (Ω) have also been noted corresponding to 0.05 level of significance. 
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INTRODUCTION 
 
     Dysfunctions in smooth pursuit eye movement are frequently 
encountered in schizophrenia patients [3], and also in some 
individuals with disorders of their central nervous system may be due 
to generic reasons. [1-4], An observer viewing a periodically moving 
object with an angular velocity less than 30 degrees per second 
tracks it to stabilize the moving image on the retina. Eye movement 
is being recorded invariably by varieties of techniques that range 
from infrared reflectometry to electrooculographic recordings [1-2]. 
Normal healthy individuals would be able to track smoothly the target 
up to speeds of 30 degrees per second .In contrast to this, 
schizophrenic patients show impairments characterized by a small 
extraneous eye movements superimposed on a smooth tracking 
signal induced by the target periodicity [8].  
     Holzman [3] attributes such anomalies to central nervous 
system dysfunctions above the brain stem that also manifests itself 
in a disorder of involuntary attention. It is also felt that such disorders 
maybe of genetic origin .However no specific mechanism has been 
identified as responsible for such disorders .The absence of a 
satisfactory explanation for the observed eye dysfunction in 
schizophrenic patients warrants a proper analysis of the generic 
features of the problem of eye tracking . 
     This paper presents a humble start of a much wider 
investigation with a simple deterministic model of eye-dysfunctions in 
the form of a second order nonlinear Duffing type of ordinary 
differential equation incorporating a weak non-Hooksien cubic 
restoring force and a linear Newtonian damper. The initial angular 
displacement is taken to be zero together with no take off angular 
velocity. An approximate solution of the non homogeneous model 

equation is obtained by regular perturbation technique. The 
dysfunction dynamic parameters: angular displacement and angular 
velocity have been computed numerically for a wide spectrum of 
eye-dysfunction characteristics of schizophrenic patients [6]. ANOVA 
(Analysis of variance) has been carried out to highlight the 
significance of the effects of the amplitude and frequency of 
excitation at each instant of time on the angular displacement and 
angular velocity. Critical levels of these parameters at 0.05level of 
significance have been identified using linear interpolation. Variations 
of the angular displacement versus time and Variations of the 
angular velocity versus time for different values of the amplitude (Γ) 
and angular frequency (Ω) are illustrated (fig:2-10) and phase 
portraits (Displacement-Velocity orbits) for the different values of    
Amplitude (Γ),  frequency (Ω) are illustrated (fig:11-16) MATLAB 
has been employed in tracing these illustrations. 
 
The model 

 
Fig 1. Schematic diagram of an eye tracking experiment 

     Consider a tracking object (eye) which can perform 
constrained rotations so as to follow a target moving 
periodically with a given angular velocity. (Fig I)  
 
NOTATION ADOPTED 
 
Ø  :The angle between normal to the screen and the line 
     connecting the target’s position at time t. and the eye 

I
 : Moment of inertia of the eye about the normal to the  

     screen 
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 α:  Damping coefficient. 
K   : The Hooksien restoring constant. 
L   : A (nonlinear) non-hooksien restoring force coefficient  
      (assumed to be small). 
A   : peak to peak amplitude of the target moving 
       periodically. 

d
ω

 : The frequency of the target (relative to the eye).  
 
MATHEMATICAL MODEL EQUATION 
Assumptions 

1. Eye damping factor is proportional to its angular velocity                      
(Newton’s law). 

2. The nonlinear restoring force of the eye is weak and 
assumed to be Non-  

Hooksien-Duffing type.  
 
     The deterministic eye dynamics in the presence of target 
moving periodically can be characterized by the below equation   
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ε is the parameter characteristics of the  non hooksien 
restoring force   
The equation (1) can be written as  
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with initial conditions: no-initial angular displacement and no-
initial angular velocity, i.e. 

*
(0) 0, (0) 0ψ ψ= =

               (5) 
     It can be noted that δ is the damping parameter. For 
simplicity of analysis, the case δ=1 is investigated in this 
present paper. The cases in which for δ=0 (undamped case) 
and δ ≠1 will be considered separately in the forth coming 
communications. An approximate solution of the nonlinear 
equation (4) with the conditions (5) is sought for small values of 
ε ≤ 1 taken as the perturbation parameter. Following 

Nyfeh&Mook [7] 
( )ψ τ

is expressed as 

( 0 ) (1) ( 2 )2
( ) ( ) ( ) ( )ψ τ ψ τ εψ τ ε ψ τ= + + + − − −

(6) 
      Substituting (6) in the equation (4) and collecting like 
powers of ε, we obtain the basic equations in various orders of 
approximation. 
 
 
 
 
 

Basic solution (Collecting the coefficients of εo) w get 
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with the initial conditions 
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These equations yield the solution  
 

(0) 2
( ) ( ) cos cos( 2 )

1 2
c c e

τψ τ τ θ τ θ−= + +Γ Ω −
  (9) 

where
( )2

cos cos 2
1

c θ θ= −Γ
and

2

2
c o sc θ= − Γ

where  
1

tan ( )θ −= Ω
 

 

First approximation: (Collecting the coefficient of
1ε

)  
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together with the initial conditions 
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The solution of the equation (10) satisfying the conditions 
(11) is 
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Where 
 

                          (13) 

 
     The approximate solution for the equation (3) up to 

O(
ε
) is given by 
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     Numerical estimation of the angular displacement and 
angular velocity have been carried out , for a wide spectrum of 

values of 
Ω
 =0.1-(0.1)-0.5 and 

Γ
=0.1-(0.1)-0.5 within the 

time interval 0 <
τ ≤

100. Critical values of these dysfunction 
parameters at which their effects on the variations in angular 
displacement and angular velocity would be significant at 5% 
level of tolerance have been identified by employing ANOVA 
technique and linear interpolation. The computational details 
are not included in the present communication due to space 
limitations. However, these values are stated in the conclusions. 
Variations of the angular displacement versus time and 
variations of angular velocity versus time  for different values 
of the amplitude (Γ) and angular frequency (Ω) are illustrated 
(fig: 2-10) and phase portraits (Displacement-Velocity orbits) for 
the different values of Amplitude (Γ), frequency (Ω) are 
illustrated (fig: 11-16).

 
 
 
 
 
 
 
 
 
 
Fig II. variation of the angular displacement versus dimensionless time for the frequency Parameter (Ω=1) , amplitudes (Γ=0.5)and nonlinear restoring force 

coefficient(ε=0.01); 
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omega=5,ε=0.01,Γ=0.5

  
Fig III. variation of the angular displacement versus dimensionless time for the frequency Parameter (Ω=5), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient(ε=0.01); 
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omega=10,ε=0.01,Γ=0.5

 
Fig iv. variation of the angular displacement versus dimensionless time for the frequency Parameter (Ω=10), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient(ε=0.01); 
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Fig v. variation of the angular displacement versus dimensionless time for the frequency Parameter (Ω=22), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient(ε=0.01); 

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

1.5
x 10

-3

----dimensionlessTime----

--
-a

n
g
u
la

r 
d
is
p
la
c
e
m

e
n
t-

 

 

omega=25,ε=0.01,Γ=0.5

 
Fig vi. variation of the angular displacement versus dimensionless time for the frequency Parameter (Ω=22), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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omega=1,ε=0.01,Γ=0.5

 
Fig vii. variation of the angular velocity versus dimensionless time for the frequency Parameter (Ω=1), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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Fig viii. variation of the angular velocity versus dimensionless time for the frequency Parameter (Ω=5), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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Fig ix. variation of the angular velocity versus dimensionless time for the frequency Parameter (Ω=22), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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Fig x. variation of the angular velocity versus dimensionless time for the frequency Parameter (Ω=25), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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omega=1,ε=0.01,Γ=0.5

  
Fig xi. variation of the angular velocity versus angular displacement for the frequency Parameter (Ω=1), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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Fig xii. variation of the angular velocity versus angular displacement for the frequency Parameter (Ω=5), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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Fig xiii. variation of the angular velocity versus angular displacement for the frequency Parameter (Ω=22), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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omega=25,ε=0.01,Γ=0.5

 
Fig xiv. variation of the angular velocity versus angular displacement for the frequency Parameter (Ω=25), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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omega=29,ε=0.01,Γ=0.5

 
Fig xv. variation of the angular velocity versus angular displacement for the frequency Parameter (Ω=29), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01); 
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Fig xvi. variation of the angular velocity versus angular displacement for the frequency Parameter (Ω=29.01), amplitudes (Γ=0.5) and nonlinear restoring force 

coefficient (ε=0.01) 

 
Based on the numerical computations carried out (the details of 
which are not shown here due to space limitations) the following 
conclusions are drawn. 
 

CONCLUSIONS 
 
(1) At different levels of time (τ) for fixed amplitude (Γ) and 
frequency Ω) 
 
     The variation  in angular displacement of the eye due to 
amplitude- variation is significant up to the time instant τ =5.59sec, 
there after no appreciable change in  angular displacement of 
the eye due to amplitude variations would be observed.  
 
(2) At different levels of frequency (Ω) for fixed amplitude 
(Γ)and time(τ)    
 
     The variation in the angular displacement of the eye as 
time progresses is significant up to Ω =0.5795beyond which there 
would not be any significance in such variations. 
 
(3)At different levels of amplitude (Γ) for fixed frequency (Ω) 
and time (τ)     
 
     The difference in angular displacement of the eye due to 
frequency- variations is significant up to Γ=5.125, beyond which 
no appreciable variations in angular displacement would be 
noticed. 
   
(4) At different levels of time (τ) for fixed amplitude (Γ) and 
frequency Ω) 
 
     The variation in angular velocity of the eye due to 
amplitude- variation is significant up to the time instant τ 
=2.718sec, there after no appreciable change in  angular 
velocity of the eye due to amplitude variations would be observed. 
 
(5) At different levels of frequency (Ω) for fixed amplitude 
(Γ)and time(τ) 
 
     The variation in the angular velocity of the eye as time 
progresses is significant up to Ω =0.181149375beyond which 
there would not be any significance in such variations. 
 

(6) At different levels of amplitude (Γ) for fixed frequency (Ω) 
and time (τ) 
 
     The illustrations exhibit the erratic variations of the angular 
displacement with the increase of Γ, Ω and τ of schizophrenia 
patient. Beyond the critical values, mentioned earlier, there would 
not be any variation leading to the arrest of the movements of the 
eye ball.  The state of starring vision  of a mentally retarded 
patient would begin at the time instant of the happening of the 
above events (1),(2)and(3) whichever is earlier. This would 
naturally depend upon movement of the target object and the 
constitution of the individual patient and the state of disease 
severity 
     The difference in angular velocity of the eye due to 
amplitude- variations is more significant compared  to that due to 
the frequency variation.  The illustrations exhibit the erratic 
variations of the angular velocity with the increase of Γ, Ω and τ of 
schizophrenia patient. Beyond the critical values, mentioned 
above, there would not be any variation leading to the arrest of the 
movements of the eye ball.  The state of starring vision of a 
mentally retarded patient would begin at the time instant of the 
happening of the above events (1),(2)and(3) whichever is earlier. 
This would naturally depend upon movement of the target object 
and the constitution of the individual patient and the state of 
disease severity. 
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