Available Online: http://jexpsciences.com/

experimental sciences

Free A*-algebras

T. Srinivasa Rao1 and P. Koteswara Rao2

¹Department of Mathematics, Bapatla Engineering College, Bapatla-522101, A.P, India.

²Department of Commerce and Business Management, Acharya Nagarjuna University, Nagarjuna Nagar-522510, A.P. India.

Abstract

In this paper we studied the free A*-algebras, the sub A*-algebra generated by a subset and its characterization, an A*-algebra freely generated by a subset and introduced the concept of A*-field of sets. Also we established some theorems on making A*-field of sets into A*-algebras.

Keywords: A*-algebra, Free A*-algebra, A* field of sets

INTRODUCTION

In 1994, P. Koteswara Rao introduced the concept of A*-algebras and studied their equivalence with Adas, C – algebras, Stone type representation and introduced the concept of A*- clones and the if-then-else structure over A*- algebras and ideals of A*-algebras. In this paper we introduced the concept of free A*-algebras analogous to the free Boolean algebras.

PRELIMINARIES

Definition: For any non-empty set X, a class M of subsets of X which is closed under finite union of sets, finite intersection of sets, complementation of sets is called a field of sets.

Definition: A Boolean algebra is an algebra $(B, \vee, \wedge, (-)', 0, 1)$ with two binary operations, one unary operation(called complementation), and two nullary operations which satisfies:

- (1) (B, \vee, \wedge) is a distributive lattice.
- (2) $x \wedge 0 = 0$, $x \vee 1 = 1$
- (3) $x \wedge x' = 0, x \vee x' = 1$

Definition: An indexed set $\{B_t\}_{t\in T}$ of subalgebras of a Boolean algebra B is said to be independent if $a_1 \land a_2 \land ... \land a_n \neq 0$ for every finite sequence of non zero elements a_i choosen from subalgebras B_t with different indices.

Definition: Let $\{B_t\}_{t\in T}$ be an indexed set of Boolean algebras. By a Boolean product of $\{B_t\}_{t\in T}$ we mean any pair $\{\{i_t\}_{t\in T}, B\}$ such that

- a) B is a Boolean algebra.
- b) For every $t \in T$, $i_t : B_t \rightarrow B$ is an isomorphism.
- The indexed set {i_t(B_t)}_{t∈T} of subalgebras of B is independent.

Received: Feb 10, 2012; Revised: March 15, 2012; Accepted: April 25, 2012.

*Corresponding Author

T. Srinivasa Rao

Department of Mathematics, Bapatla Engineering College, Bapatla-522101, A.P., India.

Tel: +91-1234567898; Fax: +91-1234567898

Email: tsnivas@gmail.com

d) The union of all subalgebras{i_t(B_t)}_{t∈T} generates B.

Definition: Suppose $\{X_t\}_{t\in T}$ is an indexed set of non-empty sets. Let X be the Cartesian product of X_t 's. Let M_t be the field of subsets of X_t . For every set $A\subseteq X_t$, let A^* be the set of all points $x\in X$ whose t^{th} coordinate $x_t\in A$ and let M_t^* be the field composed of all sets A^* where $A\in M_t$. The field M of subsets of X generated by all the classes $\{M_t^*\}_{t\in T}$ is called the field product of $\{M_t\}_{t\in T}$.

Definition: An algebra $(A, \wedge, *, (-)^{\tilde{}}, (-)_{\pi}, 1)$ is an A^* - algebra if it satisfies :

For a, b, $c \in A$

- i. $a_{\pi} \lor (a_{\pi})^{\sim} = 1$, $(a_{\pi})_{\pi} = a_{\pi}$, where $a \lor b = (a^{\sim} \land b^{\sim})^{\sim}$.
- ii. $a_{\pi} \lor b_{\pi} = b_{\pi} \lor a_{\pi}$
- iii. $(a_{\pi} \lor b_{\pi}) \lor c_{\pi} = a_{\pi} \lor (b_{\pi} \lor c_{\pi})$
- iv. $(a_{\pi} \wedge b_{\pi}) \vee (a_{\pi} \wedge (b_{\pi})^{\sim}) = a_{\pi}$
- v. $(a \wedge b)_{\pi} = a_{\pi} \wedge b_{\pi}$, $(a \wedge b)^{\#} = a^{\#} \vee b^{\#}$, where $a^{\#} = (a_{\pi} \vee a_{\pi}^{\vee})^{\sim}$
- vi. $a_{\pi}^{-} = (a_{\pi} \vee a^{\#})^{-}, a^{\#} = a^{\#}$
- vii. $(a*b)_{\pi} = a_{\pi}, (a*b)^{\#} = (a_{\pi})^{\sim} \wedge (b^{\sim}_{\pi})^{\sim}$
- viii. a=b if and only if $a_\pi=b_\pi$, $a^\#=b^\#$. We write 0 for 1~, 2 for 0*1.

Example: 3 = $\{0,1,2\}$ with the operations defined below is an A* - algebra

_																
٨	0	1	2		V	0	1	2	*	0	1	2	X	0	1	2
0	0	0	2		0	0	1	2	0	0	2	2	X~	1	0	2
1	0	1	2		1	1	1	2	1	1	1	1	Xπ	0	1	0
7	2	2	2	1	2	2	2	2	2	0	2	2	X#	0	0	1

Definition : Let $(A_1, \wedge, ^*, (-)^{\widetilde{}}, (-)_{\pi}, 1)$ and $(A_2, \wedge, (-)^{\widetilde{}}, (-)_{\pi}, ^*, 1)$ be two A^* -algebras. A Mapping f: $A_1 \rightarrow A_2$ is called an A^* - homomorphism if for all

 $a, b \in A_1$

I.
$$f(a \land b) = f(a) \land f(b)$$

II.
$$f(a \lor b) = f(a) \lor f(b)$$

III.
$$f(a \cdot b) = f(a) \cdot f(b)$$

IV.
$$f(a_{\pi}) = (f(a))_{\pi}$$

V.
$$f(a^{-}) = (f(a))^{-}$$

VI.
$$f(1) = 1$$

VII. $f(0) = 0$.

Definition: Let C be a non-empty set. By a free A*-algebra on C we shall mean an A*-algebra F together with a mapping f: C→F such that for every A*-algebra A and every mapping g: C→A there is a unique A*-homomorphism h: $F \rightarrow A$ such that hog = f. Now we state some routine theorems without proof.

Theorem: If (F,f) is a free A*-algebra on a non-empty set C then f is injective and Im f generates F.

Theorem:Let (F,f) be a free A*-algebra on a nom empty set C. Then (F^I, f^I) is also a free A*-algebra on C iff there is a unique A*isomorphism j: $F \rightarrow F^1$ such that jof = f^1 .

b) /a, $b \in B$, $a \land b = 0$ } becomes an A*- algebra with the following A*- algebraic operations:

For a =
$$(x_{\pi}, x^{\#})$$
, b = $(y_{\pi}, y^{\#}) \in A(B)$

$$\begin{array}{ll} I. & a \wedge b = (x_\pi\,y_\pi,\,x_\pi\,y^\# + x^\#\,y_\pi + x^\#\,y^\#) \\ II. & a \vee b = (x_\pi\,y_\pi + x_\pi\,y^\# + x^\#\,y_\pi, \quad x^\#\,y^\#) \\ III. & a * b = (x_\pi,\,((x_\pi)'\,y^\#) \\ IV. & a^- = (\,x^\#\,,\,x_\pi) \\ V. & a_\pi = (x_\pi,\,(x_\pi)') \\ VI. & 1 = (1,\,0),\,0 = (0,\,1),\,2 = (0,\,0). \end{array}$$

Theorem: If A is an A*- algebra then

I.
$$B(A(B)) \cong B$$
.
II. $A(B(A)) \cong A$.

Theorem: Let A₁,A₂ be A*- algebras and B₁,B₂ be Boolean algebras then

I.
$$A_1 \cong A_2 \text{ iff } B(A_1) \cong B(A_2).$$

II. $B_1 \cong B_2 \text{ iff } A(B_1) \cong A(B_2).$

MAIN RESULTS

Theorem: For every non-empty set C, there exists a free A*-algebra

Proof: Let $F = \{\theta \mid \theta : C \rightarrow 3 = \{0, 1, 2\}, \theta(c) = 0 \text{ for all most all } c \in C \}$ Define \vee , \wedge , $(-)^{\sim}$, $(-)_{\pi}$, * , 0,1, 2 as follows: Let θ , $\xi \in F$. For all $c \in C$, define $(\theta \vee \xi)(c) = (\theta)(c) \vee (\xi)(c)$ $(\theta \land \xi)(c) = (\theta)(c) \land (\xi)(c)$ $(\theta \star \xi)(c) = (\theta)(c) \star (\xi)(c)$ $\theta^{\sim}(c) = (\theta(c))^{\sim}$ 0(c) = 0

1(c) = 1

2(c) = 2

Then *F* is an A*-algebra.

Now define $f: C \rightarrow F$ as follows:

For any $c \in C$, $f(c) : C \rightarrow 3$ by f(c)(d) = 1 if d = c

 $= 0 \text{ if } d \neq c$

Claim: (F, f) is a free A*-algebra on C. Let A be any A*-algebra and $g: C \rightarrow A$ be a mapping. Define h : $\mathbf{F} \rightarrow A$ as follows:

Let $\theta \in \mathbf{F}$

$$h(\theta) = \bigvee_{c \in C} \theta(c) g(c)$$

Where $\theta(c).g(c) = (\theta(c).g(c))_{\pi} \cdot (\theta(c).g(c))^{\#}$ $(\theta(c).g(c))_{\pi} = (\theta(c) \land g(c))_{\pi} \lor (\theta(c)^{\#} \land g(c)^{\#})$

 $(\theta(c).g(c))^{\#} = (\theta(c)_{\pi} \land g(c)^{\#}) \lor (\theta(c)^{\#} \land g(c)_{\pi})$

Clearly h is an A*- homomorphism

$$h(f(c)) = \bigvee_{t \in C} (f(c))(t) \cdot g(t) = g(c)$$

Therefore hog = g.

Uniqueness of h:

Let $\theta \in \mathbf{F}$, $t \in \mathbb{C}$ θ (t) = θ (t).1

 $= \bigvee_{c \in C} \theta(c).[f(c)](t)$

$$=[\bigvee_{c\in C}\theta(c).f(c)](t)$$

Therefore $\theta = \bigvee_{c \in C} \theta(c) f(c)$

Suppose $\bar{h}: F \to A$ is another A*- homomorphism such that

$$\overline{ho} f = g$$

$$\overline{h}(\theta) = \overline{h}(\underset{c \in C}{\vee} \theta(c) f(c))$$

$$= \underset{c \in C}{\vee} \theta(c) \overline{h}(f(c))$$

$$= \underset{c \in C}{\vee} \theta(c) g(c)$$

$$= h(\theta)$$

Therefore $\overline{h} = h$

Remerk: The free A*-algebra *F* constructed as in the above theorem is called the free A*-algebra on C.

Definition: Suppose A is an A*-algebra and $C \subseteq A$. Then A is said to be freely generated by C if

- (i)
- Every mapping $f: C \rightarrow A^{l}$, A^{l} is another A^{*} -algebra, can (ii) be extending uniquely to a homomorphism $h: A \rightarrow A^I$.

Theorem: If A is an A*-algebra and B = B(A), $C \subseteq A$. then A is freely generated by C if and only if B is freely generated by C_{π} , where $C_{\pi} = \{a_{\pi} / a \in C\}$.

Proof: Suppose A is an A*-algebra, B = B(A) and $C \subseteq A$. Assume that A is freely generated by C.

We have to prove that B is freely generated by $C_{\pi} = \{a_{\pi} / a \in C\}$. Let $g: C \to B'$ is a mapping where B' is another Boolean algebra.

Define $f: C \to A(\mathbf{B}')$ by $f(a) = (g(a)_{\pi}, g(a)_{\pi})$.

Since C generates A, f can be extended to a unique homomorphism

 $h: A \rightarrow A(B')$.

 $h_{\pi}: B \rightarrow B(A(B'))$ is also a unique homomorphism of Boolean

12 Rao and Rao

algebras.

Since $B(A(B')) \cong B'$, let I : B(A(B')) is an isomorphism such that $I(a, a^{\sim}) = a, \ \forall (a, a^{\sim}) \in B(A(B'))$.

Then I $h_\pi:B\to \textit{B'}$ is a homomorphism and I h_π is a unique extension of g.

Therefore C_{π} generates B freely.

Conversely assume that C_{π} generates B freely.

We have to prove that A is freely generated by C.

Suppose $f: C \to A$ is another mapping where A is another A^* -algebra.

Define $f_{\pi}: C_{\pi} \rightarrow B(A')$ by $f_{\pi}(a) = (f(b))_{\pi}$

Since C_{π} generates B freely \exists a unique homomorphism $g: B \to B(A')$

Such that $f_{\pi}(a) = g(a) \quad \forall a \in C_{\pi}$.

Define $h: A \to A'$ by $h(a) = (g(a_{\pi}) * g(a_{\pi}))$

Then h is a homomorphism. Since g is unique, his also unique. We now show that $h=f\ on\ C.$

Let
$$a \in C \Rightarrow a_{\pi} \in C_{\pi}$$

$$h(a) = (g(a_{\pi}) * g(a_{\pi})^{\tilde{}}) = f_{\pi}(a_{\pi}) * (f_{\pi}(a_{\pi})^{\tilde{}})$$
$$= [f(a)_{\pi} * ((f_{\pi}(a_{\pi})^{\tilde{}})]$$
$$= f(a)$$

Therefore h is a unique extension of f.

Therefore C generates A freely.

Definition: Let X be a non-empty set. A class

* = {(A₁, A₂) / A₁, A₂ \subseteq X, $A_1 \cap A_2 = \emptyset$ } is called an A*-field of subsets of X if

- (i) $(X, \phi) \in F^*$
- (ii) $(A_1, A_2) \in F^* \implies (A_2, A_1) \in F^*$
- (iii) $(A_1, A_2), (B_1, B_2) \in F^* \implies (A_1B_1, A_1B_2 + A_2B_1 + A_2B_2)$
- (iv) $(A_1, A_2), (B_1, B_2) \in F^* \implies (A_1, A_1^{\circ} B_2) \in F^*$

Juxtaposition and addition stand for intersection and union of sets

From the above definition immediately we have the following theorem.

Theorem: Let X be a non-empty set. A class $F^* = \{(A_1, A_2) / A_1, A_2 \subseteq X,$

A1 \bigcap A2 = ϕ _{}. Then F* is an A*-algebra with the following operations:}

- (i) $1 = (X, \phi), 0 = (\phi, X), 2 = (\phi, \phi)$
- (ii) $(A_1, A_2)_{\pi} = (A_2, A_1^{C})$
- (iii) $(A_1, A_2)^C = (A_2, A_1)$
- (iv) $(A_1, A_2) * (B_1, B_2) = (A_1, A_1^{C} B_2)$
- (v) $(A_1, A_2) \wedge (B_1, B_2) = (A_1B_1, A_1B_2 + A_2B_1 + A_2B_2)$
- (vi) $(A_1, A_2) \lor B_1, B_2 = (A_1B_1 + A_1B_2 + A_2B_1, A_2B_2)$

Proof: It is routine to verify the axioms in 1.6.

Theorem: Let F be an A*- field of subsets of a non-empty set X and $F = \{A \ / \ (A, A^{\mathbb{C}}) \in F^* \ \}$

Then F is a field of subsets of X and $B(F^*) \cong F$.

Proof: Suppose F^* is an A*- field of subsets of X.

We have to prove that $F = \{A / (A, A^{\mathbb{C}}) \in \mathbb{F}^* \}$ is a field of subsets of X.

Let $A, B \in F$

Consider $(A, A^C) \land (B, B^C) = (AB, AB^C + A^CB + A^CB^C) \in F^*$

= (AB, ABC + AC(B + BC)) $\in F$ *

= (AB, ABc + Ac) \in * (AB, (A + Ac).(Bc + Ac)) \in *

 $=(AB, A^{C}+B^{C})\in F^{*}$

= (AB. (AB)^C)∈ F

= AB∈ F

Let $A \in F$. Then $(A, A^c) \in F^* \Longrightarrow_{(A^c, A)} \in F^*$

 $\Rightarrow (A^C, (A^C)^C) \in F^*$

 $\Rightarrow A^{C} \in F$

Therefore F is a field of subsets of X and clearly $F \cong B(F^*)$

Theorem: Let F is a field of subsets of a non-empty set X. Then $A(F) = \{ (A, B) / A, B \in F, A \cap B = \emptyset \}$ is an A*- field of subsets of X.

Proof: It is routine to verify the axioms in 2.5.

We now prove the following theorem.

Theorem: Every A*- algebra A is isomorphic to an A*- field of subsets F of a Stone space.

Proff: Let A be an A*- algebra.

Let B = B(A). Then there exists a Stone space H such that B \cong F, where F is the field of clopen subsets of H.

By the known result $A(B) \cong A(F)$.

But $A \cong A(B)$. Thus $A \cong A(F)$.

ACKNOWLEDGEMENT

Bringing out a special issue in *Journal of Experimental Sciences* is a great honor to the eminent mathematician Prof.N.Ch.Pattabhi RamaCharyulu. We feel that we are very happy because our article is published in this Special issue.

REFERENCES

- [1] Koteswara Rao, P "A*-algebras and If -Then -Else Structures", Ph.D Thesis, Nagarjuna University (1994), Andhra Pradesh, India.
- [2] Sikorski, R "Boolean Algebras", Acaddemic Press, New York, 1968.
- [3] Siosen, F. M "Free algebraic characterizations of primal and independent Algebras, Proc. Amer. Math. Soc, Vol. 41 (1937), pp. 375-481.
- [4] Stone, M. H "Applications of the theory Boolean rings to the General topology", *Trans. Amer. Math. Soc*, Vol.41 (1937), pp. 375-481.