
Journal of Experimental Sciences 2012, 3(2): 58-63 
ISSN: 2218-1768 
Available Online: http://jexpsciences.com/ 

 

 

 

On the stability of a four species: a prey-predator-host- commensal-

competition-syn eco-system-I (fully washed out state) 
 
N. Shanker

1 
and K. Lakshmi Narayan

2  
   

 

1
Department. of Mathematics, C.M.R. College of Engineering & Technology, Hyderabad, Andhra Pradesh - 501 401, India. 

2
Department of Mathematics, SLC’s Institute of Engineering & Technology, Hyderabad-501 512, India. 

 

Abstract  
This paper deals with an investigation on a four Species Syn-Ecological System (Fully Washed out State). The System 
comprises of a prey (S1) , a predator (S2) that survives upon S1, two hosts S3 and S4  for which S1, S2 are commensal 
respectively i.e., S3 and S4 benefit S1 and S2 respectively, without getting effected either positively or adversely. Further S3 
and S4 are competitors. The model equations of the system constitute a set of four first order non-linear ordinary differential 
coupled equations. In all, there are sixteen equilibrium points. Criteria for the asymptotic stability of one of the sixteen 
equilibrium points: the fully washed out state is established. The system would be stable if all the characteristic roots are 
negative, in case they are real, and have negative real parts, in case they are complex. The linearised equations for the 
perturbations over the equilibrium point are analyzed to establish the criteria for stability and the trajectories illustrated. 
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INTRODUCTION 
 
     Population sizes of species are affected by ecological 
interactions such as competition, predation and parasitism. 
Mathematical modeling of ecosystems was initiated in 1925 by Lotka 
[10] and by Volterra [17].  The general concepts of modeling have 
been presented in the treatises of Meyer [11], Kushing [7] and Kapur 
[5, 6].  K. Lakshminarayan and N.Ch. Pattabhi Ramacharyulu [8] 
studied the two species prey-predator ecological models 
incorporating a partial cover for the prey and alternate food for the 
predator. These authors have also analysed a prey-predator model 
with alternative food for the predator, harvesting of both the species 
[9].  The study on competitive eco-systems of two and three 
species with limited and unlimited resources was done by N.C. 
Srinivas [16]. R. Archana Reddy [1, 2] and B. Bhaskara Rama 
Sharma [3] investigated on interacting species with harvesting of 
both the species at constant rate and competitive eco-systems with 
time delay, employing analytical and numerical techniques.  Further 
study on the stability of a Host – a flourishing commensal species 
pair with limited resources was done by N. Phani Kumar, N. 
Seshagiri Rao and N.Ch. Pattabhi Ramacharyulu [12].  The stability 
analysis of a four species eco-system with the interaction between S3 
and S4 is neutralism was considered by B. Hari Prasad and N.Ch. 
Pattabhi Ramacharyulu [4].  Following this N. Shanker, K. 
Lakshminarayan and N.Ch. Pattabhi Ramacharyulu studied stability 
analysis of a four species eco-system with the interaction between S3 
and S4 being mutual [13, 14,15,16].  

The present investigation is on an analytical study of a four 
species (S1, S2, S3, S4) Prey-Predator-Host-Commensal-
Competition-Syn Eco-System.  Fig.1 shows a Schematic Sketch of 
the system under investigation. In all sixteen equilibrium points are 
identified based on model equations and the stability analysis is 
carried out only for the fully washed out state. 

 
 

NOTATION ADOPTED 

 
N1 (t): The population of the prey species (S1) 
N2 (t) : The population of the predator species (S2) 
N3 (t) :The population of the host species (S3) of the prey (S1) 
N4 (t) : The population of the host (S4) of the predator (S2) 
T  : Time instant 

             1 2 3 41 2 3 4, , , :   Natural growth rates of S , S , S , Sa a a a
 

11 22 33 44 1 2 3 4, , ,   :  Self inhibition coefficients of S , S , S , Sa a a a  
       

  
12 21 1 2

                                                    2 1

,               :   Interaction (prey-predator) coefficients of S due to S

and S due to S

a a

                                       13 3 1:  Coefficient of commensalism of S towards S  a
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24 4 2

:  Coefficient of commensalism of S towards Sa
     

                                     34 4 3:   Coefficient of competition of S towards Sa
        

                                    43 3 4:  Coefficient of competition of S towards Sa    

,                capacity of S i=1,2,3,4:  i
i i

ii

K
a

Carrying
a

=  

 
     Further the variables N1, N2, N3 and N4 are non-negative and 
the model parameters  
 

,  1 2 3 4 11 22 33,  ,  ,  ,  ,  ,  a a a a a a a

44 12 21 13 24 34 43,  ,  ,  ,  ,  ,  a a a a a a a  are assumed to be non-
negative constants. 

 
BASIC MODEL EQUATIONS 

 
     The model equations for the growth rates of S1, S2, S3, S4 are 

        

21
1 1 11 1 12 1 2 13 1 3

dN
a N a N a N N a N N

dt
= − − +               (3.1) 

22
2 2 22 2 21 1 2 24 2 4

dN
a N a N a N N a N N

dt
= − + +               (3.2) 

23
3 3 33 3 34 3 4

dN
a N a N a N N

dt
= − −                      (3.3) 

24
4 4 44 4 43 3 4

dN
a N a N a N N

dt
= − −                      (3.4) 

 
EQUILIBRIUM STATES 
 
     The system under investigation has sixteen equilibrium states 
defined by  

                                  

idN
= 0,            i = 1,2,3,4

dt
                         (4.1) 

are given in the following table.

 
Table I. Equilibrium states 

 

S.No. Equilibrium states Equilibrium point 

1* Fully washed out state  
1 2 3 40, 0, 0, 0N N N N= = = =  

2 Only the prey S1 
survives 

1
1 2 3 4

11

, 0, 0, 0
a

N N N N
a

= = = =  

3 Only the predator S2 
survives 

2
1 2 3 4

22

0, , 0, 0
a

N N N N
a

= = = =  

4 Only the host (S3) of S1 
survives 

3
1 2 3 4

33

0, 0, , 0
a

N N N N
a

= = = =  

5 Only the host (S4) of S2 
survives 

4
1 2 3 4

44

0, 0, 0,
a

N N N N
a

= = = =  

6 Prey (S1) and the 
predator (S2) survives 

1 22 2 12 2 11 1 21
1 2 3 4

11 22 12 21 11 22 12 21

, , 0, 0
a a a a a a a a

N N N N
a a a a a a a a

− +
= = = =

+ +
 

7 Predator (S2) and the 
host (S4) of S2 washed 
out 

1 33 3 13 3
1 2 3 4

11 33 33

, 0, , 0
a a a a a

N N N N
a a a

+
= = = =  

8 Predator (S2) and the 
host (S3) of S1 washed 
out 

1 4
1 2 3 4

11 44

, 0, 0,
a a

N N N N
a a

= = = =  

9 Prey (S1) and the host 
(S4) of S2 washed out 

32
1 2 3 4

22 33

0, , , 0
aa

N N N N
a a

= = = =  

10 Prey (S1) and the 
host(S3) of S1 washed 
out 

2 44 4 24 4
1 2 3 4

22 44 44

0, , 0,
a a a a a

N N N N
a a a

+
= = = =  

11 Prey (S1) and the 
predator (S2)  
washed out 

32
1 2 3 4

1 1

0, 0, ,N N N N
αα

α α
= = = =  

where 1 33 44 34 43a a a aα = −  

        2 3 44 4 34a a a aα = −
 

        3 4 33 3 43a a a aα = −  
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12 Only the host (S4) of S2 
washed out 

3 32
1 2 3 4

1 1 33

1 33 11 22 12 21

2 1 22 33 3 13 22 2 12 33

3 2 11 33 1 21 33 3 13 21

, , , 0

   ( )

            

            

a
N N N N

a

where a a a a a

a a a a a a a a a

a a a a a a a a a

ββ

β β

β

β

β

= = = =

= +

= + −

= + +

 

13 Only the host(S3) of S1 
washed out 

32 4
1 2 3 4

1 1 44

1 44 11 22 12 21

2 1 22 44 2 12 44 4 12 24

3 2 11 44 4 11 24 1 21 44

, , 0,

  ( )

            

            

a
N N N N

a

where a a a a a

a a a a a a a a a

a a a a a a a a a

θθ

θ θ

θ

θ

θ

= = = =

= +

= − −

= + +

 

14 Only the Predator 
(S2)washed out 

32
1 2 3 4

11 1 1 1

, 0, ,N N N N
a

ααψ

α α α
= = = =  

1 1 13 2
  where a aψ α α= +

                         
15 Only the prey (S1) 

washed out 
32

1 2 3 4

22 1 1 1

0, , ,N N N N
a

ααδ

α α α
= = = =  

where  2 1 3 24 43 4 24 33
a a a a a a aδ α= − +  

16 The co-existent state  
(or) Normal steady state 

 

3 32 2
1 2 3 4

1 1 1 1

, , ,N N N N
σ ασ α

σ σ α α
= = = =  

1 11 22 12 21 1

2 1 22 2 12 1 3 12 24 43 13 22 44

4 12 24 33 13 22 34

3 1 21 2 11 1 3 13 21 44 11 24 43

  ( )

           ( ) ( )

                        -  ( )           

          ( ) ( )

        

where a a a a

a a a a a a a a a a a

a a a a a a a

a a a a a a a a a a a

σ α

σ α

σ α

= +

= − + +

+

= + + −

4 11 24 33 13 21 34
                ( )a a a a a a a+ −

 

 
 
      The present paper deals with the stability of fully washed out 
state (marked *) of the above table only. The stability of the other 
Equilibrium states will be presented in the forthcoming 
communications. 
 
Stability of the fully washed out equilibrium state 
(Sl.No. 1 in the above table) 

 
     To discuss the stability of equilibrium point  
 

1 2 3 40, 0, 0, 0N N N N= = = =  

1 2 3 4     ( ),  ( ),  ( ),  ( )Let us consider small deviations u t u t u t u t

from the steady state 
i.e., 
 

( ) ( ) ,           1, 2,3, 4
i ii

N t N u t i= + =                 (5.1) 

Where ( )iu t  is a small perturbation in the species Si. 
     Substituting (5.1) in (3.1), (3.2), (3.3), (3.4) and neglecting 
products and higher  
 

1 2 3 4
  ,  ,  ,  powers of u u u u

 

we get 

   ,                 1,2,3, 4i

i i

du
a u i

dt
= =                   (5.2)                      

 

The characteristic equation of which is  
 

1 2 3 4( )( )( )( ) 0a a a aλ λ λ λ− − − − =
             (5.3) 

 

  1 2 3 4  ,  ,  ,    whose roots a a a a are all positive . 
Hence the Fully Washed-out State is Unstable.  
The solutions of the equations (5.2) are 
 

0 ,       1, 2,3,4i
i i

at
u u e i= =                       (5.4) 
 

     
2010 30 40 ,  ,    where u u u and u are the

 1 2 3 4   ,  ,  ,  .initial values of u u u u respectively  
 
     There would arise in all 576 cases depending upon the 

ordering of the magnitudes of the growth rates 
   1 2 3 4 ,  ,  ,  a a a a

 

and the initial values of the pertubation  10 20( ),  ( ),u t u t  

30 40( ),  ( )u t u t   of the species S1, S2, S3, and S4.  Of these 576 
situations some typical variations are illustrated in figures 2 to 9 
through respective solution curves that would facilitate to make some 
reasonable observations and the conclusions are presented here. 
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Conclusions of the  Perturbation Graphs  
 

Case (i): 40 20 30 10 2 4 1 3  ,     If u u u u a a a a< < < < < <
 

 
     In this case predator (S2) has the least natural growth rate and 
host (S4) of the predator (S2) has the least initial population strength.  
The host (S3) of the prey (S1) initially dominates over the predator 
(S2) and also the host (S4) of predator (S2) till the time instant  

* 20
23

3 2 30

1
log( ) 

u
t

a a u
=

−
,

* 10
13

3 1 30

1
log( ) 

u
t

a a u
=

−
 respectively and 

thereafter the dominance is reversed. Also the prey (S1) initially 
dominates over the predator (S2) and also the host (S4) of predator 

(S2) till the time instant 
* 20
21

1 2 10

1
log( )

u
t

a a u
=

−
  , 

* 40
41

1 4 10

1
log( )

u
t

a a u
=

−
 respectively and thereafter the dominance 

is reversed as shown in Fig. 2.  
 

Case (ii): 40 10 20 30 1 3 4 2   ,    If u u u u a a a a< < < < < <  
 
     In this case the prey (S1) has the least natural growth rate and 
host (S4) of the predator (S2) has the least initial population strength.  
The predator (S2) dominates over the prey (S1) and also over the 
host (S4) of predator (S2) initially till the time instant 

* 10
12

2 1 20

1
log( ) 

u
t

a a u
=

− ,
* 40
42

2 4 20

1
log( ) 

u
t

a a u
=

−
 respectively 

and thereafter the dominance is reversed.  Also the host (S3) of the 
prey (S1) dominates over the prey (S1) till the time instant 

20*

13
1 2 10

1
log( )

u
t

a a u
=

− and thereafter the dominance is reversed 

as shown in Fig. 3.  
 

Case (iii): 10 30 40 20 3 4 2 1 ,    If u u u u a a a a< < < < < <  
 
     In this case the host (S3) of the prey (S1) has the least natural 
growth rate and the prey (S1) has the least initial population strength.   
The host (S4) of predator (S2) initially dominates over the host (S3) of 

the prey (S1) till the time instant      
* 30
34

4 3 40

1
log( ) 

u
t

a a u
=

−
  and 

thereafter the dominance is reversed.  Also the predator (S2) 
initially dominates over the host (S3) of the prey (S1) and also over 
the host (S4) of the predator (S2) till the time instant  

* 30
32

2 3 20

1
log( ) 

u
t

a a u
=

−
  and 

* 40
42

2 4 20

1
log( ) 

u
t

a a u
=

−
 and 

thereafter the dominance is reversed as shown in Fig. 4.  

  

Case (iv):  10 20 40 30 2 1 4 3 ,    If u u u u a a a a< < < < < <
 

 
     In this case the predator (S2) has the least natural growth rate 
and the prey (S1) has the least initial population strength. The host 
(S4) of the predator (S2) initially dominates over the predator (S2) and 
also over the prey (S1) till the time instant 

* 20
24

4 2 40

1
log( ) 

u
t

a a u
=

− ,
* 10
14

4 1 40

1
log( )

u
t

a a u
=

−
 respectively and 

thereafter the dominance is reversed. Also the host (S3) of the prey 
(S1) dominates over the predator (S2), prey (S1) and host (S4) of the 

predator (S2) till the time instant 
* 20
23

3 2 30

1
log( ) 

u
t

a a u
=

−
 ,  

* 10
13

3 1 30

1
log( ) 

u
t

a a u
=

−
and 

* 40
43

3 4 30

1
log( ) 

u
t

a a u
=

−
 respectively and 

thereafter the dominance is reversed  as shown in Fig. 5. 

 

Case (v): 30 40 10 20 4 2 3 1  ,    If u u u u a a a a< < < < < <
 

 
     In this case the host (S4) of the predator (S2) has the least 
natural growth rate and the host (S3) of the prey (S1) has the least 
initial population strength.  The prey (S1) initially dominates over the 
host (S4) of the predator (S2) and the host (S3) of the prey (S1) till the 

time instant  
* 40
41

1 4 10

1
log( ) 

u
t

a a u
=

−
,

* 30
31

1 3 10

1
log( ) 

u
t

a a u
=

−
     

respectively and thereafter the dominance is reversed.  Also the 
predator (S2) dominates over the host (S4) of the predator (S2) till the 

time instant 
* 40
42

2 4 20

1
log( ) 

u
t

a a u
=

−
 and thereafter the dominance 

is reversed as shown in Fig. 6.              

         

Case (vi): 30 10 20 40 4 1 2 3  ,    If u u u u a a a a< < < < < <
 

 
     In this case the host (S4) of the predator (S2) has the least 
natural growth rate and the host (S3) of the prey (S1) has the least 
initial population strength.  The predator (S2) initially dominates 

over the prey (S1) till the time instant 
* 10
12

2 1 20

1
log( ) 

u
t

a a u
=

−
 and 

thereafter the dominance is reversed as shown in Fig.7.  

      

Case (vii):  20 30 10 40 3 2 1 4 ,    If u u u u a a a a< < < < < <  
 
     In this case the host (S3) of the prey (S1) has the least natural 
growth rate and the predator (S2) has the least initial population 
strength.  The prey (S1) initially dominates over host (S3) of the prey 
(S1) and also the predator (S2) till the time instant 

* 30
31

1 3 10

1
log( ) 

u
t

a a u
=

− ,
* 20
21

1 2 10

1
 log( ) 

u
t

a a u
=

−
 respectively and 

thereafter the dominance is reversed.     Also the host (S4) of the 
predator (S2) dominates over the host (S3) of the prey (S1), the 
predator (S2) and the prey (S1) till the time instant 

* 30
34

4 3 40

1
log( ) 

u
t

a a u
=

−
, 

* 20
24

4 2 40

1
log( ) 

u
t

a a u
=

−
 and 

* 10
14

4 1 40

1
log( ) 

u
t

a a u
=

−  respectively and thereafter the dominance 

is reversed as shown in Fig. 8. 
                                    

Case (viii): 20 40 30 10 1 4 3 2
 ,    If u u u u a a a a< < < < < <

 
 
     In this case prey (S1) has the least natural growth rate and the 
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highest initial population strength. And the predator (S2) has the 
highest natural growth rate and the least initial population strength.  
The host (S3) of the prey (S1) initially dominates over the host (S4) of 

the predator (S2)  till the time instant 
* 40
43

3 4 30

1
log( ) 

u
t

a a u
=

−
 and 

thereafter the dominance is reversed as shown in Fig. 9. 
 
Trajectories of Perturbations 
                                           

    
1 2 1 3 1 4 2 3 2 4 3 4

 s   ,  ,  ,  ,  ,   The trajectorie in u u u u u u u u u u u u planes are− − − − − −

 

2 1

1 2

10 20

,

a a
u u

u u

   
=   

   

3 1

31

10 30

,

a a
uu

u u

   
=   

   
 

4 1

1 4

10 40

,

a a
u u

u u

   
=   

   
 

3 2

32

20 30

,

a a
uu

u u

   
=   

   
 

4 2

2 4

20 40

a a
u u

and
u u

   
=   

   
 

4 3

3 4

30 40

a a
u u

u u

   
=   

   
  respectively. 

 
 
GRAPHS OF THE PERTURBATION  
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