
Journal of Experimental Sciences 2012, 3(2): 45-48 
ISSN: 2218-1768 
Available Online: http://jexpsciences.com/ 

 

 

 

A Mathematical model of four species syn-ecosymbiosis comprising of prey-
predation, mutualism and commensalisms-V(the co-existent state) 
 
R. Srilatha 
 
Research Scholar, JNTUH, Kukatpally, Hyderabad-500085, India 
 

Abstract  
This investigation deals with a mathematical model of a four species (S1, S2, S3 and S4) Syn-Ecological system (The Co-
existent State). S2 is a predator surviving on the prey S1: the prey is a commensal to the host S3 which itself is in mutualism 
with the fourth species S4; S2 and S4 are neutral. The model equations of the system constitute a set of four first order non-
linear ordinary differential coupled equations.  In all, there are sixteen equilibrium points.  Criteria for the asymptotic 
stability of one of the sixteen equilibrium points: The Co-existent State only is established in this paper.  The Co-existent 
State is found to be stable.  The linearized equations for the perturbations over the equilibrium points are analyzed to 
establish the criteria for stability and the trajectories illustrated. Further the global stability is discussed using Liapunov’s 
method.  
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INTRODUCTION 
 
     Mathematical modelling in eco-system was initiated in 1925 
by Lotka [6] and in 1931 by Volterra [12].  The general concepts of 
modelling have been presented in the treatises of Meyer [7], Paul 
Colinvaux [8], Freedman [2], Kapur [3, 4].    The ecological 
interactions can be broadly classified as prey-predation, competition, 
mutualism and so on.  N.C. Srinivas [11] studied the competitive 
eco-systems of two species and three species with regard to limited 
and unlimited resources.  Later, Lakshmi Narayan [5] has 
investigated the two species prey-predator models. Recently stability 
analysis of competitive species was investigated by Archana Reddy 
[1]. Local stability analysis for a two-species ecological mutualism 
model has been investigated by B. Ravindra Reddy et. al [9, 10]. 
 
BASIC EQUATIONS 
Notation Adopted 
 
N1(t)         : The Population of the Prey (S1)   
N2(t)         : The Population of the Predator (S2)   
N3(t)         : The Population of the Host (S3)  of the Prey (S1)  

       and mutual to S4 
N4(t)   :The Population of S4 mutual to S3 
t        : Time instant 
a1,a2,a3,a4    : Natural growth rates of S1, S2, S3, S4 
a11,a22,a33,a44  : Self inhibition coefficients of S1, S2, S3, S4 
a12,a21    : Interaction (Prey-Predator) coefficients of S1 due to  
             S2 and S2 due to S1 

a13      : Coefficient for commensal for S1 due to the Host S3 
a34, a43   : Mutually interaction between S3 and S4 

31 2 4

11 22 33 44

, , ,
aa a a

a a a a
 : Carrying capacities of S1, S2, S3, S4 

 
     Further the variables N1, N2, N3, N4 are non-negative and the 
model parameters a1, a2, a3, a4; a11, a22, a33, a44; a12, a21, a13, a24 are 
assumed to be non-negative constants. 
 
     The model equations for the growth rates of S1, S2, S3, S4 are  

21
1 1 11 1 12 1 2 13 1 3

dN
a N a N a N N a N N

dt
= − − +      ….(2.1) 

22
2 2 22 2 21 2 1

dN
a N a N a N N

dt
= − +           ….(2.2)  

23
3 3 33 3 34 3 4

dN
a N a N a N N

dt
= − +             …. (2.3) 

24
4 4 44 4 43 4 3

dN
a N a N a N N

dt
= − +           …. (2.4)

  
EQUILIBRIUM STATES 
 
     The system under investigation has sixteen equilibrium states 
are given by  
 

0, 1, 2,3, 4= =i
dN

i
dt

                     ……  (3.1) 

 
I.   Fully washed out state: 

(1)  1 2 3 40, 0, 0, 0N N N N= = = =  
 
II. States in which three of the four species are washed out and 
fourth is surviving 

(2)  
4

1 2 3 4

44

0, 0, 0,
a

N N N N
a

= = = =     
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(3)  
3

1 2 3 4

33

0, 0, , 0
a

N N N N
a

= = = =  

(4)  
2

1 2 3 4

22

0, , 0, 0
a

N N N N
a

= = = =     

(5)  
1

1 2 3 4

11

, 0, 0, 0
a

N N N N
a

= = = =  

 
III. States in which two of the four species are washed out while the 
other two are surviving 
 

(6)  
4 34 3 44 3 43 4 33

1 2 3 4

33 44 34 43 33 44 34 43

0, 0, ,
a a a a a a a a

N N N N
a a a a a a a a

+ +
= = = =

− −
                    

(7) 
2 4

1 2 3 4

22 44

0, , 0,
a a

N N N N
a a

= = = =   

(8)
32

1 2 3 4

22 33

0, , , 0
aa

N N N N
a a

= = = =  

(9)  
1 4

1 2 3 4

11 44

, 0, 0,
a a

N N N N
a a

= = = =  

(10) 
1 33 3 13 3

1 2 3 4

11 33 33

, 0, , 0
a a a a a

N N N N
a a a

+
= = = =  

(11) 
1 22 2 12 1 21 2 11

1 2 3 4

11 22 12 21 11 22 12 21

, , 0, 0
aa aa aa aa

N N N N
a a a a a a a a

− +
= = = =

+ +            

 
IV. States in which one of the four species is washed out while the 
other three are surviving 
 

(12) 
2 4 34 3 44 4 33 3 43

1 2 3 4

22 33 44 34 43 33 44 34 43

0, , ,
a a a a a a a a a

N N N N
a a a a a a a a a

+ +
= = = =

− −
 

(13) 1 4 34 3 44 4 33 3 43
1 2 3 4

2 33 44 34 43 33 44 34 43

, 0, ,
a a a a a a a a

N N N N
a a a a a a a a

α

α

+ +
= = = =

− −
 

Where

1 13 4 34 3 44 1 33 44 34 43 2 11 33 44 34 43
( ) ( ), ( )a a a a a a a a a a a a a a aα α= + + − = −

(14) 
1 22 2 12 1 21 2 11 4

1 2 3 4

11 22 12 21 11 22 12 21 44

, , 0,
a a a a a a a a a

N N N N
a a a a a a a a a

− +
= = = =

+ +
 

(15) 
2 3 3

1 2 3 4

1 1 33

, , , 0
a

N N N N
a

β β

β β
= = = =  

Where 

1 33 11 22 12 21 2 22 1 33 3 13 2 12 33

3 21 1 33 3 13 2 11 33

( ), ( )

( )

a a a a a a a a a a a a a

a a a a a a a a

β β

β

= + = + −

= + +
 

 
V. The co-existent state (or) Normal steady state 
 

(16) 
1 13 22 2 4 13 21 2

1 2

3 3

, ,
a a a a

N N
γ γ γ γ

γ γ

+ +
= =

 
4 34 3 44 4 33 3 43

3 4

33 44 34 43 33 44 34 43

,
a a a a a a a a

N N
a a a a a a a a

+ +
= =

− −
 

 
Where 

1 1 22 2 12 33 44 34 43 2 3 44 4 34

3 11 22 12 21 33 44 34 43 4 1 21 2 11 33 44 34 43

( )( ),

( )( ), ( )( )

a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

γ γ

γ γ

= + − = +

= + − = − −

 
This can exist only when 

1 21 2 11 33 44 34 43(a a a a ) 0 and (a a a a ) 0− > − >            
 
     The present paper deals with the Co-existent State only.  
The stability of the other equilibrium states will be presented in the 
forth coming communications.  
 
Stability of the Equilibrium State 16: 
(The co-existent state (or) Normal steady State)  
 
To discuss the stability of equilibrium point 
 

1 13 22 2 4 13 21 2 4 34 3 44 4 33 3 43
1 2 3 4

3 3 33 44 34 43 33 44 34 43

, , ,
a a a a a a a a a a a a

N N N N
a a a a a a a a

γ γ γ γ

γ γ

+ + + +
= = = =

− −
 (4.1) 

 

Let us consider small deviations ( ) ( ) ( ) ( )1 2 3 4
u t , u t , u t , u t  

from the steady state 

i.e. ( ) ( )i i iN t N u t , i 1, 2,3, 4= + =         --- (4.2) 
 
Substituting (4.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products 

and higher powers of 1 2 3 4u , u , u , u
, we get 

1
11 1 1 12 1 2 13 1 3

du
a N u a N u a N u

dt
= − − +            ---- (4.3) 

2
22 2 2 21 2 1

du
a N u a N u

dt
= − +                ---- (4.4) 

3
33 3 3 34 3 4

du
a N u a N u

dt
= − +              ---- (4.5) 

4
44 4 4 43 4 3

du
a N u a N u

dt
= − +              ---- (4.6) 

 
The characteristic equation of which is 

2

11 1 22 2 11 22 12 21 1 2

2

33 3 44 4 33 44 34 43 3 4

(a N a N ) (a a a a )N N

(a N a N ) (a a a a )N N 0

 λ + + λ + + × 

 λ + + λ + − = 
 --- (4.7) 

 
The characteristic roots of (4.7) are 

 
2

11 1 22 2 11 1 22 2 12 21 1 2
( ) ( ) 4

,
2

a N a N a N a N a a N N
λ

− + ± − −
=  

2

33 3 44 4 33 3 44 4 34 43 3 4( ) ( ) 4

2

a N a N a N a N a a N N
λ

− + ± − +
=   (4.8) 

11 1 22 2 1 33 3 44 4 2( ) ( )
,

2 2

a N a N a N a N
λ λ

− + ± ∆ − + ± ∆
⇒ = =    (4.9) 

 
Where 

1∆
=

2

11 1 22 2 12 21 1 2( ) 4a N a N a a N N− −  , 

2∆
=

2

33 3 44 4 34 43 3 4
( ) 4a N a N a a N N− +

 

Case (i): When 1 2
0 0and∆ > ∆ >

 
     In this case the roots are real and negative. Hence the 
equilibrium state is stable. 
 

Case (ii): When 1 2
0 0and∆ < ∆ <

 
     In this case the roots are complex with negative real parts. 
Hence the equilibrium state is stable. 
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Case (iii): When 1 2
0 0and∆ = ∆ =

 
     In this case the roots are repeated, which are negative. Hence 
the equilibrium state is stable.The trajectories are given by 

    

 

 

 
 

Here 

 
 

                                                                      
                 

and 10 20 30 40u , u , u , u  are the initial values of 1 2 3 4
u , u , u , u

 
respectively. 
     There would arise in all 576 cases depending upon the 

ordering of the magnitudes of the growth rates 1 2 3 4
a ,a ,a ,a  and the 

initial values of the perturbations ( ) ( ) ( ) ( )10 20 30 40u t , u t , u t , u t  of 

the species 1 2 3 4S ,S ,S ,S . Of these 576 situations some typical 
variations are illustrated through respective solution curves that 
would facilitate to make some reasonable observations. 
     The solution curves are exhibited in figures 1 & 2. 
 

Case (i):  If 10 40 30 20u u u u< < <  and 3 1 2 4a a a a< < <   
     In this case initially the Host (S3) of S1 dominates S4 and the 

Prey (S1) till the time instant 43 13
t , t

∗ ∗

 respectively and the 
dominance gets reversed there after. Also S4 dominates over the 

Prey (S1) till the time instant 14
t

∗

 and there after the dominance is 

reversed. Also 1 2 3 4
u , u , u ,u

 are converging asymptotically to 
the equilibrium point.  Hence the equilibrium point is stable. 
 
 

 
Fig 1. 

 

Case (ii):  If 40 10 30 20
u u u u< < <  and 3 2 4 1

a a a a< < <   
     In this case initially the Host (S3) of S1 dominates S4 till the 

time instant 43
t *

 and there after the dominance is reversed. Also 

the Prey (S1) dominates over S4 till the time instant 41
t *

 and the 

dominance gets reversed there after. As
t → ∞

, all the four 
species approach to the equilibrium point.  Hence the equilibrium 
state is stable. 
 

 
Fig 2. 

 

Liapunov’s Function for Global Stability 

 

     We discussed the local stability of the state of co-existence. 
We now examine the global stability of the dynamical system (2.1), 
(2.2), (2.3) and (2.3).  We have already noted that this system has 
a unique, stable non-trivial co-existent equilibrium state at  

 1 13 22 2 4 13 21 2 4 34 3 44 4 33 3 43
1 2 3 4

3 3 33 44 34 43 33 44 34 43

, , ,
a a a a a a a a a a a a

N N N N
a a a a a a a a

γ γ γ γ

γ γ

+ + + +
= = = =

− −
 

 

We define a Liapunov function 

1
1 11 2 3 4 1

1

2
2 21 2

2

, log log( , , )
N

l

N

N
N N N N N

N
V N N N N N +

  
− −  

   
= − −

3 4
3 3 4 42 3 3 4

3 4

log log
N N

l N N N l N N N
N N

      
+ − − + − −     

     
 --- (5.1) 

where l1, l2  and l3 are suitable constants to be determined in the 
subsequent steps. 

     Now, the time derivative of V along the solution of (2.1), (2.2), 
(2.3) and (2.4) is  
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31 2 43 31 1 2 2 4 4
1 2 3

1 2 3 4

N N dNN N dN N N dN N N dNdV
l l l

dt N dt N dt N dt N dt

      −− − −
= + + +      
      

 - (5.2) 

{ }
11

1 1 11 1 12 2 13 3

1

N NdV
N a a N a N a N

dt N

 −
= − − + 
 

 

+ { }
22

1 2 2 22 2 21 1

2

N N
l N a a N a N

N

 −
− + 

 
+

{ }
33

2 3 3 33 3 34 4

3

N N
l N a a N a N

N

 −
− + 

 
 

{ }
44

3 4 4 44 4 43 3

4

N N
l N a a N a N

N

 −
+ − + 

 
           --- (5.3) 

( ){ }11 1 11 1 12 2 13 3N N a a N a N a N= − − − +  

 + ( )21 2 2 22 2 21 1{ }l N N a a N a N− − + + 

( ){ }32 3 3 33 3 34 4l N N a a N a N− − +   

( ){ }43 4 4 44 4 43 3l N N a a N a N+ − − +        --- (5.4) 

( ){ }1 1 2 31 11 12 13 11 1 12 2 13 3

dV
N N a N a N a N a N a N a N

dt
= − + − − − +  

+ ( ){ }2 2 11 2 22 21 22 2 21 1
l N N a N a N a N a N− − − +  

+ ( ){ }3 3 42 3 33 34 33 3 34 4l N N a N a N a N a N− − − +  

( ){ }4 4 33 4 44 43 44 4 43 3l N N a N a N a N a N+ − − − +        --- (5.5) 

( ) ( ) ( ) ( ){ }1 1 2 31 11 1 12 2 13 3N N a N N a N N a N N= − − − − − − −  

+ ( ) ( ) ( ){ }2 2 11 2 22 2 21 1l N N a N N a N N− − − + −  

+ ( ) ( ) ( ){ }3 3 42 3 33 3 34 4l N N a N N a N N− − − + −  

( ) ( ) ( ){ }4 4 33 4 44 4 43 3
l N N a N N a N N+ − − − + −     --- (5.6) 

( ) ( )( ) ( )( )
2

1 1 2 1 311 1 12 1 2 13 1 3

dV
a N N a N N N N a N N N N

dt
=− − − − − − − −  

+ ( ) ( )( ){ }2

2 1 21 22 2 21 1 2( )l a N N a N N N N− − + − −  

+ ( )( ) ( )( )( ){ }2

3 3 42 33 3 34 3 4
l a N N a N N N N− − + − −   

( )( ) ( )( )( ){ }2

4 3 43 44 4 43 3 4
l a N N a N N N N+ − − + − −      --- (5.7) 

Choosing 12
1

21

a

a
l = , l2 and l3 are any positive constants, (5.7) 

becomes, 

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( )

2 2 2
12 22

1 1 3 2 311 1 13 1 3 2 2 33 3

21

2

3 4 4 3 42 34 3 4 3 44 4 3 43 3 4

dV a a
a N N a N N N N N N l a N N

dt a

l a N N N N l a N N la N N N N

=− − − − − − − − −

+ − − − − + − −

 

                                          --- (5.8) 

  

( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ }

2 2 2 2
13 12 22

1 1 3 211 1 1 3 2

21

2 2 2 2
34 2 43 3

3 4 3 433 2 3 44 3 4 3 4

2

( )

2

a a a
a N N N N N N N N

a

a l a l
a l N N a l N N N N N N

<− − − − + − − −

+
− − − − + − + −

                          --- (5.9) 

( ) ( )

( ) ( )

2 2
13 12 22

1 211 1 2

21

2 2
34 2 43 3 13 34 2 43 3

3 433 2 3 44 3 4

( )
2

( ) ( )

2 2 2

a a a
a N N N N

a

a l a l a a l a l
a l N N a l N N

< − − − − −

+ +   
− − − + − −      

 

                          --- (5.10) 
<0, Provided  

34 2 43 3 13 34 2 43 3
33 2 44 3

( ) ( )

2 2 2

a l a l a a l a l
a l and a l

+ +
< + <   

 
Hence the co-existent is globally asymptotically stable. 
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