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Abstract  
The present paper deals with an analytical investigation of a model of two species mutually interacting with resources for both 
the species being unlimited. The model is characterized by a coupled system of first order non-linear ordinary differential 
equations. Only one equilibrium point is identified and its stability criteria are derived. It is observed, in case when the death 
rate of the second species is greater than its birth rate, there exist only one equilibrium point. Stability of the equilibrium point 
and the solutions for the linearized perturbed equations are obtained. However when the death rate is greater than the birth 
rate for both the species, there exists two equilibrium points. We derived their stability criteria and obtained the solutions of 
the linearized perturbed equations. 
 
Keywords: Equilibrium points, Mutualism, Coexistence state, Stability. 

 

INTRODUCTION 
 
     Ever since research in the discipline of theoretical ecology 
was initiated by Lotka [8] and by Volterra [12], several 
mathematicians and ecologists contributed in the growth of this area 
of knowledge as has been extensively reported in the treatises of 
Meyer [9], Cushing [2], Paul Colinvaux [10], Freedman [3], Simmons 
[4], Kapur [5, 6].  The ecological interactions can be broadly 
classified as Prey-Predation, Competition, Mutualism and so on.  
N.C. Srinivas [11] studied the competitive eco-systems of two 
species and three species with regard to limited and unlimited 
resources.  Later, Lakshmi Narayan [7] has investigated the two 
species Prey-Predator models. Recently stability analysis of 
competitive species was investigated by Archana Reddy [1].  
Mutualism is any relationship between two species of organisms that 
benefits both species. Pollination (flowers and insects), seed 
dispersal (berries and fruit eaten by birds and animals), and lichens 
(fungus and algae) are examples for mutualism. 
     The present investigation is devoted to the analytical study of 
a model of two mutually interacting species with unlimited resources 
for both the species.  The model is characterized by a coupled pair 
of first order non-linear ordinary differential equations.  The 
equilibrium points of the system are identified and the stability 
analysis is carried out. 
     Before describing a model, first we make the following 
assumptions: 
N1 is the population of the first species, N2 , the population of the 
second species α1, α2 are respectively the rates of natural growth of 
the first and second species, α12 is the rate of increase of the first 

species due to interaction with the second  species, α21 is the rate 
of increase of the second species due to interaction with the first 
species. Further note that the variables N1, N2and the model 
parameters α1, α2, α12, α21 are non-negative. If the death rate is 
greater than the birth rate for any species, we continue to use the 
same notation as natural growth rate with negative sign for the rate 
of difference. The model equations for a two species mutualising are 
given by a system of non-linear ordinary differential equations. 
 
Basic Equations: 
 
The equation for the growth rate of first species (N1) is given by  
 

1

1 1 12 1 2

dN
a N N N

dt
α= +                            (2.1) 

The equation for the growth rate of second species (N2) is given by                                   
  

2

2 2 21 1 2

dN
a N N N

dt
α= +                           (2.2)                    

 
The equilibrium states are given by 
 

1 0
dN

dt
=  and 

2 0
dN

dt
=  

 
That is  
 

1 1 12 2
{ } 0N a Nα+ =

 and 2 2 21 1
{ } 0N a Nα+ =

     (2.3) 

A solution ,
1 2

( )N N  of (2.3) is called the equilibrium state of (2.1)-
(2.2). 
The system under investigation has one equilibrium state given by 
 

21
0; 0N N= =

.                              (2.4)  
 
In this state both the species are washed out. 
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Now we study the stability of the equilibrium state. Let us write 
 
N = (N1, N2) = N+U 
                                                                   
where U = (u1, u2) is a small perturbation over the equilibrium state 

,
1 2

( )N N N= . 
     The basic equations (2.1), (2.2) are linearized to obtain the 
system for the perturbed state, 

dU
AU

dt
=

                               (2.5)  

where 

1221 12 1

221 12 21

Na N
A

N a N

αα

α α

 +
= 

+  
                 (2.6)                     

 
The characteristic equation for the system is 
 

[ ] 0det A Iλ− =                                 (2.7) 
         
     The equilibrium state is stable, if both the roots of the 
equation (2.7) are negative in case they are real or have negative 
real parts in case they are complex. 
     To discuss the stability of equilibrium state N1=0; N2=0, , we 
consider small perturbations u1 (t) and u2 (t) from the steady state.  
That is, we write 
 

1 11
( )N N u t= +

,                              (2.8)              

2 22
( )N N u t= +

          (2.9)             
Substituting (2.8) and (2.9) in (2.1) and (2.2), we get 

1

1 1 12 1 2

du
a u u u

dt
α= +

              

2

2 2 21 1 2

du
a u u u

dt
α= +

                                 

After linearization, we get 

1

1 1

du
a u

dt
=

                                (2.10) 

and    

2

2 2

du
a u

dt
=

                           (2.11)    

The characteristic equation is   

(λ - α1 )(λ - α2) =0,                                                  
whose roots α1, α2 are both positive. Hence the equilibrium state is 
unstable. 
     The solutions of equations (2.10) and (2.11) are 

1
1 10
 =  

a t
u u e

(2.12)                                                                                      

2
2 20
 =  

a t
u u e                                                 (2.13)                                                                                                                 

Where u10, u20 are the initial values of u1 and u2. The solution curves 
are illustrated in figures 1 to 4. 
 
Case 1: α1 < α2 and u10 < u20 i.e. the second species dominates the 
first species in the natural growth rate as well as in its initial 

population strength.  
     In this case, the second species continues to dominate the 
first species as shown in fig.1. 
 
Case 2: α1 < α2 and u10 > u20 i.e. the second species dominates the 
first species in the natural growth rate but its initial strength is less 
than that of first species.                                                           
     In this case, the first species out numbers the second species 
till the time-instant, 

  /  
10 20

2 1

{ }
= * = 

( )

ln u u
t t

a a−                                               

after that the second species out numbers the first species. This is 
illustrated in figure 2 
 
Case 3: α1 > α2 and u10 < u20 i.e. the first species dominates the 
second species in the natural growth rate but its initial strength is 
less than that of the second species.                             
     Here the second species out numbers the first species till the 
time-instant, 

  / 
10 20

2 1

{ }
= * = 

( - )

ln u u
t t

a a
                         

after that the first species out numbers the second species. This is 
illustrated in figure 3 
 
Case 4: α1 > α2 and u10 > u20 i.e. the first species dominates the 
second species in the natural growth as well as in its initial 
population strength.                                                              
     Clearly the first species continues to be out numbering the 
second species as shown in figure 4. 
     We derive the trajectories of the perturbed species. The 
trajectories in the (u1,u2) plane are given by 

2

1

10

a
u

u

 
 
 

=

1

2

20

a
u

u

 
 
 

                                         

and these are illustrated in figure 5.                                    
 
The death rate of the second species is greater than its birth  
rate.    
 
Under this the basic equations are 
 

1
dN

dt
   = 1 1 12 1 2

a N N Nα+
                      (3.1) 

2

2 2 21 1 2

dN
a N N N

dt
α= − +

                      (3.2) 

The system under investigation has one equilibrium state given by 
 

21
0; 0N N= =

.                                                                     
 
     This is a state where both the species are washed out. 
We discuss the stability of equilibrium state  
When N1=0; N2=0.  
Consider small perturbations u1(t) and u2 (t) from the steady state.  
That is, we write 
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1 11
( )N N u t= +

,                              (3.3) 

2 22
( )N N u t= +

                              (3.4)                               
 
Substituting (3.3) and (3.4) in (3.1) and (3.2), we get   
 

1

1 1 12 1 2

du
a u u u

dt
α= +

   

                                                    

 
2

2 2 21 1 2

du
a u u u

dt
α= − +

                                     

 
After linearization, we get 

1

1 1

du
a u

dt
=

                                (3.5)   

And 

2

2 2
   

du
a u

dt
= −

                         (3.6)

                     
The characteristic equation is   

(λ - α1 )(λ - α2) =0,                                  

One root of this equation is λ1= α1 which is positive and the other 

root is λ2= - α2 
which is negative. Hence the equilibrium state is unstable. 
The solutions of equations (3.5) and (3.6) are  

1
1 10
 =  

a t
u u e

                                 (3.7)                                                                

2
2 20
 =  

a t
u u e

−
                                           (3.8)                                                                                             

where 10
u

, 20
u

 are the initial values of 1
u
and 2

u
. The solution 

curves are illustrated in figures 6 and 7.  
 
Case 1: u10 > u20 i.e. initially the first species dominates the second 
species.                        
     We notice that the first species is going away from the 
equilibrium point while the second species approaches 
asymptotically to the equilibrium point. Hence the state is unstable. 
 
Case 2: u10 < u20 i.e. initially the second species dominates the first 
species.                                                        
     Initially when the second species out numbers the first 
species, the domination of the second species over the first 
continues till the time,    

  / 
20 10

1 2

{ }
= * = 

( + )

ln u u
t t

a a
                               

                                                                                                                                           
after that the first species out numbers the second species and 
grows indefinitely while the second species approaches 
asymptotically to the equilibrium point. Hence the state is unstable.  
     We shall now describe the trajectories of the perturbed 
species. The trajectories in the (u1, u2) plane are given by  
 

2

1

10

a
u

u

 
 
 

=

1

2

20

a
u

u

−
 
 
 

             

 
The death rate is greater than the birth rate for both the species 
 

The basic equations governing the system are                

1
dN

dt
   = 1 1 12 1 2

a N N Nα− +
                     (4.1)              

2

2 2 21 1 2

dN
a N N N

dt
α= − +

                       (4.2) 

Here we come across two equilibrium states: 

I. 21
0; 0N N= = ,                                               

the state in which both the species are washed out.           

II. 
2

1

21

a
N

α
=

; 
1

2

12

a
N

α
=

,                                       

the state in which both the species co-exist. 
 
Equilibrium state I (fully washed out state): 

     To discuss the stability of equilibrium state 1
0N = ; 2

0N = , 
we consider small perturbations u1(t) and u2 (t) from the steady state, 
i.e. we write 

1 11
( )N N u t= +

,                              (4.3) 

2 22
( )N N u t= +

.                             (4.4) 
Substituting (4.3) and (4.4) in (4.1) and (4.2), we get 

1

1 1 12 1 2

du
a u u u

dt
α= − +

                                                    

2

2 2 21 1 2

du
a u u u

dt
α= − +

             

After linearization, we get 

1

1 1

du
a u

dt
= −

                                 (4.5)

                                             

2

2 2
   

du
a u

dt
= −

                                (4.6)         

The characteristic equation is   

(λ +α1 )(λ + α2) =0,                                            

The roots of this equation, λ1= - α1 and λ2= - α2 are both negative. 
Hence the equilibrium state is stable. 
The solutions of equations (4.5) and (4.6) are  

1
1 10
 =  

a t
u u e

−
(4.7)        

2
2 20
 =  

a t
u u e

−
                                                (4.8)                            

where 10
u

, 20
u

 are the initial values of 1
u
and 2

u
. The solution 

curves are illustrated in figures 8 to 11.    
 
CASE 1: α1 > α2 and u10>u20 i.e. the first species dominates the 
second species in the natural growth rate as well as in its initial 
population strength.                                                                
     In this case the first species continues out numbering the 
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second species as shown in figure 8. It is evident that both the 
species converging asymptotically to the equilibrium point.  Hence 
the state is stable.                              
 
CASE 2: α1 > α2 and u10 < u20 i.e. the first species dominates the 
second species in the natural growth rate but its initial strength is 
less than that of second species.                                                                
     In this case, initially the second species out numbers the first 
species and this continues till the time, 

  / 
10 20

1 2

{ }
= * = 

( - )

ln u u
t t

a a
                                  

after that the first species out numbers the second species.  

As t → ∞  both 1
 u
and 2

 u
 

approach to the equilibrium point. Hence the state is stable.                                       
 
CASE 3: α1 < α2 and u10 < u20  i.e. the second species dominates 
the first species in the natural growth rate as well as in its initial 
population strength.  
     In this case the second species always out numbers the first 
species. It is evident that both the species converging asymptotically 
to the equilibrium point. Hence the state is stable.   
 
CASE 4: α1 < α2 and u10 > u20 i.e. the second species dominates the 
first species in the natural growth rate but its initial strength is less 
than that of first species. 
     In this case, initially the first species out numbers the second 
species and this continues up to the time,  

  / 
10 20

1 2

{ }
= * = 

( - )

ln u u
t t

a a
      

there after the second species out numbers the first species. As t → 

∞ both u1 and u2 approach to the equilibrium point.  Hence the 
state is stable. Also the trajectories in the (u1, u2) plane are given by 
 

2

1

10

a
u

u

−
 
 
 

=

1

2

20

a
u

u

−
 
 
 

                    

 
Equilibrium state II (coexistence state): 
 
We have     

2

1

21

a
N

α
=

; 
1

2

12

a
N

α
=

 

Substituting (4.3) and (4.4) in (4.1) and (4.2), we get 

1

12 2 12 1 21

du
N u u u

dt
α α= +

            

                                               

2

21 1 21 1 22

du
N u u u

dt
α α= +

              

After linearization, we get                   

1

12 21

du
N u

dt
α=

                              (4.9)     

2

21 12

du
N u

dt
α=

                             (4.10)     

The characteristic equation is 
2

1 212 21
0N Nλ α α− =
                                    

That is             
2

1 2
0a aλ − =

        

One root of this equation is λ1= 1 2
a a

 which is positive and the 
other root is 

λ2= 1 2
a a−

 which is negative. Hence the equilibrium state is 
unstable.   
The trajectories are given by 
 

1
u
= 110 1 20 12

1 2

u u Nλ α

λ λ

 +
 

− 
 

1
 t

e
λ + 110 2 20 12

2 1

u u Nλ α

λ λ

 +
 

− 

 
2

 t
e

λ
    (4.11)    

2
u
= 220 1 10 21

1 2

u u Nλ α

λ λ

 +
 

− 

1
 t

e
λ +

220 2 10 21

2 1

u u Nλ α

λ λ

 + +
 

− 
 

 
2
 t

e
λ

     (4.12)        

Figures 12 & 13 illustrate the behaviour of the species 1
u
 and 2

u
 

 
Case 1: For  u10 > u20 , we have                                                            
     In this case, the first species is noted to be going away from 
the equilibrium point while the second species asymptotically 
approaches to the equilibrium point. Hence the state is unstable.  
 
Case 2: If  u10 < u20, we have                                                              
    In this case the second species dominates the first species till 
the time,  

 = * =t t
 

2 1

1

λ λ−  ln 
 

2 1 10 1 1 20

 
2 2 10 2 1 20

( - ) ( )

( ) ( )

b u b u

b u b u

λ λ
λ λ

 
 
 
  

+ −

− + −                    

              
where         

11 12
b Nα=

; 22 21
b Nα=

             
and there after the first species dominates the second species and 
grows indefinitely while the second species approaches 
asymptotically to the equilibrium point. Hence the state is unstable. 
Also the trajectories in the (u1, u2) plane are given by 
 

1
1 2 11 2

2
2

1 2 2

( )( ) ( )1
[ ]

( )

av
u u va v v

u d av
u v u

=
−

−−−−− −− −− −− −

             

Where 1
v
 and 2

v  are roots of the quadratic equation 
2
+ =0av c  

with 221=a Nα ; 112
=c Nα−−−−  and d is an arbitrary constant. 

 
Trajectories: 
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