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On the stability of a four species syn eco-system with commensal prey-predator 
pair with prey-predator pair of hosts-III (2nd level prey-predator washed out states) 
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Abstract  
The present paper is devoted to an investigation on a Four Species (S1, S2, S3, S4) Syn Eco-System with Commensal Prey-
Predator pair with Prey-Predator pair of Hosts (Both the Hosts are washed out states).  The System comprises of a Prey 
(S1), a Predator (S2) that survives upon S1, two Hosts S3 and S4 for which S1, S2 are Commensal respectively i.e., S3 and S4 
benefit S1 and S2 respectively, without getting effected either positively or adversely.  Further S3 is Prey for S4 and S4 is 
Predator for S3.  The pair (S1, S2) may be referred as 1st level Prey-Predator and the pair (S3, S4) the 2nd level Prey-Predator.  
The model equations of the system constitute a set of four first order non-linear ordinary differential coupled equations.  In 
all, there are sixteen equilibrium points.  Criteria for the asymptotic stability of three of these sixteen equilibrium points: 2nd  
Level Prey-Predator Washed Out States are established.  The system would be stable if all the characteristic roots are 
negative, in case they are real, and have negative real parts, in case they are complex. The linearized equations for the 
perturbations over the equilibrium points are analyzed to establish the criteria for stability and the trajectories are illustrated.  
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INTRODUCTION 
 
     Research in the area of theoretical Ecology was initiated in 
1925 by Lotka [1] and in 1931 by Volterra [2].  Since then many 
Mathematicians and Ecologists contributed to the growth of this area 
of knowledge reported in the treatises of May [3], Smith [4], Kushing 
[5], Kapur [6] etc.  The ecological interactions can be broadly 
classified as Prey-Predator, Commensalism, Competition, 
Neutralism, Mutualism and so on. Srinivas [7] studied competitive 
eco-systems of two species and three species with limited and 
unlimited resources.  Later Lakshminarayan and Pattabhi 
Ramacharyulu [8] studied Prey-Predator ecological models with 
partial cover for the Prey and alternate food for the Predator.  
Recently, Archana Reddy [9] and Bhaskara Rama Sharma [10] 
investigated diverse problems related to two species competitive 
systems with time delay, employing analytical and numerical 
techniques.  Further Phani Kumar and Pattabhi Ramacharyulu [11] 
studied Three Species Ecosystem Consisting of a Prey, Predator 
and a Host Commensal to the Prey.  The present authors Hari 
Prasad and Pattabhi Ramacharyulu [12-17] discussed on the stability 
of a four species Syn Eco-System.   
 
Predation: Predation is a relationship between two species where 
one species kills and devours other for food.  The species which 
kills other is called a predator and the species which is killed is called 
a prey.  For example, a tiger that hunts is called “Predator” and a 

deer that is being hunted is known as the “Prey”. 
 
Commensalism:  In commensalisms one organism benefits the 
other without getting effected due to the interaction (i.e. it is neither 
benefited nor harmed).  The beneficial species is the Commensal 
while the other benefiting species the Host.  A common example is 
an animal using a tree for shelter-tree (Host) does not get any benefit 
from the animal (Commensal). 
     Some real-life examples of a Syn-Eco-System with 
Commensal Prey-Predator pair with Pray-Predator pair of Hosts are 
given in the following Table-1. 

Table 1. 

 

Sl. 
No. 

Examples of S1 Examples of S2 Examples of S3 Examples of S4 

1 Infusoria Sea anemone Arthopods Clown fish 

2 Small beetle Remora Fish (or) small 
aquatic 
vertebrate 

Shark 

3 Rabit Golden Jackal Deer Tiger 

4 Insects Army Ants Earth worms Birds 

5 Grass Cow Insects Cattle egrets  

 

A Schematic Sketch of the system under investigation is shown here 
under Fig 1. 

 

Fig 1. Schematic Sketch of the Syn Eco – System 
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BASIC EQUATIONS 
 
     The model equations for a four species syn eco-system is 
given by the following system of first order non-linear ordinary 
differential equations employing the following notation.   
 
Notation  
 
S1 :  Prey for S2 and commensal for S3. 
S2 :  Predator surviving upon S1 and commensal for S4.  
S3 :  Host for the commensal (S1) and Prey for S4. 
S4 :  Host of the commensal (S2) and Predator surviving upon S4. 
Ni(t) :  The Population strength of Si at time t, i = 1, 2, 3, 4 
t : Time instant 
ai  : Natural growth rate of Si, i = 1, 2, 3, 4 
aii  : Self inhibition coefficient of Si, i = 1, 2, 3, 4 
a12,a21  :Interaction (Prey-Predator) coefficients of S1 due to S2     

and S2 due to S1 
a34,a43 :Interaction (Prey-Predator) coefficients of S3 due to S4 and 

S4 due to S3 
a13, a24  :Coefficients for commensal for S1 due to the Host S3 and S2 

due to the Host S4 

i

i

ii

a
K

a
= :Carrying capacities of Si, i = 1, 2, 3, 4 

 

     Further the variables N1, N2, N3, N4 are non-negative and the 
model parameters a1, a2, a3, a4; a11, a22, a33, a44; a12, a21, a13, a24, a34, 
a43 are assumed to be non-negative constants. 
     The model equations for the growth rates of  S1, S2, S3, S4 
are  

 

21
1 1 11 1 12 1 2 13 1 3

dN
a N a N a N N a N N

dt
= − − +      (2.1) 

22
2 2 22 2 21 1 2 24 2 4

dN
a N a N a N N a N N

dt
= − + +       (2.2) 

23
3 3 33 3 34 3 4= − −

dN
a N a N a N N

dt
        (2.3) 

24
4 4 44 4 43 3 4= − +

dN
a N a N a N N

dt
        (2.4) 

 
EQUILIBRIUM STATES 
 
     The system under investigation has sixteen equilibrium states 
defined by  

 

0, 1,2,3,4= =idN
i

dt
             (3.1) 

as given in the following Table.
 

 
S.No. Equilibrium State Equilibrium Point 

1 Fully Washed out state 
1 2 3 40, 0, 0, 0N N N N= = = =

 
2 Only the Host (S4)of S2 survives 4

1 2 3 4

44

0, 0, 0,
a

N N N N
a

= = = =  

3 Only the Host (S3)of S1 survives 3
1 2 3 4

33

0, 0, , 0
a

N N N N
a

= = = =  

4* Only the Predator (S2) survives 2
1 2 3 4

22

0, , 0, 0
a

N N N N
a

= = = =  

5* Only the Prey (S1) survives 1
1 2 3 4

11

, 0, 0, 0
a

N N N N
a

= = = =  

6 Prey (S1) and Predator (S2) washed out 
1 2 3 40, 0, ,= = = =N N N N

α γ

β β
 

where   

3 44 4 34, 33 44 34 43

3 43 4 33

0

0

= − = + >

= + >

a a a a a a a a

a a a a

α β

γ
 

7 Prey (S1) and Host (S3) of S1 washed out 
1 4

1 2 3 4

22 44 44

0, , 0,= = = =
a

N N N N
a a a

δ
 

where   

1 2 44 4 24
0= + >a a a aδ
 

8 Prey (S1) and Host (S4) of S2 washed out  
32

1 2 3 4

22 33

0, , , 0
aa

N N N N
a a

= = = =  

9 Predator (S2) and Host (S3) of S1 washed out 
1 4

1 2 3 4

11 44

, 0, 0,
a a

N N N N
a a

= = = =  

10 Predator (S2) and Host (S4) of S2 washed out 
32

1 2 3 4

11 33 33

, 0, , 0= = = =
a

N N N N
a a a

δ
 

where   

2 1 33 3 13
0= + >a a a aδ

 
11* Prey (S1) and Predator (S2)survives 

1 1
1 2 3 4

1 1

, , 0, 0= = = =N N N N
α γ

β β
 

where   

1 1 22 2 12= −a a a aα
, 1 11 22 12 21 0= + >a a a aβ
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1 1 21 2 11 0= + >a a a aγ
  

12 Only the Prey (S1) washed out 
2 24

1 2 3 4

22

0, , ,
+

= = = =
a a

N N N N
a

β γ α γ

β β β
 

13 Only the predator (S2) washed out 
1 13

1 2 3 4

11

, 0, ,
+

= = = =
a a

N N N N
a

β α α γ

β β β
 

14 Only the Host (S3) of S1 washed out 
1 22 44 12 1 1 21 44 11 1

1 2

44 1 44 1

4
3 4

44

, ,

0,

a a a a a a a a
N N

a a

a
N N

a

δ δ

β β

− +
= =

= =

 

15 Only the Host (S4) of S2 washed out  
21 2 2 11 3322 2 2 12 33

1 2

33 1 33 1

3
3 4

33

, ,

, 0

a a a aa a a a
N N

a a

a
N N

a

δδ

β β

+−
= =

= =

 

16 The co-existent state  
(or) 
Normal steady state 

22 2 12 2 11 2 21 2
1 2

1 1

3 4

2 1 13 2 2 24

, ,

,

, 0

a a a a
N N

N N

where

a a a a

α γ γ α

β β

α γ

β β

α γ
α γ

β β

− +
= =

= =

= + = + >

 

 

     The present paper deals with the 2nd level Prey-Predator 
washed out states only (Sr. Nos. 4, 5, 11 marked * in the above 
Table -1).  The stability of the other equilibrium states will be 
presented in the forth coming communications.  
 
STABILITY OF THE EQUILIBRIUM STATES 
 

Let ( )1 2 3 4, , ,N N N N N N U= = +          (4.1) 

where ( )1 2 3 4
, , ,U u u u u=  is a perturbation over the equilibrium 

state ( )1 2 3 4, , ,N N N N N= . 

     The basic equations (2.1), (2.2), (2.3), (2.4) are quasi-
linearized to obtain the equations for the perturbed state. 

 
dU

AU
dt

=               (4.2) 

 
where 

 
 

The characteristic equation for the system is  
  

[ ]det 0A I− =λ                                (4.4) 

     The equilibrium state is stable, if both the roots of the 
equation (4.4) are negative in case they are real or have negative 
real parts in case they are complex. 

 

STABILITY OF THE HOST ( )3S  OF 1S  AND HOST ( )4S  of 2S  
WASHED OUT EQUILIBRIUM STATES: (Sl. Nos. 4,5,11 marked * 
in Table .1) 

Equilibrium point 

0,0,,0 43

22

2
21 ==== NN

a

a
NN : 

     The corresponding linearized equations for the perturbations 

4321 ,,, uuuu
 are 

1 2

1 1 2 21 1 2 2 2 24 4
,

du du
b u k a u a u k a u

dt dt
= = − +

            (5.1.1) 

44

4

33

3 , ua
dt

du
ua

dt

du
==                          (5.1.2) 

Here 12211 akab −=
                           (5.1.3) 

The characteristic equation for which is 

( ) ( ) ( ) ( ) 04321 =−−+− aaab λλλλ                (5.1.4) 

     Two of the four roots 43 , aa
 are positive and 2a−

 is 
negative. Hence the state is unstable. 

Case (A): If  01 >b  (i.e. 1221 aka > ) 

     The solutions of the equations (5.1.1), (5.1.2) are 

tb
euu 1

101 = , ( ) tatatb
DeeDCuCeu 421

202 +−−+= −

   (5.1.5) 

,1

303

tb
euu =  

ta
euu 4

404 =                       (5.1.6) 

Hence 
42

40242

21

10242 ,
aa

uak
D

ab

uak
C

+
=

+
=                 (5.1.7) 
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and 40302010 ,,, uuuu  are the initial values of 4321 ,,, uuuu  
respectively. 
     In the three equilibrium states, there would arise in all 576 
cases depending upon the ordering of the magnitudes of the growth 

rates 4321 ,,, aaaa
 and the initial values of the perturbations 

( ) ( ) ( ) ( )tutututu 40302010 ,,,  of the species 4321 ,,, SSSS . Of 
these 576 situations some typical variations are illustrated through 
respective solution curves that would facilitate to make some 
reasonable observations. And the solution curves are illustrated in 
Figures (2) to (4) and the conclusions are presented here. 
 

Case (i): If 30204010 uuuu <<< and 3214 aaba <<<  

     In this case the natural birth rates of the Host ( )4S  of 2S , 

Prey ( )1S , Predator ( )2S   and the Host ( )
3S  of 1S   are in 

ascending order.  Initially the Host ( )4S  of 2S  dominates over the 

Prey ( )1S  till the time instant 
*

14t and thereafter the dominance is 

reversed. The time 
*

14t  may be called the dominance time of 4S  

over 1S  

Here 








−
=

10

40

41

*

14 log
1

u

u

ab
t                       (5.1.8) 

 

Case (ii): If 10304020 uuuu <<< and 4231 aaab <<<  

In this case the natural birth rates of the Prey ( )
1S , Host ( )3S  of 1S , 

Predator ( )2S  and the Host ( )4S  of 2S  are in ascending order. 

Initially the Prey ( )1S  dominates over the Host ( )4S  of 2S , 

Predator ( )2S , Host ( )3S  of 1S  till the time instant 
*

31

*

21

*

41 ,, ttt  
respectively and thereafter the dominance is reversed. Also the 

Host ( )3S  of 1S  dominates over the Host ( )4S  of 2S , 

Predator ( )2S  till the time instant 
*

23

*

43 , tt  respectively and the 
dominance gets reversed thereafter. 

 

Here 








−
=









−
=

30

40

43

*

43

10

30

31

*

31 log
1

,log
1

u

u

aa
t

u

u

ab
t           (5.1.9) 

 

Case (iii): If 10204030 uuuu <<<
and 4123 abaa <<<

 

     In this case the natural birth rates of the Host ( )3S  of 1S , 

Predator ( )
2S , Prey ( )1S  and the Host ( )

4S  of 2S  are in 

ascending order. Initially the Prey ( )1S  and Predator ( )2S  

dominates over the Host ( )4S  of 2S  till the time instant 
*

41

*

42 and tt respectively and thereafter the dominance is reversed.  
 

Case (B): If 
01 <b
 (i.e., 1221 aka <

) 
     The solutions in this case are same as in case (A) and the 
solution curves are illustrated in Figures (5) to (7) and the 
conclusions are presented here. 
 

Case (i): If 40203010 uuuu <<< and 2314 aaba <<<  

     In this case the natural birth rates of the Prey ( )1S , Host ( )4S  

of 2S , Host ( )3S  of 1S   and the Predator ( )2S  are in ascending 

order.  Initially the Host ( )4S  of 2S  dominates over  the 

Predator ( )2S , Host ( )3S  of 1S  till the time instant 
*

34

*

24 , tt  
respectively and thereafter the dominance is reversed.  
 

Case (ii): If 20401030 uuuu <<< and 1423 baaa <<<    

     In this case the natural birth rates of the Prey ( )1S , Host ( )3S  of 

1S , Predator ( )2S  and the Host ( )4S  of 2S  are in ascending order. 

Initially the Prey ( )1S  dominates its Host ( )3S  till the time instant 
*

31t  

and thereafter the dominance is reversed. Also the Predator ( )2S  

dominates its Host ( )4S  till the time instant 
*

42t  and the dominance 
gets reversed thereafter.  
 

Case (iii): If 10302040 uuuu <<< and 3241 aaab <<<  

     In this case the natural birth rates of the Prey ( )1S , Host ( )4S  

of 2S , Predator ( )2S  and the Host ( )3S  of 1S  are in ascending 

order.  Initially the Prey ( )1S  dominates over the Host ( )3S  of 1S , 

Predator ( )2S  and Host ( )4S  of 2S  till the time instant 
*

21

*

31 , tt and 
*

41t  respectively and thereafter the dominance is reversed. 
 
Trajectoreis of perturbations 

     The trajectories in the 31 uu −  plane given by 
13

1

ba
yx =  

and are shown in Fig.8 and the trajectories in the other planes are 
  

1

4

1

2

3414

1111323 ,,
b

a

b

a

aaba
xExDxCyyyyx ++===

−

(5.1.11) 
 

31313112121211
4

1

43

4

3

1

3

2

, yEyDyCyyEyDyCy
a

b

a

a

a

a

a

b

a

a

++=++=

−−

(5.1.12)

where 
20

1

20

1

20

20

1 ,,
u

D
E

u

C
D

u

DCu
C ==

−−
=         (5.1.13) 

and 
40

4
3

30

3

2

20

2
1

10

1 ,,,
u

u
y

u

u
y

u

u
y

u

u
x ====           (5.1.14) 

 
Equilibrium point  
 

0,0,0, 432

11

1

1 ==== NNN
a

a
N

: 

 
     The corresponding linearized equations for the perturbations 

4321 ,,, uuuu  are 

22

2

3131212111

1 , ub
dt

du
uakuakua

dt

du
=+−−=         (5.2.1) 

44
4

33

3 , ua
dt

du
ua

dt

du
==                          (5.2.2) 

Here 021122 >+= akab                         (5.2.3) 
 
The characteristic equation for which is 
 

( ) ( ) ( ) ( ) 04321 =−−−+ aaba λλλλ               (5.2.4) 
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     Three of the four roots 432 ,, aab  are positive and 1a−  is 
negative. Hence the state is unstable and the solutions of the 
equations (5.2.1), (5.2.2) are 

 

( ) tbtatbta
euuSeeSRuu 2321

202101 ,Re =+−−+= −

 (5.2.5) 
tata

euueuu 43

404303 , ==                       (5.2.6) 

Here  0,0
31

30131

21

20121 >
+

=>
+

=
aa

uak
S

ba

uak
R          (5.2.7) 

 
     The solution curves are illustrated in Figures (9), (10) and the 
conclusions are presented here. 

 

Case (i): If 40203010 uuuu <<<
and 4132 aaab <<<  

     In this case the natural birth rates of the Predator ( )2S , Host 

( )3S  of 1S , Prey ( )1S  and the Host ( )4S  of 2S  are in 

ascending order.  Initially the Predator ( )2S  dominates over the 

Prey ( )1S ,  Host ( )3S  of 1S  till the time instant 
*

32

*

12 , tt respectively and thereafter the dominance is reversed. Also 

the Host ( )3S  of 1S  dominates over the Prey ( )
1S  till the time 

instant 
*

13t
and the dominance gets reversed thereafter. 

 

Here 








−
=

20

30

32

*

32 log
1

u

u

ab
t                       (5.2.8) 

 

Case (ii): If 10403020 uuuu <<< and 3124 aaba <<<  

     In this case the natural birth rates of the Host ( )4S  of 2S , 

Predator ( )2S , Prey ( )1S  and the Host ( )3S  of 1S  are in 

ascending order.  Initially the Host ( )4S  of 2S  dominates over 

the Host ( )3S  of 1S , Predator ( )2S  till the time instant 
*

24

*

34 , tt respectively and thereafter the dominance is reversed. Also 

the Prey ( )1S  dominates its Host ( )3S  till the time instant 
*

31t and 
the dominance gets reversed thereafter. 
 

Here 








−
=









−
=

20

40

42

*

24

30

40

43

*

34 log
1

,log
1

u

u

ab
t

u

u

aa
t     (5.2.9) 

 
Trajectories of Perturbations 

     The trajectories in the 32 uu −  plane given by  
 

23

21

ba
yy =                                     (5.2.10) 

and are shown in Fig.11 and the trajectories in the other planes are 

2

3

2

1

3424

1312113231 ,,
b

a

b

a

aaba
yRyRyRxyyyy +−===

−

       (5.2.11) 
 

4

3

4

2

4

1

3

2

3

1

333231232221 ,
a

a

a

b

a

a

a

b

a

a

yRyRyRxyRyRyRx +−=+−=

−−

 (5.2.12) 
 

where 
10

3

10

2

10

10
1 ,,

u

S
R

u

R
R

u

SRu
R ==

−+
=          (5.2.13) 

 
Equilibrium point  
 

0,0,, 43

1

1

2

1

1

1 ==== NNNN
β

γ

β

α
: 

 
     The corresponding linearized equations for the perturbations 

4321 ,,, uuuu  are 
 

3

1

2
132

1

1
1211

1 uauaud
dt

du

β

α

β

α
+−=                    (5.3.1) 

 

4

1

1
24221

1

1
21

2 uaudua
dt

du

β

γ

β

γ
++=               (5.3.2) 

 

44

4

33

3 , ua
dt

du
ua

dt

du
==                          (5.3.3) 

Here
1

1
21

1

1
2222

1

1
12

1

1
1111 2,2

β

α

β

γ

β

γ

β

α
aaadaaad +−=−−= (5.3.4) 

The characteristic equation for which is 
 

( ) ( ) ( ) 0432

1

11
21122121

2 =−−



















+++− aaaadddd λλ

β

γα
λλ  (5.3.5) 

Two of the four roots 43 , aa  are positive. Hence the state is 

unstable. Let 21, λλ  be the zeros of the quadratic polynomial on 
the LH.S of the equation (5.3.5) 
 
Case (A):  

When 
01 <α
 ( )









>







−− 04ie,

2

1

11
2112

2

21
β

γα
aadd   

and  ( )
2

1

11
2112

2

211 4,0
β

γα
α aadd >−>  

     One root 1λ  is positive while the other root 2λ  negative. 
The solutions of the equations (5.3.1), (5.3.2), (5.3.3) are 
 

( ) ( )
t

e

duNMuaNM

u 1

21

211020

1

1

1211

1

λ

λλ

λ
β

α





















−

−−−−







−−

=

 

 ( ) ( )
tatat

NeMee

duNMuaNM

432

12

111020

1

1
1211

−+





















−

−−−−







−−

+ λ

λλ
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     The solution curves are illustrated in Figures 12, 14 and the 
conclusions are presented here. 
 

Case (i): If 20304010 uuuu <<< and 2341 aaaa <<<  

In this case the Prey ( )1S  has the least natural birth rate and the 

Predator ( )2S , dominates the  Host ( )3S of 1S , Host ( )4S  of 

2S , Prey ( )1S  in natural growth rate as well as in its population 
strength.  

 

Case (ii): If 30401020 uuuu <<< and 3241 aaaa <<<  

     In this case the natural birth rates of the Prey ( )1S , Host ( )4S  

of 2S , Predator ( )2S  and the  Host ( )3S  of 1S   are in 

ascending order.  Initially the  Host ( )4S  of 2S , Prey ( )1S  

dominates over the Predator ( )2S  till the time instant 
*

31

*

34 , tt respectively and thereafter the dominance is reversed. 
 

Case (iii): If 10402030 uuuu <<< and 2314 aaaa <<<  

     In this case the natural birth rates of the Host ( )4S  of 2S , 

Prey ( )1S , Host ( )3S  of 1S   and the Predator ( )2S   are in 

ascending order.  Initially the Prey ( )1S  dominates over the 

Predator ( )2S , Host ( )3S  of 1S  till the time instant 
*

31

*

21, tt  
respectively and  thereafter the dominance is reversed. Also the 

Host ( )4S  of 2S  dominates over the Predator ( )2S , Host ( )3S  

of 1S  till the time instant 
*

34

*

24 , tt  respectively and  the 
dominance gets reversed thereafter. 
 

Case (B): When 01 >α  and ( )
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21 4
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     The roots 21, λλ  are complex and the solutions in this case 
are same as in case (A). This is illustrated in Fig. 15 
 
Trajectories of Perturbations 
 

     The trajectories in the 43 uu − plane given by  
34
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aa
yy =                                    (5.3.12) 

and are shown in Fig.16 and the trajectories in the other planes are 
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Perturbation Graphs 
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CONCLUSION 
 
     Investigate some relation-chains between the species such as 
Prey-Predation, Neutralism, Commensalism, Mutualism, Competition 
and Ammensalism between four species (S1, S2, S3, S4) with the 
population relations. 
     S1 a Prey to S2 and Commensal to S3, S2 is a Predator living 
on S1 and Commensal to S4, S3 a Host to S1, S4 a Host to S2 and S3 
a Prey to S4, S4 a Predator to S3. 
     The present paper deals with the study on stability of 2nd level 
Prey-Predator washed out states only of the above problem.  It is 
observed that the 2nd level Prey Predator Washed out States are 
unstable.  The stability of the other equilibrium states were already 
investigated and communicated to several international journals.  
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