On the stability of a four species syn eco-system with commensal prey-predator pair with prey-predator pair of hosts-III ($2^{\text {nd }}$ level prey-predator washed out states)

B. Hari Prasad
Asst. Prof. Dept. of Mathematics, Chaitanya Degree College (Autonomous), Hanamkonda-506001, India

Abstract

The present paper is devoted to an investigation on a Four Species $\left(S_{1}, S_{2}, S_{3}, S_{4}\right)$ Syn Eco-System with Commensal PreyPredator pair with Prey-Predator pair of Hosts (Both the Hosts are washed out states). The System comprises of a Prey $\left(S_{1}\right)$, a Predator $\left(S_{2}\right)$ that survives upon S_{1}, two Hosts S_{3} and S_{4} for which S_{1}, S_{2} are Commensal respectively i.e., S_{3} and S_{4} benefit S_{1} and S_{2} respectively, without getting effected either positively or adversely. Further S_{3} is Prey for S_{4} and S_{4} is Predator for S_{3}. The pair ($\mathrm{S}_{1}, \mathrm{~S}_{2}$) may be referred as $1^{\text {st }}$ level Prey-Predator and the pair $\left(\mathrm{S}_{3}, \mathrm{~S}_{4}\right)$ the $2^{\text {nd }}$ level Prey-Predator. The model equations of the system constitute a set of four first order non-linear ordinary differential coupled equations. In all, there are sixteen equilibrium points. Criteria for the asymptotic stability of three of these sixteen equilibrium points: $2^{\text {nd }}$ Level Prey-Predator Washed Out States are established. The system would be stable if all the characteristic roots are negative, in case they are real, and have negative real parts, in case they are complex. The linearized equations for the perturbations over the equilibrium points are analyzed to establish the criteria for stability and the trajectories are illustrated.

Keywords: Commensal, Eco-System, Equillibrium point, Host, Prey, Predator.

INTRODUCTION

Research in the area of theoretical Ecology was initiated in 1925 by Lotka [1] and in 1931 by Volterra [2]. Since then many Mathematicians and Ecologists contributed to the growth of this area of knowledge reported in the treatises of May [3], Smith [4], Kushing [5], Kapur [6] etc. The ecological interactions can be broadly classified as Prey-Predator, Commensalism, Competition, Neutralism, Mutualism and so on. Srinivas [7] studied competitive eco-systems of two species and three species with limited and unlimited resources. Later Lakshminarayan and Pattabhi Ramacharyulu [8] studied Prey-Predator ecological models with partial cover for the Prey and alternate food for the Predator. Recently, Archana Reddy [9] and Bhaskara Rama Sharma [10] investigated diverse problems related to two species competitive systems with time delay, employing analytical and numerical techniques. Further Phani Kumar and Pattabhi Ramacharyulu [11] studied Three Species Ecosystem Consisting of a Prey, Predator and a Host Commensal to the Prey. The present authors Hari Prasad and Pattabhi Ramacharyulu [12-17] discussed on the stability of a four species Syn Eco-System.

Predation: Predation is a relationship between two species where one species kills and devours other for food. The species which kills other is called a predator and the species which is killed is called a prey. For example, a tiger that hunts is called "Predator" and a

[^0]deer that is being hunted is known as the "Prey".
Commensalism: In commensalisms one organism benefits the other without getting effected due to the interaction (i.e. it is neither benefited nor harmed). The beneficial species is the Commensal while the other benefiting species the Host. A common example is an animal using a tree for shelter-tree (Host) does not get any benefit from the animal (Commensal).

Some real-life examples of a Syn-Eco-System with Commensal Prey-Predator pair with Pray-Predator pair of Hosts are given in the following Table-1.

Table 1.

Sl. No.	Examples of \mathbf{S}_{1}	Examples of $\mathbf{S}_{\mathbf{2}}$	Examples of \mathbf{S}_{3}	Examples of $\mathbf{S}_{\mathbf{4}}$
1	Infusoria	Sea anemone	Arthopods	Clown fish
2	Small beetle	Remora	Fish (or) small aquatic vertebrate	Shark
3	Rabit	Golden Jackal	Deer	Tiger
4	Insects	Army Ants	Earth worms	Birds
5	Grass	Cow	Insects	Cattle egrets

A Schematic Sketch of the system under investigation is shown here under Fig 1.

Fig 1. Schematic Sketch of the Syn Eco - System

BASIC EQUATIONS

The model equations for a four species syn eco-system is given by the following system of first order non-linear ordinary differential equations employing the following notation.

Notation

S_{1} : Prey for S_{2} and commensal for S_{3}.
S_{2} : Predator surviving upon S_{1} and commensal for S_{4}.
S_{3} : Host for the commensal $\left(S_{1}\right)$ and Prey for S_{4}.
S_{4} : Host of the commensal $\left(\mathrm{S}_{2}\right)$ and Predator surviving upon S_{4}.
$\mathrm{N}_{\mathrm{i}}(\mathrm{t})$: The Population strength of S_{i} at time $\mathrm{t}, \mathrm{i}=1,2,3,4$
t : Time instant
a_{i} : Natural growth rate of $S_{i}, i=1,2,3,4$
$a_{i i}$: Self inhibition coefficient of $\mathrm{S}_{\mathrm{i}}, \mathrm{i}=1,2,3,4$
$a_{12,} a_{21}$:Interaction (Prey-Predator) coefficients of S_{1} due to S_{2} and S_{2} due to S_{1}
$\mathrm{a}_{34, \text {,a43 }}$:Interaction (Prey-Predator) coefficients of S_{3} due to S_{4} and S_{4} due to S_{3}
$a_{13} a_{24}$:Coefficients for commensal for S_{1} due to the Host S_{3} and S_{2} due to the Host S_{4}
$K_{i}=\frac{a_{i}}{a_{i i}}:$ Carrying capacities of $\mathrm{Si}, \mathrm{i}=1,2,3,4$

Further the variables $N_{1}, N_{2}, N_{3}, N_{4}$ are non-negative and the model parameters $a_{1}, a_{2}, a_{3}, a_{4} ; a_{11}, a_{22}, a_{33}, a_{44} ; a_{12}, a_{21}, a_{13}, a_{24}, a_{34}$, a_{43} are assumed to be non-negative constants.

The model equations for the growth rates of $S_{1}, S_{2}, S_{3}, S_{4}$ are

$$
\begin{align*}
\frac{d N_{1}}{d t} & =a_{1} N_{1}-a_{11} N_{1}^{2}-a_{12} N_{1} N_{2}+a_{13} N_{1} N_{3} \tag{2.1}\\
\frac{d N_{2}}{d t} & =a_{2} N_{2}-a_{22} N_{2}^{2}+a_{21} N_{1} N_{2}+a_{24} N_{2} N_{4} \tag{2.2}\\
\frac{d N_{3}}{d t} & =a_{3} N_{3}-a_{33} N_{3}^{2}-a_{34} N_{3} N_{4} \tag{2.3}\\
\frac{d N_{4}}{d t} & =a_{4} N_{4}-a_{44} N_{4}^{2}+a_{43} N_{3} N_{4} \tag{2.4}
\end{align*}
$$

EQUILIBRIUM STATES

The system under investigation has sixteen equilibrium states defined by
$\frac{d N_{i}}{d t}=0, i=1,2,3,4$
as given in the following Table.

S.No.	Equilibrium State	Equilibrium Point
1	Fully Washed out state	$\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=0$
2	Only the Host (S_{4})of S_{2} survives	$\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$
3	Only the Host (S_{3}) ${ }^{\text {S }} \mathrm{S}_{1}$ survives	$\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$
4*	Only the Predator (S_{2}) survives	$\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=0, \overline{N_{4}}=0$
5*	Only the Prey (S_{1}) survives	$\overline{N_{1}}=\frac{a_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=0$
6	Prey (S_{1}) and Predator (S_{2}) washed out	$\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{\alpha}{\beta}, \overline{N_{4}}=\frac{\gamma}{\beta}$ where $\begin{aligned} & \alpha=a_{3} a_{44}-a_{4} a_{34,} \beta=a_{33} a_{44}+a_{34} a_{43}>0 \\ & \gamma=a_{3} a_{43}+a_{4} a_{33}>0 \end{aligned}$
7	Prey (S_{1}) and Host (S_{3}) of S_{1} washed out	$\overline{N_{1}}=0, \overline{N_{2}}=\frac{\delta_{1}}{a_{22} a_{44}}, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$ where $\delta_{1}=a_{2} a_{44}+a_{4} a_{24}>0$
8	Prey (S_{1}) and Host (S_{4}) of S_{2} washed out	$\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$
9	Predator (S_{2}) and $\operatorname{Host}\left(\mathrm{S}_{3}\right)$ of S_{1} washed out	$\overline{N_{1}}=\frac{a_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$
10	Predator (S_{2}) and Host (S_{4}) of S_{2} washed out	$\overline{N_{1}}=\frac{\delta_{2}}{a_{11} a_{33}}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$ where $\delta_{2}=a_{1} a_{33}+a_{3} a_{13}>0$
11*	Prey (S_{1}) and Predator (S_{2})survives	$\overline{N_{1}}=\frac{\alpha_{1}}{\beta_{1}}, \overline{N_{2}}=\frac{\gamma_{1}}{\beta_{1}}, \overline{N_{3}}=0, \overline{N_{4}}=0$ where $\alpha_{1}=a_{1} a_{22}-a_{2} a_{12}, \quad \beta_{1}=a_{11} a_{22}+a_{12} a_{21}>0$

		$\gamma_{1}=a_{1} a_{21}+a_{2} a_{11}>0$
12	Only the Prey (S_{1}) washed out	$\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2} \beta+a_{24} \gamma}{a_{22} \beta}, \overline{N_{3}}=\frac{\alpha}{\beta}, \overline{N_{4}}=\frac{\gamma}{\beta}$
13	Only the predator (S_{2}) washed out	$\overline{N_{1}}=\frac{a_{1} \beta+a_{13} \alpha}{a_{11} \beta}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{\alpha}{\beta}, \overline{N_{4}}=\frac{\gamma}{\beta}$
14	Only the Host (S_{3}) of S_{1} washed out	$\begin{aligned} & \overline{N_{1}}=\frac{a_{1} a_{22} a_{44}-a_{12} \delta_{1}}{a_{44} \beta_{1}}, \overline{N_{2}}=\frac{a_{1} a_{21} a_{44}+a_{11} \delta_{1}}{a_{44} \beta_{1}}, \\ & \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}} \end{aligned}$
15	Only the Host (S_{4}) of S_{2} washed out	$\begin{aligned} & \overline{N_{1}}=\frac{a_{22} \delta_{2}-a_{2} a_{12} a_{33}}{a_{33} \beta_{1}}, \overline{N_{2}}=\frac{a_{21} \delta_{2}+a_{2} a_{11} a_{33}}{a_{33} \beta_{1}}, \\ & \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0 \end{aligned}$
16	The co-existent state (or) Normal steady state	$\begin{aligned} & \overline{N_{1}}=\frac{a_{22} \alpha_{2}-a_{12} \gamma_{2}}{\beta_{1}}, \overline{N_{2}}=\frac{a_{11} \gamma_{2}+a_{21} \alpha_{2}}{\beta_{1}}, \\ & \overline{N_{3}}=\frac{\alpha}{\beta}, \overline{N_{4}}=\frac{\gamma}{\beta} \end{aligned}$ where $\alpha_{2}=a_{1}+a_{13} \frac{\alpha}{\beta}, \gamma_{2}=a_{2}+a_{24} \frac{\gamma}{\beta}>0$

The present paper deals with the $2^{\text {nd }}$ level Prey-Predator washed out states only (Sr. Nos. 4, 5, 11 marked * in the above Table -1). The stability of the other equilibrium states will be presented in the forth coming communications.

STABILITY OF THE EQUILIBRIUM STATES

Let $N=\left(N_{1}, N_{2}, N_{3}, N_{4}\right)=\bar{N}+U$
where $U=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ is a perturbation over the equilibrium state $\bar{N}=\left(\bar{N}_{1}, \bar{N}_{2}, \bar{N}_{3}, \bar{N}_{4}\right)$.

The basic equations (2.1), (2.2), (2.3), (2.4) are quasilinearized to obtain the equations for the perturbed state.
$\frac{d U}{d t}=A U$
where

$$
A=\left[\begin{array}{cccc}
a_{1}-2 a_{11} N_{1}-a_{12} N_{2}+a_{13} \pi_{3} & -a_{12} N_{1} & a_{13} N_{1} & 0 \tag{4.3}\\
a_{21} N_{1} & a_{2}-2 a_{22} N_{2}+a_{21} N_{1}+a_{24} \pi_{4} & 0 & a_{24} \pi_{2} \\
0 & 0 & a_{3}-2 a_{33} \pi_{3}-a_{34} \pi_{3} & -a_{34} \pi_{3} \\
0 & 0 & a_{34} \pi_{4} & a_{4}-2 a_{44} \pi_{4}+a_{43} N_{3}
\end{array}\right]
$$

The characteristic equation for the system is
$\operatorname{det}[A-\lambda I]=0$

The equilibrium state is stable, if both the roots of the equation (4.4) are negative in case they are real or have negative real parts in case they are complex.

STABILITY OF THE HOST $\left(S_{3}\right)$ OF S_{1} AND HOST $\left(S_{4}\right)$ of S_{2} WASHED OUT EQUILIBRIUM STATES: (SI. Nos. 4,5,11 marked * in Table .1)

Equilibrium point

$$
\bar{N}_{1}=0, \bar{N}_{2}=\frac{a_{2}}{a_{22}}, \bar{N}_{3}=0, \bar{N}_{4}=0:
$$

The corresponding linearized equations for the perturbations

$$
u_{1}, u_{2}, u_{3}, u_{4} \text { are }
$$

$$
\begin{equation*}
\frac{d u_{1}}{d t}=b_{1} u_{1}, \frac{d u_{2}}{d t}=k_{2} a_{21} u_{1}-a_{2} u_{2}+k_{2} a_{24} u_{4} \tag{5.1.1}
\end{equation*}
$$

$\frac{d u_{3}}{d t}=a_{3} u_{3}, \frac{d u_{4}}{d t}=a_{4} u_{4}$
Here $b_{1}=a_{1}-k_{2} a_{12}$
The characteristic equation for which is

$$
\begin{equation*}
\left(\lambda-b_{1}\right)\left(\lambda+a_{2}\right)\left(\lambda-a_{3}\right)\left(\lambda-a_{4}\right)=0 \tag{5.1.3}
\end{equation*}
$$

Two of the four roots a_{3}, a_{4} are positive and $-a_{2}$ is negative. Hence the state is unstable.

Case (A): If $\quad b_{1}>0 \quad$ (i.e. $a_{1}>k_{2} a_{12}$)
The solutions of the equations (5.1.1), (5.1.2) are

$$
\begin{align*}
& u_{1}=u_{10} e^{b_{1} t}, u_{2}=C e^{b_{1} t}+\left(u_{20}-C-D\right) e^{-a_{2} t}+D e^{a_{4} t} \tag{5.1.5}\\
& u_{3}=u_{30} e^{b_{1} t}, \quad u_{4}=u_{40} e^{a_{4} t} \tag{5.1.6}\\
& \text { Hence } C=\frac{k_{2} a_{24} u_{10}}{b_{1}+a_{2}}, D=\frac{k_{2} a_{24} u_{40}}{a_{2}+a_{4}} \tag{5.1.7}
\end{align*}
$$

and $u_{10}, u_{20}, u_{30}, u_{40}$ are the initial values of $u_{1}, u_{2}, u_{3}, u_{4}$ respectively.

In the three equilibrium states, there would arise in all 576 cases depending upon the ordering of the magnitudes of the growth rates $a_{1}, a_{2}, a_{3}, a_{4}$ and the initial values of the perturbations $u_{10}(t), u_{20}(t), u_{30}(t), u_{40}(t)$ of the species $S_{1}, S_{2}, S_{3}, S_{4}$. Of these 576 situations some typical variations are illustrated through respective solution curves that would facilitate to make some reasonable observations. And the solution curves are illustrated in Figures (2) to (4) and the conclusions are presented here.

Case (i): If $u_{10}<u_{40}<u_{20}<u_{30}$ and $a_{4}<b_{1}<a_{2}<a_{3}$
In this case the natural birth rates of the Host $\left(S_{4}\right)$ of S_{2}, Prey $\left(S_{1}\right)$, Predator $\left(S_{2}\right)$ and the Host $\left(S_{3}\right)$ of S_{1} are in ascending order. Initially the Host $\left(S_{4}\right)$ of S_{2} dominates over the Prey $\left(S_{1}\right)$ till the time instant t_{14}^{*} and thereafter the dominance is reversed. The time t_{14}^{*} may be called the dominance time of S_{4} over S_{1}
Here $t_{14}^{*}=\frac{1}{b_{1}-a_{4}} \log \left(\frac{u_{40}}{u_{10}}\right)$
Case (ii): If $u_{20}<u_{40}<u_{30}<u_{10}$ and $b_{1}<a_{3}<a_{2}<a_{4}$
In this case the natural birth rates of the $\operatorname{Prey}\left(S_{1}\right), \operatorname{Host}\left(S_{3}\right)$ of S_{1}, Predator $\left(S_{2}\right)$ and the Host $\left(S_{4}\right)$ of S_{2} are in ascending order. Initially the Prey $\left(S_{1}\right)$ dominates over the Host $\left(S_{4}\right)$ of S_{2}, Predator $\left(S_{2}\right)$, Host $\left(S_{3}\right)$ of S_{1} till the time instant $t_{41}^{*}, t_{21}^{*}, t_{31}^{*}$ respectively and thereafter the dominance is reversed. Also the Host $\left(S_{3}\right)$ of S_{1} dominates over the Host $\left(S_{4}\right)$ of S_{2}, Predator $\left(S_{2}\right)$ till the time instant t_{43}^{*}, t_{23}^{*} respectively and the dominance gets reversed thereafter.

Here $t_{31}^{*}=\frac{1}{b_{1}-a_{3}} \log \left(\frac{u_{30}}{u_{10}}\right), t_{43}^{*}=\frac{1}{a_{3}-a_{4}} \log \left(\frac{u_{40}}{u_{30}}\right)$
Case (iii): If $u_{30}<u_{40}<u_{20}<u_{10}$ and $a_{3}<a_{2}<b_{1}<a_{4}$
In this case the natural birth rates of the Host $\left(S_{3}\right)$ of S_{1}, Predator $\left(S_{2}\right)$, Prey $\left(S_{1}\right)$ and the Host $\left(S_{4}\right)$ of S_{2} are in ascending order. Initially the Prey $\left(S_{1}\right)$ and Predator $\left(S_{2}\right)$ dominates over the Host $\left(S_{4}\right)$ of S_{2} till the time instant t_{42}^{*} and t_{41}^{*} respectively and thereafter the dominance is reversed.

Case (B): If $b_{1}<0$ (i.e., $a_{1}<k_{2} a_{12}$)
The solutions in this case are same as in case (A) and the solution curves are illustrated in Figures (5) to (7) and the conclusions are presented here.

Case (i): If $u_{10}<u_{30}<u_{20}<u_{40}$ and $a_{4}<b_{1}<a_{3}<a_{2}$
In this case the natural birth rates of the Prey $\left(S_{1}\right)$, Host $\left(S_{4}\right)$ of S_{2}, Host $\left(S_{3}\right)$ of S_{1} and the Predator $\left(S_{2}\right)$ are in ascending
order. Initially the Host $\left(S_{4}\right)$ of S_{2} dominates over the Predator $\left(S_{2}\right)$, Host $\left(S_{3}\right)$ of S_{1} till the time instant t_{24}^{*}, t_{34}^{*} respectively and thereafter the dominance is reversed.

Case (ii): If $u_{30}<u_{10}<u_{40}<u_{20}$ and $a_{3}<a_{2}<a_{4}<b_{1}$
In this case the natural birth rates of the Prey $\left(S_{1}\right), \operatorname{Host}\left(S_{3}\right)$ of S_{1}, Predator $\left(S_{2}\right)$ and the Host $\left(S_{4}\right)$ of S_{2} are in ascending order. Initially the Prey $\left(S_{1}\right)$ dominates its Host $\left(S_{3}\right)$ till the time instant t_{31}^{*} and thereafter the dominance is reversed. Also the Predator $\left(S_{2}\right)$ dominates its Host $\left(S_{4}\right)$ till the time instant t_{42}^{*} and the dominance gets reversed thereafter.

Case (iii): If $u_{40}<u_{20}<u_{30}<u_{10}$ and $b_{1}<a_{4}<a_{2}<a_{3}$
In this case the natural birth rates of the Prey $\left(S_{1}\right)$, Host $\left(S_{4}\right)$ of S_{2}, Predator $\left(S_{2}\right)$ and the $\operatorname{Host}\left(S_{3}\right)$ of S_{1} are in ascending order. Initially the Prey $\left(S_{1}\right)$ dominates over the $\operatorname{Host}\left(S_{3}\right)$ of S_{1}, Predator $\left(S_{2}\right)$ and Host $\left(S_{4}\right)$ of S_{2} till the time instant t_{31}^{*}, t_{21}^{*} and t_{41}^{*} respectively and thereafter the dominance is reversed.

Trajectoreis of perturbations

The trajectories in the $u_{1}-u_{3}$ plane given by $x^{a_{3}}=y_{1}^{b_{1}}$ and are shown in Fig. 8 and the trajectories in the other planes are
$x^{a_{4}}=y_{3}^{b_{1}}, y_{2}^{a_{4}}=y_{3}^{a_{3}}, y_{1}=C_{1} x^{\frac{-a_{2}}{b_{1}}}+D_{1} x+E_{1} x^{\frac{a_{4}}{b_{1}}}$
$y_{1}=C_{1} y_{2}^{\frac{-a_{2}}{a_{3}}}+D_{1} y_{2}^{\frac{b_{1}}{a_{3}}}+E_{1} y_{2}^{\frac{a_{4}}{a_{3}}}, y_{1}=C_{1} y_{3}^{\frac{-a}{a_{4}}}+D_{1} y_{3}^{\frac{b_{1}}{a_{4}}}+E_{1} y_{3}$
where $C_{1}=\frac{u_{20}-C-D}{u_{20}}, D_{1}=\frac{C}{u_{20}}, E_{1}=\frac{D}{u_{20}}$
and $x=\frac{u_{1}}{u_{10}}, y_{1}=\frac{u_{2}}{u_{20}}, y_{2}=\frac{u_{3}}{u_{30}}, y_{3}=\frac{u_{4}}{u_{40}}$

Equilibrium point

$$
\bar{N}_{1}=\frac{a_{1}}{a_{11}}, \bar{N}_{2}=0, \bar{N}_{3}=0, \bar{N}_{4}=0
$$

The corresponding linearized equations for the perturbations $u_{1}, u_{2}, u_{3}, u_{4}$ are
$\frac{d u_{1}}{d t}=-a_{1} u_{1}-k_{1} a_{12} u_{2}+k_{1} a_{13} u_{3}, \frac{d u_{2}}{d t}=b_{2} u_{2}$
$\frac{d u_{3}}{d t}=a_{3} u_{3}, \frac{d u_{4}}{d t}=a_{4} u_{4}$
Here $b_{2}=a_{2}+k_{1} a_{21}>0$
The characteristic equation for which is
$\left(\lambda+a_{1}\right)\left(\lambda-b_{2}\right)\left(\lambda-a_{3}\right)\left(\lambda-a_{4}\right)=0$

Three of the four roots b_{2}, a_{3}, a_{4} are positive and $-a_{1}$ is negative. Hence the state is unstable and the solutions of the equations (5.2.1), (5.2.2) are
$u_{1}=\left(u_{10}+R-S\right) e^{-a_{1} t}-\operatorname{Re}^{b_{2} t}+S e^{a_{3} t}, u_{2}=u_{20} e^{b_{2} t}$
$u_{3}=u_{30} e^{a_{3} t}, u_{4}=u_{40} e^{a_{4} t}$
Here $\quad R=\frac{k_{1} a_{12} u_{20}}{a_{1}+b_{2}}>0, S=\frac{k_{1} a_{13} u_{30}}{a_{1}+a_{3}}>0$
The solution curves are illustrated in Figures (9), (10) and the conclusions are presented here.

Case (i): If $u_{10}<u_{30}<u_{20}<u_{40}$ and $b_{2}<a_{3}<a_{1}<a_{4}$
In this case the natural birth rates of the Predator $\left(S_{2}\right)$, Host $\left(S_{3}\right)$ of S_{1}, Prey $\left(S_{1}\right)$ and the Host $\left(S_{4}\right)$ of S_{2} are in ascending order. Initially the Predator $\left(S_{2}\right)$ dominates over the Prey $\left(S_{1}\right)$, Host $\left(S_{3}\right)$ of S_{1} till the time instant t_{12}^{*}, t_{32}^{*} respectively and thereafter the dominance is reversed. Also the Host $\left(S_{3}\right)$ of S_{1} dominates over the Prey $\left(S_{1}\right)$ till the time instant t_{13}^{*} and the dominance gets reversed thereafter.

Here $t_{32}^{*}=\frac{1}{b_{2}-a_{3}} \log \left(\frac{u_{30}}{u_{20}}\right)$

Case (ii): If $u_{20}<u_{30}<u_{40}<u_{10}$ and $a_{4}<b_{2}<a_{1}<a_{3}$
In this case the natural birth rates of the Host $\left(S_{4}\right)$ of S_{2}, Predator $\left(S_{2}\right)$, Prey $\left(S_{1}\right)$ and the Host $\left(S_{3}\right)$ of S_{1} are in ascending order. Initially the Host $\left(S_{4}\right)$ of S_{2} dominates over the Host $\left(S_{3}\right)$ of S_{1}, Predator $\left(S_{2}\right)$ till the time instant t_{34}^{*}, t_{24}^{*} respectively and thereafter the dominance is reversed. Also the Prey $\left(S_{1}\right)$ dominates its Host $\left(S_{3}\right)$ till the time instant t_{31}^{*} and the dominance gets reversed thereafter.

Here $t_{34}^{*}=\frac{1}{a_{3}-a_{4}} \log \left(\frac{u_{40}}{u_{30}}\right), t_{24}^{*}=\frac{1}{b_{2}-a_{4}} \log \left(\frac{u_{40}}{u_{20}}\right)$

Trajectories of Perturbations

The trajectories in the $u_{2}-u_{3}$ plane given by

$$
\begin{equation*}
y_{1}^{a_{3}}=y_{2}^{b_{2}} \tag{5.2.10}
\end{equation*}
$$

and are shown in Fig. 11 and the trajectories in the other planes are

$$
\begin{align*}
& y_{1}^{a_{4}}=y_{3}^{b_{2}}, y_{2}^{a_{4}}=y_{3}^{a_{3}}, x=R_{1} y_{1}^{\frac{-a_{1}}{b_{2}}}-R_{2} y_{1}+R_{3} y_{1}^{\frac{a_{3}}{b_{2}}} \tag{5.2.11}\\
& x=R_{1} y_{2}^{\frac{-a_{1}}{a_{3}}}-R_{2} y_{2}^{\frac{b_{2}}{a_{3}}}+R_{3} y_{2}, x=R_{1} y_{3}^{\frac{-a_{1}}{a_{4}}}-R_{2} y_{3}^{\frac{b_{2}}{a_{4}}}+R_{3} y_{3}^{\frac{a_{3}}{a_{4}}} \tag{5.2.12}
\end{align*}
$$

$$
\begin{equation*}
\text { where } R_{1}=\frac{u_{10}+R-S}{u_{10}}, R_{2}=\frac{R}{u_{10}}, R_{3}=\frac{S}{u_{10}} \tag{5.2.13}
\end{equation*}
$$

Equilibrium point

$\bar{N}_{1}=\frac{\alpha_{1}}{\beta_{1}}, \bar{N}_{2}=\frac{\gamma_{1}}{\beta_{1}}, \bar{N}_{3}=0, \bar{N}_{4}=0$.
The corresponding linearized equations for the perturbations $u_{1}, u_{2}, u_{3}, u_{4}$ are
$\frac{d u_{1}}{d t}=d_{1} u_{1}-a_{12} \frac{\alpha_{1}}{\beta_{1}} u_{2}+a_{13} \frac{\alpha_{2}}{\beta_{1}} u_{3}$
$\frac{d u_{2}}{d t}=a_{21} \frac{\gamma_{1}}{\beta_{1}} u_{1}+d_{2} u_{2}+a_{24} \frac{\gamma_{1}}{\beta_{1}} u_{4}$
$\frac{d u_{3}}{d t}=a_{3} u_{3}, \frac{d u_{4}}{d t}=a_{4} u_{4}$
Here $d_{1}=a_{1}-2 a_{11} \frac{\alpha_{1}}{\beta_{1}}-a_{12} \frac{\gamma_{1}}{\beta_{1}}, d_{2}=a_{2}-2 a_{22} \frac{\gamma_{1}}{\beta_{1}}+a_{21} \frac{\alpha_{1}}{\beta_{1}}(5.3 .4)$ The characteristic equation for which is
$\left[\lambda^{2}-\left(d_{1}+d_{2}\right) \lambda+\left(d_{1} d_{2}+a_{12} a_{21} \frac{\alpha_{1} \gamma_{1}}{\beta_{1}^{2}}\right)\right]\left(\lambda-a_{3}\right)\left(\lambda-a_{4}\right)=0$
Two of the four roots a_{3}, a_{4} are positive. Hence the state is unstable. Let λ_{1}, λ_{2} be the zeros of the quadratic polynomial on the LH.S of the equation (5.3.5)

Case (A):

When $\alpha_{1}<0\left\{\mathrm{ie},\left[\left(d_{1}-d_{2}\right)^{2}-4 a_{12} a_{21} \frac{\alpha_{1} \gamma_{1}}{\beta_{1}^{2}}\right]>0\right\}$
and $\quad \alpha_{1}>0,\left(d_{1}-d_{2}\right)^{2}>4 a_{12} a_{21} \frac{\alpha_{1} \gamma_{1}}{\beta_{1}^{2}}$
One root λ_{1} is positive while the other root λ_{2} negative. The solutions of the equations (5.3.1), (5.3.2), (5.3.3) are
$u_{1}=\left[\frac{\left(M_{1}-N_{1}-a_{12} \frac{\alpha_{1}}{\beta_{1}} u_{20}\right)-\left(M-N-u_{10}\right)\left(d_{1}-\lambda_{2}\right)}{\lambda_{1}-\lambda_{2}}\right] e^{\lambda_{1} t}$

$$
\begin{equation*}
+\left[\frac{\left(M_{1}-N_{1}-a_{12} \frac{\alpha_{1}}{\beta_{1}} u_{20}\right)-\left(M-N-u_{10}\right)\left(d_{1}-\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}\right] e^{\lambda_{2} t}+M e^{a_{a_{t}}}-N e^{a_{4} t} \tag{5.3.6}
\end{equation*}
$$

$$
u_{2}=\frac{\beta_{1}}{a_{12} \alpha_{1}}\left\{\left[\frac{\left(M_{1}-N_{1}-a_{12} \frac{\alpha_{1}}{\beta_{1}} u_{20}\right)-\left(M-N-u_{10}\right)\left(d_{1}-\lambda_{2}\right)}{\lambda_{1}-\lambda_{2}}\left(d_{1}-\lambda_{1}\right)\right] e^{\lambda_{11}}\right.
$$

$\left.+\left[\frac{\left(M_{1}-N_{1}-a_{12} \frac{\alpha_{1}}{\beta_{1}} u_{20}\right)-\left(M-N-u_{10}\right)\left(d_{1}-\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}\left(d_{1}-\lambda_{2}\right)\right] e^{\lambda_{2}+}+M_{1} e^{a_{3, t}}+N_{1} e^{a_{4} t}\right\}$
$u_{3}=u_{30} e^{a_{3} t}, u_{4}=u_{40} e^{a_{4} t}$
Here
$\bar{\alpha}=a_{13} \frac{\alpha_{1}}{\beta_{1}}\left(a_{3}-d_{2}\right) u_{30} \bar{\beta}=a_{12} a_{24} \frac{\alpha_{1} \gamma_{1}}{\beta_{1}^{2}} u_{40} \bar{\gamma}=d_{1} d_{2}+a_{12} a_{21} \frac{\alpha_{1} \gamma_{1}}{\beta_{1}^{2}}$
$M=\frac{\bar{\alpha}}{a_{3}^{2}-\left(d_{1}+d_{2}\right) a_{3}+\bar{\gamma}}, \quad N=\frac{\bar{\beta}}{a_{4}^{2}-\left(d_{1}+d_{2}\right) a_{4}+\bar{\gamma}}$
$M_{1}=M\left(d_{1}-a_{3}\right)+a_{13} \frac{\alpha_{1}}{\beta_{1}} u_{30}, N_{1}=N\left(a_{4}-d_{1}\right)$

The solution curves are illustrated in Figures 12, 14 and the conclusions are presented here.

Case (i): If $u_{10}<u_{40}<u_{30}<u_{20}$ and $a_{1}<a_{4}<a_{3}<a_{2}$
In this case the Prey $\left(S_{1}\right)$ has the least natural birth rate and the Predator $\left(S_{2}\right)$, dominates the Host $\left(S_{3}\right)_{\text {of }} S_{1}$, Host $\left(S_{4}\right)$ of S_{2}, Prey $\left(S_{1}\right)$ in natural growth rate as well as in its population strength.

Case (ii): If $u_{20}<u_{10}<u_{40}<u_{30}$ and $a_{1}<a_{4}<a_{2}<a_{3}$
In this case the natural birth rates of the Prey $\left(S_{1}\right)$, Host $\left(S_{4}\right)$ of S_{2}, Predator $\left(S_{2}\right)$ and the Host $\left(S_{3}\right)$ of S_{1} are in ascending order. Initially the Host $\left(S_{4}\right)$ of S_{2}, Prey $\left(S_{1}\right)$ dominates over the Predator $\left(S_{2}\right)$ till the time instant t_{34}^{*}, t_{31}^{*} respectively and thereafter the dominance is reversed.

Case (iii): If $u_{30}<u_{20}<u_{40}<u_{10}$ and $a_{4}<a_{1}<a_{3}<a_{2}$
In this case the natural birth rates of the Host $\left(S_{4}\right)$ of S_{2}, Prey $\left(S_{1}\right)$, Host $\left(S_{3}\right)$ of S_{1} and the Predator $\left(S_{2}\right)$ are in ascending order. Initially the Prey $\left(S_{1}\right)$ dominates over the Predator $\left(S_{2}\right)$, Host $\left(S_{3}\right)$ of S_{1} till the time instant t_{21}^{*}, t_{31}^{*} respectively and thereafter the dominance is reversed. Also the Host $\left(S_{4}\right)$ of S_{2} dominates over the Predator $\left(S_{2}\right)$, Host $\left(S_{3}\right)$ of S_{1} till the time instant t_{24}^{*}, t_{34}^{*} respectively and the dominance gets reversed thereafter.

Case (B): When $\alpha_{1}>0$ and $\left(d_{1}-d_{2}\right)^{2}<4 a_{12} a_{21} \frac{\alpha_{1} \gamma_{1}}{\beta_{1}^{2}}$
The roots λ_{1}, λ_{2} are complex and the solutions in this case are same as in case (A). This is illustrated in Fig. 15

Trajectories of Perturbations

The trajectories in the $u_{3}-u_{4}$ plane given by $y_{2}^{a_{4}}=y_{3}^{a_{3}}$
and are shown in Fig. 16 and the trajectories in the other planes are

$$
\text { where } \quad A_{1}=\frac{\left(M_{1}-N_{1}-a_{12} \frac{\alpha_{1}}{\beta_{1}} u_{20}\right)-\left(M-N-u_{10}\right)\left(d_{1}-\lambda_{2}\right)}{u_{10}\left(\lambda_{1}-\lambda_{2}\right)}(5.3 .15)
$$

$$
\begin{equation*}
A_{2}=\frac{\left(M_{1}-N_{1}-a_{12} \frac{\alpha_{1}}{\beta_{1}} u_{20}\right)-\left(M-N-u_{10}\right)\left(d_{1}-\lambda_{1}\right)}{u_{10}\left(\lambda_{2}-\lambda_{1}\right)} \tag{5.3.16}
\end{equation*}
$$

$$
\begin{equation*}
A_{3}=\frac{\beta_{1}\left(d_{1}-\lambda_{1}\right)\left[\left(M_{1}-N_{1}-a_{12} \frac{\alpha_{1}}{\beta_{20}} u_{20}\right)-\left(M-N-u_{10}\right)\left(d_{1}-\lambda_{1}\right)\right]}{a_{12} \alpha_{1} u_{10}\left(\lambda_{1}-\lambda_{2}\right)} \tag{5.3.17}
\end{equation*}
$$

$$
\begin{equation*}
A_{4}=\frac{\beta_{1}\left(d_{1}-\lambda_{2}\right)\left[\left(M_{1}-N_{1}-a_{12} \frac{\alpha_{1}}{\beta_{20}}\right)-\left(M-N-u_{10}\right)\left(d_{1}-\lambda_{1}\right)\right]}{a_{12} \alpha_{1} u_{10}\left(\lambda_{2}-\lambda_{1}\right)} \tag{5.3.18}
\end{equation*}
$$

$$
\begin{equation*}
\bar{M}_{1}=\frac{\beta_{1} M_{1}}{a_{12} \alpha_{1}}, \bar{N}_{1}=\frac{\beta_{1} N_{1}}{a_{12} \alpha_{1}} \tag{5.3.19}
\end{equation*}
$$

Perturbation Graphs

Fig. 2

Fig. 5

Fig. 8

Fig. 11

Fig. 3

Fig. 6

Fig. 9

Fig. 12

Fig. 4

Fig. 7

Fig. 10

Fig. 13

$$
\begin{align*}
& x=A_{1} y_{2}^{\frac{\lambda_{1}}{a_{3}}}+A_{2} y_{2}^{\frac{\lambda_{2}}{a_{3}}}+\frac{M}{u_{10}} y_{2}-\frac{N}{u_{10}} y_{2}^{\frac{a_{4}}{y_{3}}} x=A_{1} y_{3}^{\frac{\lambda_{1}}{a_{4}}}+A_{2} y_{3}^{\frac{\lambda_{2}}{a_{4}}}+\frac{M}{u_{10}} y_{3}^{\frac{a_{3}}{a_{4}}}-\frac{N}{u_{10}} y_{3} \tag{5.3.13}\\
& y_{1}=A_{3} y_{2}^{\frac{2}{a_{j}}}+A_{4} y_{2}^{\frac{2}{a_{1}}}+\overline{M_{1}} y_{2}+\overline{N_{1}} y_{2}^{\frac{a_{1}}{a_{1}}}, y_{1}=A_{3} y_{3}^{\frac{2}{a_{1}}}+A_{4} y_{3}^{\frac{2}{a_{i}}}+\overline{M_{1}} y_{3}^{\frac{a_{1}}{a_{1}}}+\overline{N_{1}} y_{3}(5.3 .14)
\end{align*}
$$

Fig. 14

Fig. 15

Fig. 16

CONCLUSION

Investigate some relation-chains between the species such as Prey-Predation, Neutralism, Commensalism, Mutualism, Competition and Ammensalism between four species $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}\right)$ with the population relations.
S_{1} a Prey to S_{2} and Commensal to S_{3}, S_{2} is a Predator living on S_{1} and Commensal to S_{4}, S_{3} a Host to S_{1}, S_{4} a Host to S_{2} and S_{3} a Prey to S_{4}, S_{4} a Predator to S_{3}.

The present paper deals with the study on stability of $2^{\text {nd }}$ level Prey-Predator washed out states only of the above problem. It is observed that the $2^{\text {nd }}$ level Prey Predator Washed out States are unstable. The stability of the other equilibrium states were already investigated and communicated to several international journals.

ACKNOWLEDGEMENT

I thank to Professor (Retd), N.Ch.Pattabhi Ramacharyulu, Department of Mathematics, National Institute of Technology, Warangal (A.P.), India for his valuable suggestions and encouragement. And I acknowledge to Mr.K.Ravindranath Gupta for neat typing of this research paper.

REFERENCES

[1] Lotka A. J. 1925. Elements of Physical Biology, Williams \& Wilking, Baltimore.
[2] Volterra V.1931. Leconssen La Theorie Mathematique De La Leitte Pou Lavie, Gauthier-Villars, Paris.
[3] May.R.M. 1973. Stability and Complexity in Model Eco-systems, Princeton University Pres, Princeton.
[4] Smith.J.M. 1974. Models in Ecology, Cambridge University Press, Cambridge.
[5] Kushing J.M. 1977. Integro-Differential Equations and Delay Models in Population Dynamics, Lecture Notes in BioMathematics, Springer Verlag, 20.
[6] Kapur J. N. 1985. Mathematical Modelling in Biology and Medicine, Affiliated East West.
[7] Srinivas N. C.1991. "Some Mathematical Aspects of Modeling in

Bio-medical Sciences" Ph.D Thesis, Kakatiya University,
[8] Lakshmi Narayan K. \& Pattabhiramacharyulu. N. Ch. 2007. "A Prey-Predator Model with Cover for Prey and Alternate Food for the Predator and Time Delay," International Journal of Scientific Computing. 1, 7-14.
[9] Archana Reddy .R. 2010. "On the stability of some Mathematical Models in BioSciences - Interacting Species", Ph.D.Thesis, J.N.T.U.
[10] Bhaskara Rama Sharma .B. 2010. "Some Mathematical Models in Competitive Eco-Systems", Ph.D. Thesis, Dravidian University.
[11] Phani Kumar and Pattabhi Ramacharyulu N.Ch. 2010. "Three Species Eco-System Consisting of a Prey, Predator and a Host Commensal to the Prey", "Int.J.Open Problems Compt.Math"., Vol.3, No. 1.
[12] Hari Prasad.B and Pattabhi Ramacharyulu.N.Ch. 2010. "On the Stability of a Four Species : A Prey-Predator-Host-Commensal-Syn Eco-System-II" (Prey and Predator washed out states) "International eJournal of Mathematics \& Engineering", 5, 60-74.
[13] Hari Prasad.B and Pattabhi Ramacharyulu.N.Ch. 2011."On the Stability of a Four Species : A Prey-Predator-Host-Commensal-Syn Eco-System-VII" (Host of the Prey Washed Out States,) "International Journal of Applied Mathematical Analysis and Applications, Vol.6, No.1-2, pp. 85 - 94.
[14] Hari Prasad.B and Pattabhi Ramacharyulu.N.Ch. 2011. "On the Stability of a Four Species : A Prey-Predator-Host-Commensal-Syn Eco-System-VIII" (Host of the Predator Washed Out States) "Advances in Applied Science, Research, 2(5), pp.197-206.
[15] Hari Prasad.B and Pattabhi Ramacharyulu.N.Ch.2010. "On the Stability of a Four Species Syn Eco-System with Commensal Prey Predator Pair with Prey Predator Pair of Hosts-I (Fully Washed Out State)", Global Journal of Mathematical Sciences : Theory and Practical, Vol.2, No.1, pp. $65-73$.
[16] Hari Prasad.B and Pattabhi Ramacharyulu.N.Ch. 2011. "On the Stability of a Four Species Syn Eco-System with Commensal Prey Predator Pair with Prey Predator Pair of Hosts-V (Predator Washed Out States)", Int. J. Open Problems Compt. Math. Vol.4, No.3, pp. 129 - 145.
[17] Hari Prasad.B and Pattabhi Ramacharyulu.N.Ch. 2011. "On the Stability of a Four Species Syn Eco-System with Commensal Prey Predator Pair with Prey Predator Pair of Hosts-VII (Host of S_{2} Washed Out States)", Journal of Communication and Computer, Vol.8, No.6, pp. 415 - 421.

[^0]: Received: Dec 08, 2011; Revised: Jan 20, 2012; Accepted: Feb 15, 2012.
 *Corresponding Author
 B. Hari Prasad

 Asst. Prof. Dept. of Mathematics, Chaitanya Degree College (Autonomous)
 Hanamkonda-506001, India
 Tel: +91-9399940624
 Email: sumathi_prasad73@yahoo.com

