Some threshold results of ecological competition model with reserve for one species and harvesting at fixed rates.

B. Bhaskara Rama Sarma

Faculty of Mathematics, BRS Classes, \#2-284, Vivekananda street, Hanumannagar,Ramavarappadu,Vijayawada,A.P-521108, India

Abstract

In the present investigation the stability analysis of a two-species competing ecological model with reserve for one species and harvesting at fixed rates is highlighted in view of principle of competitive exclusion due to Gause (1934). The model is characterized by a pair of non-linear system of ordinary differential equations. The equilibrium states are identified and a threshold theorem is derived to establish the stability of the co-existent equilibrium state.

Keywords: Competitive exclusion, Threshold results, Stability, Equilibrium states
AMS Classification: 92 D 25, 92 D 40

INTRODUCTION

Competition between two or more species or individuals would occur when they are to strive together in a habitat if the resources for their growth or existence are in a short supply. It arises essentially during the struggle for existence. Popular histories of competition have been dealt by the researchers such as Gause [5], Paul Colinvaux [9], Kapur.J.N. [6] Lotka.A.J. [7], Meyer[8]. Bhaskara Rama Sarma .B \& N. Ch. Pattabhiramacharyulu [2,3,4] have extensively studied the Ecological Competition models under various conditions. Archana Reddy. R and N.Ch. Pattabhiramacharyulu [1] have studied the stability analysis of competition model with reserve for one species and harvesting both the species at fixed rates.

In the present investigation some threshold results are established following the Principle of Competitive Exclusion (Gause, 1934) [5] and results are illustrated. In Section 1.1 basic equations of two species competition model incorporating i) Reserve for one Species. ii) Both the Species are harvested at constant rates are presented along with the required notations. In Section 1.2 the Locus of the co-existent equilibrium point is obtained and a particular equilibrium point which corresponds to half the carrying capacities of the species is identified .In Section1.3 the local stability analysis of the equilibrium state is carried out. In Section1.4, Threshold theorem on the lines of Principle of competitive exclusion is derived and the phase-portrait diagram is presented to explain the global stability of the equilibrium point under consideration. In Section1.5 the conclusions of the work are recorded.

1.1 Basic Equations

Received: Dec 15, 2011; Revised: Jan 20, 2012; Accepted: Feb 15, 2012.
*Corresponding Author
B. Bhaskara Rama Sarma

Faculty of Mathematics, BRS Classes, \#2-284, Vivekananda street, Hanumannagar, Ramavarappadu, Vijayawada,A.P-521108, India

The model equations for a two Species competing system is given by the following system of non-linear ordinary differential equations
Equation for the growth rate of S_{1} Species
$\frac{d N_{1}}{d t}=a_{1} N_{1}-a_{11} N_{1}^{2}-a_{12}(1-k) N_{1} N_{2}-h_{1}$
Equation for the growth rate of Species S_{2}
$\frac{d N_{2}}{d t}=a_{2} N_{2}-a_{22} N_{2}^{2}-a_{21}(1-k) N_{1} N_{2}-h_{2}$
Where $\quad N_{1}, N_{2}$: Population strengths of species S_{1}, S_{2} respectively at time t

$\mathrm{a}_{1,}, \mathrm{a}_{2}$	
$\mathrm{a}_{11}, \mathrm{a}_{22}$: Natural growth rates of the two species;
: Self-limiting co-efficients(i.e ,the carrying capacities are	
limited)	

1.2 Equilibrium states

The equilibrium states are given by $\frac{d N_{1}}{d t}=0$ and $\frac{d N_{2}}{d t}=0$
i.e. $N_{1}\left\{a_{1}-a_{11} N_{1}-a_{12}(1-k) N_{2}\right\}=h_{1}$
$N_{2}\left\{a_{2}-a_{22} N_{2}-a_{21}(1-k) N_{1}\right\}=h_{2}$

Equation
$(1.3) \times\left\{-\alpha_{21}(1-k)\right\}+$ Equation $(1.4) \times \alpha_{12}(1-k)$ we get

$$
\begin{align*}
& -h_{1} a_{21}(1-k)+h_{2} a_{12}(1-k)= \\
& -N_{1} a_{11}(1-k)\left\{a_{1}-a_{11} N_{1}-a_{12}(1-k) N_{2}\right\}+N_{2} a_{12}(1-k)\left\{a_{2}-\alpha_{22} N_{2}-a_{21}(1-k) N_{1}\right\} \\
& =-a_{21}(1-k) a_{1} N_{1}+a_{11} a_{21}(1-k) N_{1}^{2}+a_{12}(1-k) N_{2} a_{2}-a_{22} a_{12}(1-k) N_{2}^{2} \tag{1.5}
\end{align*}
$$

This on rearranging terms can brought to the form

$$
\left\{\begin{array}{c}
\left(-a_{21}(1-k) a_{11}\left(N_{1}-\frac{a_{1}}{2 \alpha_{11}}\right)^{2}+\alpha_{12}(1-k) a_{22}\left(N_{2}-\frac{a_{2}}{2 \alpha_{22}}\right)^{2}\right) \tag{1.6}\\
+\left(a_{12}(1-k)\left(h_{2}-\frac{a_{2}^{2}}{4 a_{22}}\right)-a_{21}(1-k)\left(h_{1}-\frac{a_{1}^{2}}{4 a_{11}}\right)\right)
\end{array}\right\}=0
$$

This equation connects the harvesting rates and the normal steady state. From this equation two cases can be drawn.
(i) Case of exclusive harvesting i.e. the harvesting rates of S_{1} and S_{2} are independent of each other
i.e. $h_{1}=\frac{a_{1}^{2}}{4 a_{11}}$ and $h_{2}=\frac{a_{2}^{2}}{4 a_{22}}$
(ii) Case of mixed or gross harvesting characterized by
$a_{12}(1-k)\left(h_{2}-\frac{a_{2}^{2}}{4 a_{22}}\right)-a_{21}(1-k)\left(h_{1}-\frac{a_{1}^{2}}{4 a_{11}}\right)=0$
In either of the cases, the equilibrium values of N_{1} and N_{2} are related by

$$
\begin{equation*}
-a_{21}(1-k) a_{11}\left(N_{1}-\frac{a_{1}}{2 a_{11}}\right)^{2}+a_{12}(1-k) a_{22}\left(N_{2}-\frac{a_{2}}{2 a_{22}}\right)^{2}=0 \tag{1.9}
\end{equation*}
$$

The equilibrium point lies on the line

$$
\begin{equation*}
\frac{N_{1}-\frac{a_{1}}{2 a_{11}}}{\sqrt{a_{12} a_{22}}}=\frac{N_{2}-\frac{a_{2}}{2 a_{22}}}{\sqrt{a_{21} a_{11}}} \tag{1.10}
\end{equation*}
$$

Which passes through the point $\quad\left(\bar{N}_{1}, \bar{N}_{2}\right)=\left(\frac{a_{1}}{2 a_{11}}, \frac{a_{2}}{2 a_{22}}\right)$
corresponding to half of the carrying capacities of the two species S_{1} and S_{2}
Put $\mathrm{N}_{1}=\mathrm{u}_{1}+\overline{N_{1}}$ and $\mathrm{N}_{2}=\mathrm{u}_{2}+{ }^{+}$
where u_{1} and u_{2} are small perturbations from the equilibrium state.

1.3 Stability of Equilibrium points:

Our basic Equations are:
$\frac{d N_{1}}{d t}=N_{1} f_{1}\left(N_{1} N_{2}\right)-h_{1}=N_{1}\left\{a_{1}-a_{11} N_{1}-a_{12}(1-k) N_{2}\right\}-h_{1}$
$\frac{d N_{2}}{d t}=N_{2} f_{2}\left(N_{1} N_{2}\right)-h_{2}=N_{2}\left\{a_{2}-a_{22} N_{2}-a_{21}(1-k) N_{1}\right\}-h_{2}$

The linearised basic equations are

$$
\begin{align*}
\frac{d u_{1}}{d t} & =-a_{11}(1-k)\left(\overline{N_{1}} u_{1}+\overline{N_{1}} u_{2}\right) \tag{1.15}\\
\frac{d u_{2}}{d t} & =-a_{21}(1-k) \overline{N_{2}} u_{1}+\overline{N_{1}} u_{2} \tag{1.16}
\end{align*}
$$

The characteristic equation is

$$
\begin{equation*}
\lambda^{2}+(1-k)\left(a_{12} \overline{N_{2}}+a_{21} \overline{N_{1}}\right) \lambda=0 \tag{1.17}
\end{equation*}
$$

one root of which can be noted to be negative and the other is zero.
\therefore The co-existent equilibrium state is neutrally stable.
The trajectories are
$u_{1}=u_{10}-\frac{a_{12}(1-k)}{\lambda_{1}}\left[u_{10} \bar{N}_{2}+u_{20} \bar{N}_{1}\right]\left[e^{\lambda_{1} t}-1\right]$
$u_{2}=u_{20}-\frac{a_{21}(1-k)}{\lambda_{1}}\left[u_{10} \bar{N}_{2}+u_{20} \bar{N}_{1}\right]\left[e^{\lambda_{t} t}-1\right]$
where λ_{1} is negative characteristic root of (1.17). The curves are illustrated in fig.1.1 \&1.2 .

Case 1: Initially S_{1} dominates S_{2} and both Species attain asymptotic limits $\mathrm{u}_{1}{ }^{*}$ and $\mathrm{u}_{2}{ }^{*}$ i.e. $\mathrm{u}_{10}<\mathrm{u}_{20}, \quad \mathrm{a}_{12}>\mathrm{a}_{21}$. In this case S_{2} always out numbers S_{1}.

It is evident that both the Species converging asymptotic to the equilibrium limits $\left(\mathrm{u}_{1}{ }^{*}, \mathrm{u}_{2}{ }^{*}\right)$
Where
$u_{1}{ }^{*}=u_{10}+\frac{a_{12}(1-k)}{\lambda_{1}}\left[u_{10} \bar{N}_{2}+u_{20} \bar{N}_{1}\right] \quad \&$
$\mathrm{u}_{2}{ }^{*}=u_{20}+\frac{a_{21}(1-k)}{\lambda_{1}}\left[u_{10} \bar{N}_{2}+u_{20} \bar{N}_{1}\right]$
Hence this state is neutrally stable.

Fig 1.1.
Case 2: The Species S_{1} dominates the Species S_{2} in natural growth rate but its initial strength is less than that of Species S_{2} i.e. $\mathrm{u}_{10}>\mathrm{u}_{20}$, $a_{12}>a_{21}$:

Initially S_{1} dominates over S_{2} up to the time instant
$t^{*}=\frac{1}{\lambda_{1}} \ln \left[1+\frac{\left(u_{10}-u_{20}\right) \lambda_{1}}{\left(a_{12}-a_{21}\right)(1-k)}\right]$
and there after Species S_{2} out numbers Species S_{1} and both the Species converge asymptotically to the equilibrium limits $u_{1}{ }^{*}, u_{2}{ }^{*}$. Hence this state is neutrally stable.

Fig 1.2

Trajectories of perturbed Species:

The trajectories in the $\mathrm{u}_{1}-\mathrm{u}_{2}$ plane are
$\boldsymbol{u}_{1}=\frac{a_{12}}{a_{21}} \boldsymbol{u}_{2}+\boldsymbol{u}_{10}-\frac{a_{12}}{a_{21}} \boldsymbol{u}_{20}$
The trajectory denotes a straight line.

Fig 1.3

1.4 Threshold Theorem

In consonance with the principle of competitive exclusion Gauss \{1934\} we deduce a threshold theorem on the basic equations (1.13)\&(1.14) are written for competitive Species converging to asymptotic stable equilibrium point $\left(\bar{N}_{1}, \bar{N}_{2}\right)=\left(\frac{a_{1}}{2 a_{11}}, \frac{a_{2}}{2 a_{22}}\right)$
Now the basic equations can be written as

$$
\left.\begin{array}{c}
\frac{d N_{1}}{d t}=\frac{a_{1} N_{1}}{k_{1}}\left\{K_{1}-N_{1}-\beta_{1} N_{2}\right\}-h_{1} \\
\frac{d N_{2}}{d t}=\frac{a_{2} N_{2}}{k_{2}}\left\{K_{2}-N_{2}-\beta_{2} N_{1}\right\}-h_{2} \tag{1.23}
\end{array}\right\}
$$

where
$K_{1}=\frac{a_{1}}{a_{11}} ; K_{2}=\frac{a_{2}}{a_{22}} ; \beta_{1}=\frac{a_{12}(1-k)}{a_{11}}$ and $\beta_{2}=\frac{a_{2}(1-k)}{a_{22}}$
Theorem : Principle of competitive exclusion for co-existent equilibrium state:
$\left(\bar{N}_{1}, \bar{N}_{2}\right)=\left(\frac{a_{1}}{2 a_{11}}, \frac{a_{2}}{2 a_{22}}\right)$

When $\frac{k_{1}}{\beta_{1}}>k_{2}$ and $\frac{k_{2}}{\beta_{2}}>k_{1}$ then every solution of $\left(\begin{array}{l}N_{1}(t), N_{2}(t)\end{array}\right)$ of (1.23) approach the equilibrium solution $\left(N_{1}(t), \overline{N_{2}(t)}\right)=\left(\bar{N}_{1}, \bar{N}_{2}\right) \neq(0,0)$ as t approaches infinity. In other words, if Species 1 and 2 are nearly identical and the microcosm can support both the members of Species 1 and 2 depending up on the initial conditions.

Fig 1.4
Proof: The first step in our proof is to show that $N_{1}(t)$ and $N_{2}(t)$ can never become negative. To this end, observe that $N_{1}(t)=\overline{N_{1}}=\frac{a_{1}}{2 a_{11}} \quad$ and $\quad N_{2}(t)=\overline{N_{2}}=\frac{a_{2}}{2 a_{22}}$
is a solution of (1.23) for any choice of $N_{1}(t)$. The orbit of this solution in the $N_{1}-N_{2}$ plane is -

- the point $(0,0)$ for $N_{1}(t)=0$;
- the line $0<N_{1}<K_{1}, N_{2}=0$ for $0<N_{1}(0)<K_{1}$;
- the point $\left(k_{1}, 0\right)$ for $N_{1}(t)=k_{1}$; and
- the line $\mathrm{K}_{1}<\mathrm{N}_{1}<\infty, \quad N_{2}=0$ for $N_{1}(0)<k_{1}$.

Thus the N_{1} axis, for $\mathrm{N}_{1} \geq 0$ is the union for four distinct orbits of (1.23).Similarly the N_{2} axis, for $N_{2} \geq 0$, is the union of four distinct orbits of. This implies that all solutions ($N_{1}(t), N_{2}(t)$) of (1.23) which start in the first quadrant $\left(N_{1}(t)>0, N_{2}(0)\right)$ of the $N_{1}-N_{2}$ plane must remain there for all future time.

The second step in our proof is to split the first quadrant into regions in which both $\frac{d N_{1}}{d t}$ and $\frac{d N_{2}}{d t}$ have fixed signs. This is accomplished in the following manner.
Let I_{1} and I_{2} be the lines
$k_{1}-N_{1}-\beta_{1} N_{2}=0, k_{2}-N_{2}-\beta_{2} N_{1}=0_{2}$
respectively and the point of their intersection ,is $\left(\overline{N_{1}}, \overline{N_{2}}\right)$.observe that $\frac{d N_{1}}{d t}$ is negative if $\left(N_{1}, N_{2}\right)$ lies above the line l_{1} and positive if $\left(N_{1}, N_{2}\right)$ lies below 1_{1}. Similarly, $\frac{d N_{2}}{d t}$ is negative if $\left(N_{1}, N_{2}\right)$ lies below I_{2}. Thus the two lines I_{1} and I_{2} split the first quadrant of the $\left(N_{1}-N_{2}\right)$ plane into four regions in which both
$\frac{d N_{1}}{d t}$ and $\frac{d N_{2}}{d t}$ have fixed signs.

- $N_{1}(t), N_{1}(t)$ both increases with the time (along any solution of (1.23) in region I
- $N_{1}(t)$ increases and $N_{2}(t)$ decrease with time in region II
- $N_{1}(t)$ decreases and $N_{2}(t)$ increases with time region III and
-Both $N_{1}(t)$ and $N_{2}(t)$ decrease with time in region IV
In this region both the Species S_{1} and Species S_{2} compete with each other but do not flourish and at the same time do not get extinct. Finally we require the following four lemmas.
Lemma 1: Any solution of $\left(\mathrm{N}_{2}(\mathrm{t}), \mathrm{N}_{2}(\mathrm{t})\right)$ of (1.23) which starts in region I at time $\mathrm{t}=\mathrm{t}$ will remain in this region for all future time $\mathrm{t}>\mathrm{t}$ o and ultimately approach the equilibrium solution $\mathrm{N}_{1}(\mathrm{t})=\overline{N_{1}}, \mathrm{~N}_{2}(\mathrm{t})=$ $\overline{N_{2}}$

Proof : Suppose that a solution $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) leaves region I at time $t=t^{*}$. Then either $\frac{d N_{1}}{d t}\left(t^{*}\right)$ or $\frac{d N_{2}}{d t}\left(t^{*}\right)$ is zero, since the only way a solution of (1.23) can leave region I is by crossing I_{1} or I_{2}. Assume that $\frac{d N_{1}}{d t}\left(t^{*}\right)=0$.

Differentiating both sides of the first equation of (1.23) with respect to t and setting $t=t^{*}$
gives $\quad \frac{d^{2} N_{1}\left(t^{*}\right)}{d t^{2}}=\frac{-a_{1} \beta_{1} N_{1}\left(t^{*}\right)}{k_{1}} \frac{d N_{1}\left(t^{*}\right)}{d t}<0$
Hence $\mathrm{N}_{1}(\mathrm{t})$ is monotonically increasing and it has maximum whenever a solution of $\mathrm{N}_{1}(\mathrm{t}), \mathrm{N}_{2}(\mathrm{t})$ of (1.23) is in region I .
Similarly, if $\quad \frac{d N_{2}}{d t}\left(t^{*}\right)=0$ then
$\frac{d^{2} N_{2}\left(t^{*}\right)}{d t^{2}}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{1}} \frac{d N_{1}}{d t}\left(t^{*}\right)<0$
implies that $N_{2}(t)$ is monotonic increasing and it has maximum whenever a solution $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) is in region I. If a solution $\left(N_{1}(t), N_{2}(t)\right.$) of 1.23$)$ remains in region I for $t \geq t_{0}$, then both $N_{1}(t)$ and $N_{2}(t)$ are monotonic increasing function of time for $t \geq$ t_{0} with $N_{1}(t)<k_{1}$ and $N_{2}(t)<k_{2}$, consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits \mathcal{E}, n respectively, as t approach infinity. This, in turn implies that $\left({ }^{\mathcal{E}, n}\right)$ is an equilibrium point of (1.23). Now, (${ }^{\varepsilon, n}$) obviously cannot equal (0,0); ($k 1,0$) or ($0, \mathrm{k} 2$). Consequently $(\varepsilon, n)=\left(\overline{N_{1}}, \overline{N_{2}}\right)$.
Lemma 2: Any solution of $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) which starts in region II at time $\quad t=t_{0}$ will remain in this region for all future time t $\geq t_{0}$ and ultimately approach the equilibrium solution $N_{1}(t)=\overline{N_{1}}, N_{2}$ $(t)=\overline{N_{2}}$

Proof: Suppose that a solution $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) leaves region I/ at time $t=t^{*}$.

Then either $\frac{d N_{1}}{d t}\left(t^{*}\right)$ or $\frac{d N_{2}}{d t}\left(t^{*}\right)$ is zero, since the only way a solution of (1.23) can leave region II is by crossing l_{1} or l_{2}. Assume that $\frac{d N_{\mathrm{l}}\left(t^{*}\right)}{d t}=0$.

Differentiating both sides of the first equation of (1.23) with respect to t and setting
$t=t^{*}$ gives

$$
\begin{equation*}
\frac{d^{2} N_{1}\left(t^{*}\right)}{d t^{2}}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{1}} \frac{d N_{2}\left(t^{*}\right)}{d t}>0 \tag{1.26}
\end{equation*}
$$

This quantity is positive. Hence $N_{1}(t)$ has minimum at $t=t^{*}$. However, this is impossible, since $N_{1}(t)$ is increasing whenever a solution of $N_{1}(t), N_{2}(t)$ of (1.23) is in region II.
Similarly, if $\frac{d N_{2}\left(t^{*}\right)}{d t}=0$, then
$\frac{d^{2} N_{2}\left(t^{*}\right)}{d t^{2}}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{2}} \frac{d N_{1}}{d t}\left(t^{*}\right)<0$
This quantity is negative, implying that $N_{2}(t)$ has maximum at $t=t$ *, but this is impossible, since $N_{2}(t)$ is decreasing whenever a solution ($N_{1}(t), N_{2}(t)$) of (1.23) is in region II. The previous argument shows that any solution $N_{1}(t), N_{2}(t)$ of (1.23) which starts in region II at time $t=t_{0}$ while remain in region $/ /$ for all future time $t \geq{ }_{\mathrm{t}}$. This implies that $N_{1}(t)$ is monotonic increasing and $N_{2}(t)$ is monotonic decreasing for $t \geq$ to with $_{1} N_{1}(t)<K_{1}$ and $N_{2}(t)<K_{2}$. Consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits ${ }^{\epsilon}$, n respectively, as $t \rightarrow \infty$. This in turn, implies that $\left({ }^{\in}, n\right)$ is an equilibrium point of (1.23). Now (${ }^{\epsilon}, n$) obviously cannot be equal to (0,0); (K1,0) or $\left(0, K_{2}\right)$. Consequently, $\left({ }^{\in}, n\right)=\left(\bar{N}_{1}, \bar{N}_{2}\right)$ and this proves Lemma 2.

Lemma 3: Any solution of ($N_{1}(t), N_{2}(t)$) of (1.23) which starts in region III at time $t=t_{0}$ will remain in this region for all future time t \geq to, and ultimately approach the equilibrium solution $N_{1}(t)=\bar{N}_{1, N_{2}(t)}=\bar{N}_{2(\text { Fig } 1.4)}$

Proof: Suppose that a solution $\left(N_{1}(t), N_{2}(t)\right.$ of (1.23) leaves region III at time $t=t^{*}$. Then either $\frac{d N_{1}\left(t^{*}\right)}{d t}$ or $\frac{d N_{2}\left(t^{*}\right)}{d t}$ is zero, since the only way a solution of (1.23) can leave region II is by crossing // or 12 . Assume that $\frac{d N_{1}\left(t^{*}\right)}{d t}=0$.
Differentiating both sides of first equation of (1.23) with respect to t and setting $t=t^{*}$ gives
$\frac{d^{2} N_{1}\left(t^{*}\right)}{d t^{2}}=\frac{-a_{1} \beta_{1} N_{1}\left(t^{*}\right)}{k_{1}} \frac{d N_{2}\left(t^{*}\right)}{d t}$.

This quantity is negative. Hence $N_{1}(t)$ has a maximum at $t=t^{*}$. However, this is impossible, since $N_{1}(t)$ is decreasing whenever a solution of $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) is in region III.
Similarly, if $\frac{d N_{2}\left(t^{*}\right)}{d t}=0$
then $\frac{d^{2} N_{1}\left(t^{*}\right)}{d t^{2}}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{2}} \frac{d N_{1}}{d t}\left(t^{*}\right)$.

This quantity is positive, implying that $N_{2}(t)$ has a minimum at $t=t^{*}$ but this is impossible, since $\mathrm{N}_{2}(t)$ is increasing whenever a solution $N_{1}(t), N_{2}(t)$ of (1.23) is in region III.

The pervious argument shows that any solution $N_{1}(t), N_{2}(t)$ of (1.23) which starts in region III at time $t=t^{*}$ will remain in region III for all future time $t \geq t 0$. This implies that $N_{1}(t)$ is monotonic increasing and $N_{2}(t)$ is monotonic decreasing for $t \geq t_{0}$; with $N_{1}(t)>k_{1}$ and $N_{2}(t)$
< k2. Consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits $\in{ }_{, n}$ respectively, as t approaches infinity. This in turn, implies that $(\in$, n) is an equilibrium point of (1.23).Now (\in, n) obviously cannot equal (0,0); (k1,0) or ($0, \mathrm{k}_{2}$). Consequently, $(\in, n)=\left(\bar{N}_{1}, \bar{N}_{2}\right)$ and this proves Lemma 3.

Lemma 4: Any solution of $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) which starts in region IV at time $t=t_{0}$ will remain in this region for all future time $t \geq t_{0}$, and ultimately approach the equilibrium solution $N_{1}(t)=\bar{N}_{1}$, $N_{2}(t)=\bar{N}_{2}$. (Fig.1.4)

Proof: Suppose that a solution $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) leave region IV at time $t=t^{*}$.
Then either $\frac{d N_{1}\left(t^{*}\right)}{d t}$ or $\frac{d N_{2}\left(t^{*}\right)}{d t}$ is zero, since the only way a solution of (1.23) can leave region I is by crossing l_{1} or l_{2}. Assume that $\frac{d N_{1}\left(t^{*}\right)}{d t}=0$.
Differentiating both sides of first equation of (1.23) with respect to t and setting $t=t^{*}$ gives
$\frac{d^{2} N_{2}\left(t^{*}\right)}{d t^{2}}=\frac{-a_{1} \beta_{1} N_{1}\left(t^{*}\right)}{k_{1}} \frac{d N_{2}\left(t^{*}\right)}{d t}$.

This quantity is positive, hence $N_{1}(t)$ is monotonic decreasing and it has minimum whenever a solution $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) is in region IV.
Similarly, if $\quad \frac{d N_{2}\left(t^{*}\right)}{d t}=0$,
then $\frac{d^{2} N_{1}\left(t^{*}\right)}{d t^{2}}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{2}} \frac{d N_{1}}{d t}\left(t^{*}\right)$.
This quantity is positive, implying that $N_{2}(t)$ is monotonic decreasing and it has minimum whenever a solution $N_{1}(t), N_{2}(t)$ of (1.23) is in region IV.

If a solution $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) remains in region IV for t
$\geq t_{0}$, then both $N_{1}(t)$ and $N_{2}(t)$ are monotonic decreasing functions of time for $t \geq t_{0}$, with $N_{1}(t)>\mathrm{k}_{1}$ and $\quad N_{2}(t)>\mathrm{k}_{2}$, consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits \in, n respectively, as
$t \rightarrow \infty$. This, in turn implies that
(\in, n) is an equilibrium point of (1.23). Now, $\left({ }^{\in}, n\right)$ obviously cannot be equal to $(0,0)$; $\left(\mathrm{k}_{1}, 0\right)$ or ($0, \mathrm{k}_{2}$) and consequently $(\in, n)=\left(\bar{N}_{1}, \bar{N}_{2}\right)$.

Proof of Theorem: Lemmas 1, 2, 3and 4 state that every solution $\left(N_{1}(t), N_{2}(t)\right)$ of (1.23) which starts in region I, II, III, or IV at time $t=t_{0}$ and remains there for all future time must also approach equilibrium solution $N_{1}(t)=\bar{N}_{1}, \quad N_{2}(t)=\bar{N}_{2}$ as $t \rightarrow \infty$. Next, observe that any solution $\left(N_{1}(t), N_{2}(t)\right)$ of (1) which starts on l_{1} or l_{2} must immediately afterwards enter regions I, II, III, or IV. Finally the solution approaches the equilibrium solution $N_{1}(t)=\bar{N}_{1} \quad, \quad N_{2}(t)=\bar{N}_{2}$. This is illustrated in Fig.1.5 Fig.1. 5

Fig 1.5

CONCLUSIONS

Washed-out equilibrium states are quite common in competition models.Co-existent state ,if any,is of practical utility.In this paper ,a particular co-existent equilibrium point is obtained at half the carrying capacities of the two species in competition.This equilibrium point is found to be neutrally stable. This is a remarkable observation.In general, the locus of equilibrium point is also obtained.The phase portrait analysis explained through the above threshold theorem clearly establishes the global stability of the coexistent equilirium point of the under lying model. The Principle of Competitive Exclusion plays the key role in this study.

ACKNOWLEDGEMENTS

It is my proud previlage to acknowledge my beloved teacher \& guide Prof. N. Ch. Pattabhiramacharyulu, Professor(Retd.)of Mathematics,N.I.T,Warangal,A.P. who has initiated me to study Mathematical modeling in Biology \& Medicine in general and Mathematical Ecology in particular.I am blessed to have such a seasoned supervisor who is multifaceted researcher of Mathematics of international repute.His command on various research areas like Fluid dynamics,Mathematical modeling, Complex analysis,Functional
analysis often mesmerizes his students and subject specialists. He has more than 200 research publications to his credit.Most of his students are well placed and they are instrumental in bringing out this special issue of JES in his name. He is a simple man who can speak volumes of mathematics and its applications.My vocabulary is not so rich to describe him completely.I sincerely wish that Almighty grants him long qualitative research life .

REFERENCES

[1] Archana Reddy,R and N.Ch. Pattabhiramacharyulu. 2009."Stability analysis of two competitive interacting species with harvesting of both species at constant rates", International Journal of Scientific computing,Vol.1,No.1, pp.57-68
[2] Bhaskara Rama Sarma .B \& N. Ch. Pattabhiramacharyulu. 2008. 'Stability Analysis of a two-species competitive eco-system-', International Journal of Logic Based Intelligent Systems, Volume2, No.1, PP.79-86.
[3] Bhaskara Rama Sarma .B \& N. Ch. Pattabhiramacharyulu. 2008.
'Local stability analysis of two-species competitive eco-system with deathrate and emigration for one of the species', International Journal of Applied Mathematical Analysis andApplications', NewDelhi, Vol. 3 No.2, Pp153-159.
[4] Bhaskara Rama Sarma .B \& N. Ch. Pattabhiramacharyulu. 2008. 'On Global stability analysis of two-species competing ecosystem with decay and replenishment for one of the species', International Journal of Scientific Computing', NewDelhi, Vol. 2 No. 2 ,Pp177-181
[5] Gauss G.F. 1934."The Struggle for Existence" Newyork, Hafna.
[6] Kapur .J. N. 1985.Mathematical Models in biology and Medicine, Affiliated East-West.
[7] Lotka . A.J. 1925.Elements of Physical Biology,Williams \& Wilkins, Baltimore.
[8] Meyer. W.J. 1985.Concepts of Mathematical modeling, Mc. Grawhill.
[9] Paul Colinvaux . A. 1986.Ecology, John Wiley, New York.

