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Abstract

P. Chandra and B.C. Tripathy [13] have generalized the notion of the kéthe-toeplitz dual of sequence spaces on introducting
the concept of n-dual of order r, for r > 1 of sequence spaces. B.C. Tripathy and B. Sharma [3] have introduced the notion of
m-dual of order r, for r > 1 of double sequence spaces. Ansari and Gupta [1] have generalized the notion of the kéthe-
Toeplitz dual of sequence spaces on introducing the concept of -dual of order r, for 0 < r < 1 of sequence spaces. In this
paper, we have defined and determined the n-dual of some double sequence spaces for 0 < r < 1 and have establised their

perfectness in relation to n-dual for 0 <r < 1.
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INTRODUCTION

A sequence space is defined to be a linear space of
sequences as its element with respect to the coordinate wise
addition and scalar multiplication. It is a scalar sequence space or a
vector sequence space according as the sequences consists of
scalar (real or complex) or vectors taken from a vector space. A

sequence of the form (@ J& will be called a single sequence and a

sequence of the form (@ )70 will be called a double sequence or
a matrix.

Kéthe and Toeplitz [8] introduced the idea of dual sequence
space, whose main results concerned with (-duals. Later on it was
studied by P. Chandra and B.C. Tripathy [13] Cook [5], Kamtham
and Gupta [7], Maddox [10], Lascarides [9], Okutoyi [12] and many
others. P. Chandra and B.C. Tripathy [13] have generalized the
notion of a-duals on introducing the notion of n-duals of order r, for r
> 1 of sequence spaces and Ansari & Gupta [1], have generalized
the notion of a-duals on introducing the notion of n-duals of order r,
for 0 < r < 1 of sequence spaces.

Browmich [04] introduced the notion of double sequence
spaces and Hardy [6] introduced the notion of bounded variation
double sequences spaces. Later on it was studied by B.C. Tripathy
and B. Sarma [3], Basarir and Sonalean [2], Tripathy, Choudhary
and Sharma [14], Moricz [11] and many others.

In this paper, the space of all, bounded, convergent in
Pringsheim’s sense, regularily null, absolutely summable, p-
absolutely summable, finite, bounded variation regularily
convergence, Null in Pringsheim’s sense, eventually alternating and
strongly p-cesaro summable double sequence spaces are denoted
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by 2@, 2100, 2¢, ZCR 2.0, 2C0R’ 211 2pp, 2¢’ 2py, 26, 2P
respectively and a double sequence is denoted by (aMN) or (xMN)
according as elements of n-dual and element of given spaces
respectively.
Throughout the article, the sums without limit means that

summation is from m = 1 to ccand n = 1 toco,

List of some double sequence spaces, whose [-dual will be
obtained in this paper are :

1.2c0 {<camn > ¢ 2¢y; a0 5 () s min (m, n) — oo}
R
2.200 = {<aMn>e 2¢p: aMN — 0 as max (m, n) — oo}

lim

3.2 ={<amM > e 2 (a) nee all = LM where
LM e ¢ for each m € N}
b. ,,lll_rf:o alln = J0_where J0 € ¢, for eachn € N}

4.2¢c = {<aMl > e 2¢y; aMN 5 |, a5 min (m, n) — oo for
some L € ¢}

5.2[°={<all>e 2 ?:E [aMN | < oo}

6.2IM={ <aMN > e 2¢p: E%
no. such that 0 < r < oo}
7.2bv={<aM > 2¢p: ¥ [AM aM.N | < o0 3 | AN gM, N | <

coand L X | ALN gILN | < oo}

T
[aMN | < oo, where r is a real

where A gm0 — amn _ gm+l,n AN pmn — gmn _
am,n+1 gnd AM,N gm,n = AN gm0 _ AN gm+1,n8 215,00 = 2py
20,
1 m n » 1
i lim — la; —L1P=0 —
8.2aP = {<all > e 20: " mn;;au mn
n—oo k
forsome L € c, and pis areal no.}

9. The space (26) of all eventually alternating double sequences is
defined by
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26 = {<aMn > € 2¢y ; aMN = _ gM, D+1 for g1 n > n0 and
amn = _ am+1.0 for 4]l m > m0}
R R R

The spaces 2¢ , 2co , 2¢ , 2c m 21, 2¢0 A 2% and 2/° are
normed linear spaces with the norm given by
I<ank> = SUP | amn|

from the above definition, It is clear that
R
2¢ c2cn2pe =20 (2)

R 0 0
and 20 c2¢ N2 2 (2c)

o
Definition 1. The o-dual of a subset E of 2w is defined as E =

{(amn) c 2(0 Zzl L Xmn

< oo forall (xMN) ¢ E}

Definition 2. Let E be a non-empty subset of 2w and r > 1. Then 1-

n
dual of order r of E is denoted by E  and defined by B.C. Tripathy

ZZ'“mn Ximn

n
and B.Sarma [3]asE = {<alk>e 2¢:
oo for all < xMN > ¢ E}

Taking r = 1 in above definition, we also get the a-dual of E.

A non-empty subset E of w is said to be perfect or n-reflexive

, L. nn
with respectton-dualifE  =(E ) =E.
Definition 3. Let E be a non-empty subset of 2w and 0 < r < 1;
then we [1] define the n-dual of order r of E as

zzl A Ximn

En = {(@mM) e 2 :

E}
Taking r = 1 in above definition, we also get the a-dual of E. Also, a
non-empty susbset E of w is said to be perfect or n-reflexive with

< oo, for all (xINN) g

m
respect to n-dual if E = E. In this paper, the sum without limit
means that the summationis fromm=1to candn =1 to o.

MAIN RESULTS

The proof of the following Lemma is obvious in view of the
definition of I-dual of double sequences.

Lemma (1) :
n
(i) E isalinear subspace of 2 for every E < 2.
. Ll B |
(ii) EcFimplesE oF

m
(iii) ECE  forevery E c 2.

n Ul
Theorem 1. (2I") = 2/°° and (2/°°) = 2/r. The spaces 2/' and
2% are perfect spaces. where 0 <r < 1.

) n
Proof : First, we shall show that (2I1) = 2/°°,

21

Z zl A Xmn

n
where, (211 = { (@) e 2¢ : < oo for all <
xmn s, ¢ (21r)}
Let < aMN > g 2/ gpd (xMN) e 21,

p
= sup [aMN | < oo and ZZIxmnI <o
:Sllp |amn|<¢x>and zzlx <oo

m n
.
22 2 L2
m n

< (sy;q:|amn|’)(2;|xmn|’) <
= 22 i

. Ul n
which shows that (am) e (2/r) , Therefore, 2/°° < (2IF)
For the converse, Let < ami > ¢ 2/

Then there exists a single sequence < al, Ni > guch that
.S 1
al, M > for some fixed real number s > .. where i is a positive

converges for every (xMi) ¢ 2/,

integer. Consider a double sequence (x™MM) which is defined as

1. . .
—if m=i,n=n;,ie N
xmn = '

0, otherwise

Then ZZIx

1"

il
~ <ocosincers> 1.

— (xIn) g 2pr

Zzlamn Xinn ">

= (amn an) e 2r

r

M8

= o0

I
l

i=1

n
Then, (amn) g (27r)
n
Hence (211) < 2°°
n
Thus, (2I0) =2/,

n
Similarly, we can prove that (2/°) =2/t
Furthermore,

mm " _

Since (21°°) = ‘(2100) ‘ _[211-][] =20
n

and (2lr)nn = ‘(2lr)n‘ =L _ 2

Therefore, the spaces 2/° and 2Ir are perfect.

RN R R R
Theorem 2. (3¢ ) = (2c© ) = 2[r. The spaces 2¢  and 2c©
are not perfect, where 0 <r < 1.

R R R
Proof : Since 20 =2¢ 2] <2/
By Lemma 1 (ii) and thorem (1),



22

2= ) @) ) e 0
Hence, In order to prove the theorem, It is sufficient to show
Rn
that (2c0 ) < 2r.
Let < aln > ¢ 21,
Then we can find sequences < mi > and < nl > of natural
numbers with mO = 1, n0 = 1 such that

mj nj nj_1nj_| 1

Zzlamn "~ Z Zlamn I" >

m=ln=1 m=1ln=1

Define a sequence (xMn) by
1

(l'+1)r/2 ,i=0,1,2,3, ...

: 3 . . . .
xmn = @+1) for mi-! < m>ml and ni-! < n <nl, for all i
e N.

Then (xmny ¢ 20

Now,
© oo mi ny M1 1|
Zzlamnxmn = Z zzlamn mn zzlamn mn
m=ln=1 -0\ m=In=1 m=1n=1
= S unr E j
(1+ % m=1n=1 m=1n=1

_ . Sr

> 3 '.1 z ! =oo(because 0< ¢ <1}

5r
i 6

=iy (1+z)2 *1+i)

Thus Zzlamn Xmn = oo

m=In=1

Then (amn) ¢ (2C§)n

R
Hence we have (260 )q c2r
Thus, Itis proved that

(2Cr)n = (20(15)n =2t
Further more,

since (oe*)" =[(20"’"T L e o]
T (R AR

R R
Therefore, the spaces 2c  and 20 are not perfect.

n n
Theorem 3. (2bv) = (2bv0) = 2jr. The spaces 2bv and 2bv0
are not perfect. where 0 <r<'1

Proof : Since, 2bv0 < 2by < 2/°°
By Lemma 1 (i) and theorem 1,
2 = (21°°)n c (2bv)n c (2bv0)n
Then, In order to prove the theorem, It is sufficient to show

n
that (2bvo) < 21
Let (amn) ¢ 21

Gupta and Ansari

Then we can find a sequence (nk) of natural numbers such
that nl = 1 such that

oo M4 ~1

D lay,

m=1 n=ny,

r
>k forallk=1,2,3,4, ...

Define a sequence (xMn) by
-1

xMn =k ifpKk<n<nk+lforallk=1,2,3, ...
Then
N oo oo ( gyl
A, _ ZZ[ $1An,, |]
m=1n=1 m=lk=1\_ n=ny

m=lk=1\_n=ny,

St 111
= mzl,;[nz,;k % k+1 k k+1) =0
Hence (xMn) e 2py0.
Now,

m=In=1 m=lk=1\" n=n

gy ~1

.
r r
CSSES g x|

m=1k=1\_ n=ny

oo oo Mgy =l 1
= ZZ Z Iamnlr‘p

m=lk=1\ n=ny

oo 1 o nkH—l
= Z_ Z Z la,, I

-
k:lk m=1 n=ny,

Sk

>klkr =

Zzlamn Xmn = o0

mlnl

—(alN) ¢ (2bV0)n
Hence (20%)" <2

n_ n
Therefore, we get Gov)" = (bve)' _ 2y,
Furthermore,

Since [(va)ml = (zb")n]n =0V =, I, #, by

and (2bVo)nn = [(2bV0)n]n = [2”]” =5 L, #, by
Therefore, the spaces 2bv and 2bv0 are not perfect.

n
Theorem 4. (26) = 2ir. The space 2c is not pefect.
Proof : Since, 26 2/

By Lemma 1 (ii) and theorem 1,
Ul n
2r=2r <o) .

n
conversely let (amn) e (20)
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Then ZZIam,, Fmn ' < oo for all (amN) e 2o,

m=In=1
Define a sequence (xM1) as
xmn =1 =_xm+ln=_ymn+lforgim,ne N
Then (xmn) e 2g.

and hence lellamn X I'= ZZIa
m=In=

m=In=1

= (@M e 2
n
Therefore, (26) < 2ir.

n
Thus, we get (26) = 2ir
Furthermore,
.. nn n n
“since, Co) = [(26) ]n =[2r)] =21° %26
Then, the space 2c is not perfect.

n
Theorem 5. Zap N 21°) = 2ir. The space 2wp N 21 is not
perfect where 0 <r < 1.

Proof .Since (2ap N 2/) < 2/
By Lemma 1 (ii) and theorem (1),
n n
2 =21y < Cop N 21)
conversely, Let (amn) ¢ 2jr

N D ¥ lay, !

m=1n=1
Define a sequence (xMN) as
xMN =1 forallm,ne N
Then, (xMN) e 2cop A2

But ZZI amn mn — zzl anVl |r = o0

m=ln=1 m=Iln=1
n
=@M ¢ 2op M 2*)
n
Hence Cap N 21°) < 2ir

n
Thus, we get (2ap N 21°) = 2ir
Furthermore,

(20)17 [@P) lm)nn = [(20)17 My lm)n]n = [21"]n =2[° 2 pr A 2]

23

=The space 2wp M 2/° is not perfect.

Remark: From theorem (1), (2), (3), (4), (6). It is obvious that

() = (oe® ) = (el T = () = Gbve ! = (o) = Gap AL =, i
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