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ABSTRACT: Xylan is the most abundant and prinicipal type of hemicellulose. It is a linear polymer of β-D xylopyranosyl units linked by (1–4) 
glycosidic bonds. Xylanases are most predominantly present in plant cell walls and are produced by different kinds of microorganisms like bacteria, 
fungi, protozoans and some yeast. Recently there is an increasing demand for cost effective microbial xylanolytic enzyme which benefits the 
industrial applications and are produced commercially. Xylanases has a wide range of applications in pulp and paper, food, animal feed, textiles and 
pharmaceuticals. This review discusses some of the properties of xylanases and their application in food industry. 
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Introduction 
Enzymes are distinct biological polymers that catalyze the chemical 
reactions and convert substrates to particular products. They are 
specific in function and speed up reactions by providing alternative 
pathways of lower activation energy without being consumed. These 
are the fundamental elements for biochemical processes and utilized 
in a number of food processing industries (Haq et al., 2006). The 
demand for the production of different enzymes from 
microorganisms in a large amount has been increased. There has 
been growing interest in xylanase production and its application 
because xylanase is important in the bioconversion of hemicellulose, 
which is a significant component of lignocellulosic material. 
Xylanase is a class of enzymes produced by microorganisms to break 
down a component of plant cell walls known as hemicellulose. Xylan 
is a polymer of glucose molecules and a major component of 
hemicellulose, helping to hold the cell walls together. Thus, the 
action of a xylanase enzyme helps to break down plant cell walls. 
This activity has applications in the food and paper-making 
industries, along with uses in agriculture and for human health. 
Xylanase (endo-1, 4-β-D-xylanohydrolase; EC 3.2.1.8) is a hydrolytic 
enzyme involved in depolymerization of xylan, the major renewable 
hemicellulosic polysaccharide of plant cell wall. It is produced by 
bacteria (Gilbert, H.J, et al., 1993, Kiddinamoorthy, J et al., 2008, 
Sanghi, A et al., 2007 and Sunna, A et al., 1997), fungi (Nair, S.G et 
al., 2008, Sunna, A et al., 1997), actinomycetes (Ninawe, S. et al., 
2007) and yeast (Liu, W. et al., 1998). Recently, interest in xylanase 
has markedly increased due its wide variety of biotechnological 
applications such as pre-bleaching of pulp, improving the digestibility 
of animal feed stocks, modification of cereal-based stuffs, 
bioconversion of lignocellulosic material and agro-wastes to 
fermentable products, clarification of fruit juices and degumming of 
plant fibers (Kapoor, M et al., 2001, Kuhad, R.C. et al., 1993, 
Virupakshi, K. et al., 2005) etc. Cellulase-free xylanases active at 
high temperature and pH are gaining importance in pulp and paper 
industry as they reduce the need for toxic chlorinated compounds 
making the bleaching process environment-friendly (Srinivasan, M.D. 
et al., 1999, Viikari, L et al., 1994). 
For the development of suitable xylanase as a pre-bleaching agent, 
the stability of enzyme at higher optimum pH and temperature is 
desirable (Bajpai B et al., 1994). Apart from its use in the pulp and 

paper industry, xylanases are also used as food additives to poultry 
(Bedford and Classen 1992), in wheat flour for improving dough 
handling and quality of baked products (Maat et al. 1992), for the 
extraction of coffee, plant oils, and starch (Wong and Saddler 1992), 
in the improvement of nutritional properties of agricultural silage 
and grain feed (Kuhad and Singh 1993), and in combination with 
pectinase and cellulase for clarification of fruit juices (Biely 1985) 
and degumming of plant fiber sources such as flax, hemp, jute, and 
ramie (Kapoor et al. 2001; Puchart et al. 1999; Sharma 1987).In this 
review, industrial applications of microbial xylanases are discussed 
with the main emphasis on food industrial applications. 
 
Xylan structure 
Hemicelluloses include xylan, mannan, galactan, and arabinan as the 
main heteropolymers. The classification of these hemicellulose 
fractions depends on the types of sugar moieties present. The 
principal monomers present in most of the hemicelluloses are D-
xylose, D-mannose, D-galactose, and L-arabinose. Xylan is a 
complex polysaccharide comprising a backbone of xylose residues 
linked by β -1, 4-glycosidic bonds (Fig. 1). The main chain of xylan is 
composed of β-xylopyranose residues (Whistler and Richards 1970). 
Xylan is the most common hemicellulosic polysaccharide in cell walls 
of land plants, representing up to 30%–35% of the total dry weight 
(Joseleau et al. 1992). Xylan is the major hemicellulose in hardwood 
from angiosperms, but is less abundant in softwood from 
gymnosperms; it accounts for approximately 15%–30% and 7%–
12% of the total dry weight, respectively (Whistler and Richards 
1970). Most xylans occur as heteropolysaccharides, containing 
different substituent groups in the backbone chain and in the side 
chain (Biely 1985). The common substituents found on the 
backbone of xylan are acetyl, arabinosyl, and glucuronysyl residues 
(Whistler and Richards 1970). Homoxylans, on the other hand, 
consists exclusively of xylosyl residues. This type of xylan is not 
widespread in nature and has been isolated from tobacco stalks 
(Eda et al. 1976), and guar seed husk (Montgomery et al. 1956).  
Arabinoxylans have been identified in wheat, rye, barley, oat, rice, 
sorghum, as well as in some other plants like pangola grass, 
bamboo shoots and rye grass. Although these polysaccharides are 
minor components of entire cereal grains, they constitute an 
important part of plant cell walls (Izydorczyk and Biliaderis 1995).
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Fig.1.Structure of xylan 

 

 

 

 

 

 

 

 

 
Fig 1(a): Structure of the O-acetyl-4-O-methylglucuronoxylan (a), of hardwood and of the arabino-4-O-methylglucuronoxylan (b), of soft wood. Xylanolytic enzymes involved in the 
degradation of the xylan: acetylxylan esterase, α-glucuronidase, endoxylanase and α-L-arabinofuranosidase. Hydrolysis realized by β-xylosidase (c). The numbers indicate carbon 

atoms to which group substitutions are bound. Ac Acetyl group (M.L.M.Polizeli et al., 2005) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Xylanolytic enzymes 
Xylanases catalyze the hydrolysis of xylans. These enzymes are 
produced mainly by microorganisms and take part in the breakdown 
of plant cell walls, along with other enzymes that hydrolyze 
polysaccharides, and also digest xylan during the germination of 
some seeds (e.g. in the malting of barley grain). Xylanases also can 
be found in marine algae, protozoans, crustaceans, insects, snails 
and seeds of land plants (Sunna and Antranikian 1997). 
 
Endo -1-4-β-xylanases 
Endo-1, 4-β-xylanase (1,4-β-D-xylan xylanohydrolase; EC 3.2.1.8) 
cleaves the glycosidic bonds in the xylan backbone, bringing about a 
reduction in the degree of polymerization of the substrate (Fig. 1a). 
Xylan is not attacked randomly, but the bonds selected for 
hydrolysis depend on the nature of the substrate molecule, i.e. on 
the chain length, the degree of branching, and the presence of 
substituents (Reilly 1981, Puls and Poutanen 1989, Li et al. 2000). 
Endoxylanases have been differentiated according to the end 
products they release from the hydrolysis of xylan (e.g. xylose, 
xylobiose and xylotriose and arabinose).Thus, xylanases may be 
classified as non-debranching (arabinose non-liberating) or 
debranching (arabinose liberating) enzymes. Many organisms are 
able to produce both types of xylanases, resulting in the maximum 

efficiency of xylan hydrolysis. In view of the synergistic interactions 
between endoxylanases and arabinofuranosidases, resolution of this 
dichotomy may be possible by determining whether cloned enzymes 
retain the ability to free arabinose as well as to hydrolyse main chain 
linkage, this would apply for enzymes cloned from different sources 
(Wu S.C. et al., 2006, Okazaki F et al., 2005, Liu J.R et al., 2005). In 
general, the endoxylanases show peak activity between 40 and 
80°C, and between pH 4.0 and 6.5, but optimal conditions have 
been found outside these ranges (Tables 1). Individual fungi and 
bacteria can exhibit a multiplicity of endoxylanases, in some cases 
three or more enzyme activities have been separated from a single 
culture (Rizzatti et al. 2004). Fungal and bacterial endoxylanases are 
almost exclusively single subunit proteins with molecular weight 
values ranging from 8.5 to 85 kDa and isoelectric point (pI) values 
between 4.0 and 10.3, most of them are glycosylated (Coughlan M.P 
et al., 1993, Polizeli M.L et al., 2005). The physicochemical property 
of fungal and bacterial endoxylanases is the apparent strong 
relationship between their molecular weight and pI, noted that with 
some exceptions endoxylanases fall in two main classes, those with 
molecular weight of less than 30kDa are usually basic proteins and 
those with molecular weight values in excess of 30kDa are acidic 
(Octavio Loera Corral et al., 2006).Some properties of 
endoxylanases are summarized in Table 1. 
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β- Xylosidases 
β-D- Xylosidases (1, 4-β-D-xylan xylohydrolase; EC 3.2.1.37) can be 
classified according to their relative affinities for xylobiose and larger 
xylooligosaccharides. It may be monomeric, dimeric or tetrameric 
with molecular weight ranging from 26 to 360 kDa. They are 
produced by a variety of bacteria and fungi and may be found in the 
culture fluid associated with the cell or both (Octavio Loera Corral et 
al., 2006). Purified β-xylosidases usually do not hydrolyze xylan, 
their best substrate is xylobiose and their affinity for 
xylooligosaccharides is inversely proportional to its degree of 
polymerization. They are able to cleave artificial substrates such as 
p-nitrophenyl- and o-nitrophenyl-β-D-xylopyranoside (Polizeli M. L. 
T. M. et al., 2005). An important role attributed to β- xylosidases 
comes into play after the xylan has suffered a number of successive 
hydrolyzes by xylanase. This reaction leads to the accumulation of 
short oligomers of β-D-xylopyranosyl, which may inhibit the 
endoxylanase. β- Xylosidase then hydrolyzes these products, 
removing the cause of inhibition, and increasing the efficiency of 
xylan hydrolysis (Andrade et al., 2004). The optimum temperature 
can vary from 40 to 80°C, but most β-xylosidases gives best assay 
results at 60°C. Their thermo stability is highly variable and depends 
on the organism in question. A good example of a stable enzyme is 
that from Aspergillus phoenicis, which retained 100% of its activity 
after 4 h at 60°C or 21 days at room temperature (Rizzatti et al., 
2001). 
 
α -Arabinofuranosidases 
Arabinofuranosidases removes L-arabinose residues substituted at 
positions 2 and 3 of the β-D-xylopyranosyl. There are two types with 
distinct modes of action, exo-α-L-arabinofuranosidase (EC 3.2.1.55) 
which degrades p-nitrophenyl-α- L-arabinofuranosides and branched 
arabinans (Fig. 1a), and endo-1, 5-α-L-arabinase (EC 3.2.1.99) 
which only hydrolyzes linear arabinans (Kaneko et al. 1993, De Vries 
et al. 2000). While the arabinose is released, there will be no 
degradation in the xylan backbone as there is no production of 
xylooligosaccharides. 
 
Acetylxylan esterase 

Acetylxylan esterase (EC 3.1.1.6) removes the O-acetyl substituents 
at the 2 and 3 positions of xylose residues in acetylated xylans. 
Some xylans are acetylated in their native state, although most of 
the xylans used to study xylanolytic enzymes are deacetylated after 
alkali extraction (Tenkanen M and Poutanen K, 1992, Sunna A and 
Antranikian G, 1997). Acetylxylan plays an important role in the 
hydrolysis of xylan, since the acetyl side-groups can interfere with 
the approach of enzymes that cleaves the backbone by steric 
hindrance and their elimination thus facilitates the action of 
endoxylanases (Octavio Loera Corral et al., 2006).  
 
α – Glucuronidases 
α- Glucuronidase (EC 3.2.1.131) hydrolyzes the α-1, 2 bonds 
between the glucuronic acid residues and β-D-xylopyranosyl 
backbone units found in glucuronoxylan. The substrate of α-
Glucuronidases differs according to enzyme sources. However, the 
substrate specificity varies with the microbial source and some 
glucuronidases are able to hydrolyze the intact polymer (Puls and 
Schuseil 1993, Tenkanen and Siika-aho 2000). It has also been 
noted that acetyl groups close to the glucuronosyl substituents can 
partially hinder the α-glucuronidase activity. 
 
The xylanosome concept 
Xylanosomes are discrete, multifunctional, multienzyme complexes 
found on the surface of several microorganisms (Sunna and 
Antranikian 1997). These complexes play an important role in the 
degradation of hemicelluloses. The extra cellular xylanosome 
complex B (CB) from Butyvibrio fibrisolvens H17c (Lin and Thomson 
1991) exists as a multisubunit protein aggregate. The complex has a 
molecular weight >669 kilo Daltons (kDa) and is composed of 11 
protein bands with xylanase activity and 3 bands showing 
endoglucanase activity. Clostridium papyrosolvens C7 possesses a 
multicomplex cellulase- xylanase system, which is responsible for 
hydrolysis of cellulose and xylan (Pohlschroder et al. 1994). This 
multiplex system consists of seven protein complexes whose 
molecular weight ranges from 500 to 660 kDa. Recently, Jiang et al., 
2005, have described a xylanosome with a molecular weight of 1200 
kDa.

 

 
Table 1: Characteristics of xylanases from different microorganisms (kDa-kiloDaltons) (Beg et al 2001) 

 
 
 
 

Microorganism 
 

 
 

Molecular 
weight 
(kDa) 

 
 
Optimum pH 

 
 
Opt.tempe-
rature 
(ºC) 

 
 
pI 
 
 
 

 
Km 

(Mg/ml) Vmax 
(µM/ 
mine per 
mg) 

 
 
References  

Bacteria 
Acidobacterium capsulatum 
 
Bacillus sp.W-1 
 
Bacillus circulans WL-12 
 
B.stearothermop-hilus T-6 
 
Bacillus sp.strain BP-23 
 
Bacillus sp.strain BP-7 
 
Bacillus polymyxa CECT 153 
 
Bacillus sp.strain K-1 
 
Bacillus sp.NG-27 
 
Bacillus sp.SPS-0 
 
Bacillus sp.strain AR-009 
 
Bacillus sp.NCIM 59 
Cellulomonas fimi 
 
Cellulomonas sp.N.C.I.M2353 
 
 
Micrococcus sp.AR-135 
 
Staphylococcus sp. SG-13 
 

 
41 
 
 
21.5 
 
15 
 
 
43 
 
 
32 
 
 
22-120 
 
 
61 
 
 
 
23 
 
 
- 
 
 
- 
 
 
23,48 
 

 
5 
 
 
6 
 
5.5-7 
 
 
6.5 
 
 
5.5 
 
 
6 
 
 
6.5 
 
 
 
5.5 
 
 
7,8.4 
 
 
6 
 
 
9-10 
 

 
65 
 
 
5 
 
- 
 
 
55 
 
 
50 
 
 
55 
 
 
50 
 
 
 
60 
 
 
70 
 
 
75 
 
 
60-75 
 

 
7. 3 
 
 
8.5 
 
9.1 
 
 
7,9 
 
 
9.3 
 
 
7-9 
 
 
4.7 
 
 
 
- 
 
 
- 
 
 
- 
 
 
- 
 

 
3.5 
 
 
4.5 
 
4 
 
 
1.63 
 
 
- 
 
 
- 
 
 
17.1 
 
 
 
- 
 
 
- 
 
 
- 
 
 
- 
 

 
 
403 
 
 
 
- 
 
 
- 

 
 
 

 
288 
 
 
 
- 
 
 
 
 
- 
 
 
 
112 
 
 
 
 
 

 
Inagaki et al.1998 
 
Okazaki et al.1985 
Esteban et al.1985 
 
Khasin et al.1993 
 
Blanco et al.1995 
 
Lopez et al.1998 
 
Morales et al.1995 
 
 
Ratannakanokchai et 
al.1999 
Gupta et al.1992 
 
Bataillon et al.1998 
 
Gessesse 1998 
 
Dey et al.1992 
Khanna & Gauri1993 
Chaudary & 
Deobagkar 1997 
 
Gessesse & 
Mamo1998 
 
Gupta et al.2000 
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Thermoanaeroba-cterium 
sp.JW/SL-YS 485 
 
Thermotoga maritime MSB8 

 
15.8,35 
 
14-150 
 
 
22,33,53 
 
 
 
56 
 
 
60 
 
 
24-180 
 
 
 
 
40,120 

 
6 
 
5-6.5 
 
 
6.5 
 
 
 
7.5-9 
 
 
7.5,9.2 
 
 
6.2 
 
 
 
 
5.4,6.2 

 
50-60 
 
40-45 
 
 
55 
 
 
 
55 
 
 
50 
 
 
80 
 
 
 
 
92-105 

 
4,8 
 
4.5-8.5 
 
 
8 
 
 
 
- 
 
 
- 
 
 
4.37 
 
 
 
 
5.6 

 
1.58, 3.50 
1.25-1.72 
 
1.7, 1.5 
 
 
- 
 
 
4 
 
 
3 
 
 
 
 
1.1, 0.29 

- 
 
 
 
 
- 
 
 
 
- 
 
 
 
 
- 

 
 

 
0.017, 
0.742 

 
 
- 

 
 

 
380, 

690 
 
 

 
 
- 
 
 
 
 
90 
 
 
 
- 

 
 
 
 
 
 

374, 
 
4760 

Shao et al.1995 
 
 
 
Winterhalter & Liebel 
1995 

Fungi 
Acrophialophora nainiana 
 
Aspergillus niger 
 
 
Aspergillus kawachii IFO 
4308 
Aspergillus nidulans 
 
Aspergillus fischeri Fxn1 
 
Aspergillus sojae 
 
 
Aspergillus sydowii MG 49 
 
Aspergillus aculeatus 
 
Aspergillus awamori 
 
Aspergillus fumigatus 
 
 
Aspergillus oryzae 
 
Cephalosporium sp. 
 
Fusarium oxysporum 
 
Geotrichum candidum 
 
Paecilomyces varioti 
 
Penicillium purpurogenum 
 
Thermomyces lanuginosus 
DSM5826 
 
Thermomyces lanuginosus-
SSBP 
 

 
17 
 
 
13.5-14.0 
 
26-35 
 
 
22-34 
 
 
31 
 
 
32.7, 35.5 
 
30 
 
 
18, 26,52 
 
39,23, 26 
 
 
19,8.5 
 
 
35 
 
 
30,70 
 
 
20.8, 23.5 
 
60-67 
 
20 
 
 
33,23 

 
6 
 
 
5.5 
 
 
2-5.5 
 
 
5.4 
 
 
6 
 
 
5, 5.5 
 
 
5.5 
 
 
4.0, 5.0 
 
 
4.0-5.5 
 
 
 
5.5 
 
 
5.0 
 
 
8 
 
 
6 
 
 
4 

 
50 
 
 
45 
 
 
50-60 
 
 
55 
 
 
60 
 
 
60,50 
 
 
60 
 
 
50,50, 70 
 
 
45-55 
 
 
 
55 
 
 
60 
 
 
40 
 
 
60,55 
 
 
50 

 
- 
 
 
9 
 
 
3.5-6.7 
 
 
- 
 
 
- 
 
 
3.5, 
3.75 
 
- 
 
 
- 
 
 
- 
 
 
 
- 
 
 
- 
 
 
- 
 
 
- 
 
 
3.4 

 
0.731, 
0.343 
 
- 
 
 
- 
 
 
- 
 
 
4.88 
 
 
- 
 
 
- 
 
 
- 
 
 
- 
 
 
 
- 
 
 
- 
 
 
0.15 
 
 
9.5, 8.45, 
8.7 
- 
 

 
- 
 
 
- 
 
 
- 
 
 
- 
 
 
5.88 
 
 
- 
 
 
- 
 
 
- 
 
 
- 
 
 
 
- 
 
 
- 
 
 
- 
 
 
0.41, 0.37 
 
- 
 

 
Ximenes et al.1999 
 
Frederick et al.1985 
 
Ito et al.1992 
 
Fernandez –Epsinar 
et al.1992 
Raj & Chandra 1996 
Kimura et al.1995 
 
Ghosh & Nanda1994 
 
Fujimoto et al.1995 
 
Kormelink et al.1993 
 
 
Silva et al.1999 
 
Kitamoto et al.1999 
 
Bansod et al.1993 
 
Christakopo-lous et 
al.1996 
Radionova et al.2000 
Kelly et al.1989 
 
Belancic et al.1995 
 
Cesar & Mrsa 1996 
 
 
Lin et al 1999 
 
 
Tan et al 1985 
 
 
Tenkanen et al.1992 
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Trichoderma harzianum 
 
Trichoderma reesei 

 
 
25.5 
 
 
 
23.6 
 
 
 
20 
 
 
20,19 

 
4 
 
 
7,3.5 
 
 
7 
 
 
 
6.5 
 
 
 
5 
 
 
5-5.5, 4-4.5 

 
50 
 
 
60,50 
 
 
60-70 
 
 
 
70-75 
 
 
 
50 
 
 
45,40 

 
5.2 
 
 
8.6, 5.9 
 
 
4.1 
 
 
 
3.8 
 
 
- 
 
 
 
9,5.5 

49.5 
 
 
- 
 
 
7.3 
 
 
 
3.26 
 
 
 
0.58 
 
 
3-6.8, 14.8-
22.3 

- 
 
 
- 
 
 
- 
 
 
 
6300 
 
 
 
0.106 
 
 
 
- 

Yeast 
Aureobasidium pullulans Y-
2311-1 
 
Cryptococcus albidus 
 
Trichosporon cutaneum 
SL409 
 
Actinomycetes 
Streptomyces sp.EC 10 
 
Streptomyces sp.B-12-2 
 
Streptomyces T7 
 
 
Streptomyces 
thermoviolaceus OPC-520 
 
 
Streptomyces 
chattanoogensis CECT 3336 
 
Streptomyces viridisporus 
T7A 
 
 
Streptomyces sp.QG-11-3 
 
Thermomonospo-ra curvata 
 

 
 
25 
 
 
48 
 
 
- 
 
 
 
 
32 
 
23.8-40.5 
 
20 
 
 
33,54 
 
 
 
 
48 
 
 
 
59 
 
 
 
- 
 
 
15-36 

 
 
4.4 
 
 
5 
 
 
6.5 
 
 
 
 
7-8 
 
6-7 
 
 
4.5-5.5 
 
 
7 
 
 
 
 
6 
 
 
 
7-8 
 
 
 
8.6 
 
 
6.8-7.8 

 
 
54 
 
 
25 
 
 
50 
 
 
 
 
60 
 
55-60 
 
 
60 
 
 
60-70 
 
 
 
 
50 
 
 
 
65-70 
 
 
 
60 
 
 
75 

 
 
9.4 
 
 
- 
 
 
- 
 
 
 
 
6.8 
 
4.8-8.3 
 
 
7.8 
 
 
4.2, 8 
 
 
 
 
9 
 
 
 
10.2-10.5 
 
 
 
- 
 
 
4.2-8.4 

 
 
7.6 
 
 
5.7, 5.3 
 
- 
 
 
 
 
3 
 
0.8-5.8 
 
 
10 
 
 
- 
 
 
 
 
4,0.3 
 
 
 
- 
 
 
 
1.2 
 
 
1.4-2.5 

 
 
 
2650 
 
 
 
 
- 
 
 
 
- 
 
 
 
 
 
 
 
- 
 
 
162-470 
 
 
7610 
 
 
 
 
- 
 
 
 
 
 
 
78.2, 19.1 
 
 
 
 
- 
 
 
 
 
 
 
158.85 
 
 
 
- 
 
 
 
 
 
 
 
 
 

 
 
Li et al.1993 
 
 
Morosoli et al.1986 
 
Liu et al.1998 
 
 
Lumba & Pennickx 
1992 
Elegir et al.1994 
 
Kesker 1992 
 
 
Tsujibo et al.1992 
 
 
 
Lopez-Fernandez et 
al.1998 
 
Magnuson & 
Crawford 1997 
 
Beg et al.2000a 
 
Stutzenberger & 
Bodine1992 

 
Xylanase production 

From the industrial point of view, xylanases are important enzyme in 
the bioconversion of hemicellulose, which is a significant component 
of lignocellulosic material. Filamentous fungi are particularly 
interesting producers of xylanases from an industrial point of view, 

due to the fact that they excrete xylan degrading enzymes into the 
medium, eliminating the need for cell disruption prior to purification 
(Sunna and Antranikian, 1997, Polizeli M.L et al., 2005). The various 
biotechnological techniques like submerged and solid state 
fermentation are employed for xylanase biosynthesis (Cai et al., 
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1998; Gawande and Kamat, 1999, Kansoh and Gammel, 2001). The 
submerged fermentation is most beneficial as compared to other 
techniques due to more nutrients availability, sufficient oxygen 
supply and less time required for the fermentation (Hoq et al., 1994, 
Gomes et al., 1994, Veluz et al., 1999, Bim and Franco, 2000 and 
Gouda, 2000). The production of microbial xylanases is preferred 
over plant and animal sources because of their availability, structural 
stability and easy genetic manipulation (Bilgrami and Pandy, 
1992).Most xylanase manufacturers produce these enzymes using 
submerged fermentation. The carbon source plays another major 
role in the economics of xylanase production. In order to replace the 
cost of the xylan, cost effective natural lignocellulosic substrates like 
wheat bran, sugarcane bagasse, rice straw, corn cobs etc., are used 
for the production of xylanase. In cultures on solid substrate, wheat 
bran and rice are regarded as inducers. Alternative substrates for 
enzyme production have also been reported, such as sugarcane 
bagasse, rice husks and wood pulp (Kadowaki et al. 1995, Damaso 
et al. 2000, Medeiros et al. 2000, Pandey et al. 2000, Singh et al., 
2000, Anthony et al., 2003). In liquid culture, xylanase is produced 
in response to xylans from various sources (Gomes et al. 1994, Liu 
et al. 1999, Rani and Nand 2000). A number of studies have been 
done on lignocellulosic wastes mainly wheat bran (Gwande P.V et 
al., 1999), sugarcane bagasse (Guiterrez-correa M et al.,1998) and 
wheat straw. Thermoascus aurantiacus ATCC 204492 is able to 
produce a high level of thermostable xylanase when sugar cane 
bagasse is used as a substrate (A.M.F.Milagres et al., 2004).In solid 
substrate fermentation using wheat bran and eucalyptus kraft pulp 
as the primary solid substrates, Streptomyces sp. QG-11-3 (Beg et 
al. 2000b) produces maximum xylanase yield at substrate-to-
moisture ratio of 1:2.5 and 1:3, respectively. However, on increasing 
or decreasing the moisture level, the xylanase yield marginally 
decreased. In contrast, a lower solid substrate to- moisture level of 
1:1 has been reported for maximum xylanase production by Bacillus 
sp. A-009 (Gessesse and Mamo 1999). An improvement in xylanase 
production by fungal mixed culture (Trichoderma reesei LM-UC4 E 1, 
Aspergillus niger ATCC 10864, and A. phoenicis QM 329) using solid 
substrate fermentation has also been reported (Gutierrez-Correa and 
Tengerdy 1998). A higher xylanase yield using solid substrate 
fermentation compared with submerged fermentation using wheat 
straw and sugarcane bagasse has been reported from thermophilic 
Melanocarpus albomyces IIS-68 (Jain 1995). Biswas et al. (1990) 
produced xylanase from Aspergillus ochraceus employing both 
fermentation methods i.e. liquid broth and solid state fermentation. 

The enzyme was purified using ammonium sulphate precipitation 
and gel filtration. The optimum pH for the enzyme was found to be 
6.0. Chen et al. (1990) screened a strain of Aspergillus niger C-2 
from the soil and treated with UV and EMS to obtain mutant colonies 
and the conditions for submerged fermentation were studied. The 
produced enzyme had weak thermal stability and when incubated at 
55°C for one hour, it lost 60% of its stability. Xiong et al. (2005) 
studied the effect of L-arabinose-rich plant hydrolysate for the 
synthesis of xylanase by T. reesi C-30. The researchers reported 
higher activities of xylanase in cultures containing oat husk and 
sugar beet pulp hydrolysate than on lactose. The xylanase activity 
was about 9 times higher with oat husk (510 IU/ml) than in lactose 
(60 IU/ml). In the case of batch cultivations on sugar beet pulp 
hydrolysate and lactose even higher xylanase activity (630 IU/ml) 
was obtained. Park et al. (2002) optimized conditions in solid state 
fermentation for xylanase synthesis. The activity of xylanase 
obtained after 5 days of fermentation was 50171 IU/ml. 
Senthilkumar et al. (2005) used A. fischeri to produce alkali-stable 
xylanase at pH 9.0 using wheat bran as carbon source in solid state 
fermentation.  Enhanced production of xylanase is obtained from a 
local soil isolate Trichoderma viride, using various lignocellulosic 
substrates like maize straw, bajra straw, jowar straw, wheat straw, 
oat hay and barseem hay in submerged culture fermentation( 
Meenakshi Goyal et al.,2008).The production of extracellular 
xylanase, β-xylosidase and α-L-arabinofuranosidase by the 
mesophilic fungus Penicillium janczewskii under submerged 
cultivation was investigated with different carbon sources like 
sugarcane bagasse, oat bran, wheat bran, corncobs, rice straw, 
orange waste and cassava peel( Cesar Rafael et al., 2010). Two 
xylanases, MFX I and MFX II, from the thermophilic fungus 
Malbranchea flava MTCC 4889 with molecular masses of 25.2 and 30 
kDa and pIs of 4.5 and 3.7, respectively were purified to 
homogeneity. The xylanases were optimally active at pH 9.0 and at 
60 ºC, exhibited a half-life of 4 h at 60 ºC, and showed distinct 
mode of action and product profiles when applied to birchwood, oat 
spelt, and larchwood xylan, and to wheat and rye 
arabinoxylan(Manju Sharma et al.,2010). Two xylanases were 
purified to electrophoretic homogeneity from the thermophilic 
fungus Sporotrichum thermophile grown in submerged liquid culture 
using wheat straw as carbon source. The enzymes, StXyn1 and 
StXyn2, have molecular masses of 24 kDa and 48 kDa, respectively, 
and are optimally active at pH 5 and at 60 ºC (Christina Vafiadi et 
al.,2010).

 

 
Table 2: Commercial preparations of Xylanases (Beg et al., 2001, Haltrich et al., 1996 and Octavia Loera et al., 2006) SSF: Solid stated fermentation, SmF: Submerged fermentation, 

N.c: Not cited. 
Company Product Strain and mode of 

fermentation 
Applications 

Alltech ,Inc,(USA) “Allzym PT” Aspergillus niger(SmF) Upgrading animal feed. 
Alltech ,Inc,(USA) “ Fibrozyme “ Aspergillus niger & Trichoderma 

viride(SSF) 
Upgrading animal feed. 

Amano Pharmaceutical 
Co,Ltd(Japan) 

“Amano 90” Aspergillus niger(SSF) Pharmaceutical, food and feed 
industry. 

A/S “Resinase” N.c Cellulose and paper industry 
Biocon ,(India) “Bleachzyme F” N.c Pulp bleaching 
Biotec “Ecosane” Trichoderma reesei(SmF) Animal feed 
Clariant(UK) “Cartazyme” Termomonospora fusca Pulp bleaching 
Ciba –Geiby Ltd(Switzerland) “Irgazyme40” Trichoderma 

longibrachiatum(SmF) 
Pulp and paper industry and 
animal feed 

 
 
Danisco Ingredients (Denmark) 

 
 
“Grindazym PF” & 
“Grindazym GP 5000” 

 
 
Aspergillus niger(SmF) 

 
 
Supplementation of poultry and 
piglet food 

 
Gamma Chemie 
GmbH(Germany) 

 
“Gammafeed X” 
 
 
“Gammazym X4000L” 

 
Trichoderma 
longibrachiatum(SmF) 
 
Trichoderma  
reesei(SSF) 

 
Production of wheat starch, 
baking and brewing industry. 
Feed and brewing industry 

Genecor International Europe 
Ltd(Finland) 

“Multifect XL” Trichoderma 
longibrachiatum(SmF) 

Food industry 

Hankyo Bioindustry 
Co.Ltd(Japan) 

“Xylanase250” 
 
 
“Hemicellulase 100” 

Trichoderma viride(SSF) 
 
Aspergillus niger(SSF) 

Baking industry & for 
macerating vegetables and 
fruits. 
Improving the filtration speed 
of saccharified cereal solutions 
and fruit juices 

Iogen Corp(Canada) “Xylanase GS35” Trichoderma  
reesei(SmF) 

Pulp bleaching,pulp cleaning 
and animal feed processing. 
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Novozymes (Denmark) 

 
“Bio-feed-plus” 
 
“Novozym 431” 
 
“Pulpzyme” 

 
Humicola insolens(SmF) 
Trichoderma 
longibrachiatum(SmF) 
Bacillus sp. 

 
Animal feed 
 
Animal feed 
 
Cellulose and paper industry 

Primalco Ltd Biotec(Finland) “Ecopulp X-200” Trichoderma  
reesei(SmF) 

Improve the bleachability o 
softwood & hardwood kraft 
pulps 

Quest International Ireland( 
Ireland) 

“Bioxylanase” Trichoderma  
reesei(SmF) 

Brewing and animal feed 
industry 

Rohm GmbH(Germany) “Rohalasa 7118” 
 
“Vernon 191” 

Aspergillus sp. & Trichoderma 
sp.(SmF) 
Aspergillus sp. & Trichoderma 
sp.(SmF) 

Reduction of viscosity in starch 
processing. 
Baking industry 

Seikagaku Corporation(Japan) No commercial name Trichoderma sp.(SmF) Structure studies of 
carbohydrates 

Shin Nihon Chemical (Japan) “Sumizyme X” Trichoderma koningii(SSF) Manufacturing of mushroom 
and vegetable 
extracts,enzymatic peeling of 
cereals and baking industry. 

Solvay Enzymes GmbH& 
Co.(Germany) 

“Solvay pentosanasa” Trichoderma  
reesei(SmF) 

Starch and baking industry 

Stern –Enzym GmbH & 
Co(Germany) 

“Sternzym HC46” 
“ Sternzym HC40” 

Trichoderma  
reesei(SmF) 
Aspergillus niger(SSF/SmF) 

Bakery industry 
Animal feed, hydrolysis of plant 
raw materials. 

 

Applications of xylanases 

Xylanases have aroused great interest recently due to their potential 
application in many industrial processes. In recent years, the 
biotechnological use of xylans and xylanases has grown remarkably 
(Bhat 2000, Aristidou and Pentilla 2000, Subramaniyan and Prema 
2000, 2002, Beg et al., 2000, 2001, Techapun et al., 2003). 
Xylanase began to be used in the 1980s, initially in the preparation 
of animal feed and later in the food, textile and paper industries. 
Currently, xylanase and cellulase, together with pectinases, account 
for 20% of the world enzyme market (Polizeli M.L et al., 2005). In 
the food industry, xylanase enzymes are used to accelerate the 
baking of cookies, cakes, crackers, and other foods by helping to 
break down polysaccharides in the dough (Godfrey T et al., 1996). 
In animal feeds, xylanase aids in the digestibility of wheat by poultry 
and swine, by decreasing the viscosity of the feed (Godfrey T et al., 
1996). Most commercial xylanases are produced by Trichoderma, 
Bacillus, Aspergillus, Penicillium, Aureobasidium, and Talaromyces sp 
(Godfrey T et al., 1996). In this review the main emphasis will be 
focused on xylanase application in food industries. 
 
Xylanases in baking and brewing industry 
The application of xylanolytic enzymes has increased for the last few 
decades owing to their potential effectiveness in breadmaking 
(M.S.Butt et al., 2008). Starch and non-starch carbohydrate 
hydrolyzing enzymes are commonly used in the bread making 
industry as bread improvers (Polizeli M.L et al., 2005, P.F.I.Javier et 
al., 2007). Enzymatic hydrolysis of non-starch polysaccharides leads 
to the improvement of Rheological properties of dough, bread 
specific volume and crumb firmness (M.Martinez-Anaya et al., 1997). 
The xylanases, like the other hemicellulases, break down the 
hemicellulose in wheat-flour, helping in the redistribution of water 
and leaving the dough softer and easier to knead. During the bread-
baking process, they delay crumb formation, allowing the dough to 
grow (Polizeli M.L et al., 2005). With the use of xylanases, there has 
been an increase in bread volumes, greater absorption of water and 
improved resistance to fermentation (Maat et al. 1992; Harbak and 
Thygesen 2002; Camacho and Aguilar 2003). Also, a larger amount 
of arabinoxylooligosaccharides in bread would be beneficial to health 
(Polizeli M.L et al., 2005). 
Xylanase transforms water insoluble hemicellulose into soluble form, 
which binds water in the dough, therefore decreasing the dough 
firmness, increasing volume and creating finer and more uniform 
crumbs (M.S. Butt et al., 2008).xylanases and enzymes that 
hydrolyze complex cell wall are used to improve dough handling 
properties, to enhance bread quality, extend shelf life by reducing 
the staling rate and they appear to be particularly effective in 
straight dough process(M.Wang et al., 2004,J.F.Sorensen et al.,2001 
and A.Monfort et al., 1997). 

Xylanases   improve dough characteristics and bread quality leading 
to improved dough flexibility, machinability, stability, loaf volume 
and crumb structure (Baillet, 2003; Guy and Sarabjit, 2003). Many 
enzymes such as proteases, xylanase and cellulases improve the 
strength of the gluten network and therefore, improve the quality of 
bakery products (Gray and BeMiller, 2003).The enzymatic hydrolysis 
of pentosans by hemicellulases or pentosanases at the optimal level 
improves the dough properties resulting in greater uniformity in 
quality characteristics (Rouau et al., 1994). Xylanases make the 
dough more tolerant to different flour quality parameters and 
variations in processing methods. They also make the dough soft, 
reduce the sheeting work requirements and significantly increase the 
volume of the leavened pan bread (Dervilly et al., 2002, Harbak and 
Thygesen, 2002). Xylanase along with protease, lipase and α-
amylase are significantly effective for obtaining bread with higher 
specific volume in microwave oven, as compared to the bread with 
no enzyme added. The texture profile analysis was greatly modified 
by xylanases and the firmness of bread crumb was reduced 
(P.R.Mathewson 2000,O. Ozmutlu et al.,2001,S.O.Keskin et 
al.,2004).The positive effect of xylanase on bread volume is due to 
the redistribution of water from the pentosan phase to the gluten 
phase. The increase in the volume of the gluten fraction increases 
its extensibility, which will result in better oven spring (Maat et al., 
1992). The improving effect of pentosanases on bread volume may 
be associated with a better gas retention during proofing, probably 
due to the action of enzyme in reducing the viscosity of the gelling 
starch and allowing greater and longer expansion in the oven before 
enzyme inhibition and protein denaturation (Martinez and Jimenez, 
1997). 
In biscuit-making, xylanase is recommended for making cream 
crackers lighter and improving the texture, palatability and 
uniformity of the wafers (Polizeli M.L et al., 2005). Xylanases, in 
conjunction with cellulases, amylases and pectinases, lead to an 
improved yield of juice by means of liquefaction of fruit and 
vegetables; stabilization of the fruit pulp; increased recovery of 
aromas, essential oils, vitamins, mineral salts, edible dyes, pigments 
etc., reduction of viscosity, hydrolysis of substances that hinder the 
physical or chemical clearing of the juice, or that may cause 
cloudiness in the concentrate (Polizeli M.L et al., 2005). Xylanase, in 
combination with endoglucanase, takes part in the hydrolysis of 
arabinoxylan and starch, separating and isolating the gluten from 
the starch in the wheat flour. This enzyme is also used in coffee-
bean mucilage (Wong et al. 1988; Wong and Saddler 1993). The 
main desirable properties for xylanases for use in the food industry 
are high stability and optimum activity at an acid pH. With the 
advances in the techniques of molecular biology, other uses of 
xylanases are being discovered (Polizeli M.L et al., 2005).Recently, a 
recombinant yeast of wine was constructed with the gene for 
xylanase of Aspergillus nidulans,xlnA, resulting in a wine with a 
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more pronounced aroma than is conventional (Ganga et al. 1999). 
During the manufacture of beer, the cellular wall of the barley is 
hydrolyzed releasing long chains of arabinoxylans which increase the 
beer’s viscosity rendering it “muddy” in appearance. Thus, xylanases 
are used to hydrolyze arabinoxylans to lower oligosaccharides 
diminishing the beer’s viscosity and consequently eliminating its 
muddy aspect (Debyser et al. 1997; Dervilly et al. 2002). α -L-
Arabinofuranosidase and β-D-glucopyranosidase have been 
employed in food processing for aromatizing musts, wines, and fruit 
juices (Spagna et al. 1998). 
 
Xylanase in animal feed 
Xylanase is used in the pretreatment of forage crops to improve the 
digestibility of ruminant feeds and to facilitate composting (Gilbert 
and Hazlewood 1993). Xylanases are used in animal feed along with 
glucanases, pectinases, cellulases, proteases, amylases, phytase, 
galactosidases and lipases. These enzymes break down 
arabinoxylans in the ingredients of the feed, reducing the viscosity 
of the raw material (Twomey et al. 2003). If xylanase is added to 
feed containing maize and sorghum, both of which are low viscosity 
foods, it may improve the digestion of nutrients in the initial part of 
the digestive tract, resulting in a better use of energy. Young fowl 
and swine produce endogenous enzymes in smaller quantities than 
adults, so that food supplements containing exogenous enzymes 
should improve their performance as livestock. Moreover, this kind 
of diet is found to reduce unwanted residues in the excreta 
(phosphorus, nitrogen, copper and zinc), an effect that could have a 
role in reducing environmental contamination (Polizeli M.L.M et al., 
2005). 
Café et al. (2006) gave nutritionally rich diets, with or without the 
addition of 0.1% Avizyme 1500 (xylanase, protease, and amylase) 
to the poultry birds. Birds fed on the diets supplemented with 
Avizyme exhibited significantly higher body weights, less mortality 
and greater amount of net energy from their diets as compared to 
the control group. Babalola et al. (2006) observed improved 
apparent nitrogen and fiber absorption as well as feed transit time 
by the application of xylanase in poultry feed. Moreover the enzyme 
addition in boiled castor seed meal (up to 150g/kg) was found to be 
acceptable and showed no adverse effect on growth performance or 
blood constituents. 
 
Conclusion 
Xylanases of microbial origin have great potential and highly benefits 
industrial application. Xylanase enzyme should be promoted in the 
food processing industry to replace the chemical emulsifiers and 
additives. Xylanase enzyme in combination with other enzyme can 
provide better results. 
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