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Abstract  

We present a convex conic Relaxation for a problem of maximizing 
an indefinite quadratic form over a set of, convex constraints on the 
squared variables, convex envelopes of non convex functions are 
widely used to calculate lower bounds of solutions of non linear 
programming problem (NLP). This paper proposes a non linear 
continuous convex envelope for (Linear, bilinear, trilinear fractional) 
monomial terms of odd degree and the range of variables (x, y, z) 
includes zero.  
We also drive a linear relaxation from the proposed envelope and 
computer both the Linear and non linear formulations with 
relaxations obtained using other approaches. 
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Introduction 

Our work has considered the derivation of convex relaxations for 
monomial terms of odd degree when the variables range includes 
zero. The main innovation of the αββ  algorithm is in the 

underestimations of a general non convex function. 
The convex relaxation is built in two stages. First the problem is 
reduced to a standard form where nonlinear terms of the same type 
are collected in lists, then each non linear term is replaced by the 
corresponding convex under and overestimations. Convexification is 
the second stage of the process where the actual convex relaxation 

of the original problem with in the current region [ , ]U Ux x  is 

built. Where ,L Ux x  are the variable bounds L and U are the 

linear constraints bounds. 

 

Convex relaxations 

A relaxation cannot be used to solve a difficult problem directly 
because the solution of the original problem cannot, in general, be 
directly inferred from the solution of the solution. 
Relaxations are however, very important in the field of deterministic 
global optimization. One of the most important tools in this field is 
the Branch and Bound algorithm, which uses a convex (or linear) 
relaxation at each step to calculate the Lower bound in a region. 
Convex relaxations for non convex problems are obtained by 
substituting the (non convex) objective function f(x) with a convex 

relaxation f(x) and the (non-convex) feasible region  with a 

convex set Ω  such that Ω ≤ Ω . 
 
Linear relaxations 

It is possible to use Linear over and underestimates for each non 
linear term in a nonconvex NLP in order to obtain a linear relaxation 
of the problem because a linear problem is always convex, the 
convexity properties that guarantee the validity of a lower bound 
remain true. The advantage of a Linear relaxation with respect to a 
convex relaxation is that Linear optimization software can be 

employed to solve the relaxed understanding problem. Linear 
optimization codes are much more efficient than non linear 
optimization software, hence the overall run of a branch and Bound 
algorithm must be faster. 
 

 Convex relaxation 

Floudas and Co- workers have proposed a Branch and Bound 
algorithm (Called αββ  (1, 2, 3, 4) ) for general non-convex 

twice- differentiable problems. The algorithm aims to solve a 
Problem in the given form.  
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Where 

, nC x R∈ and each , , ,i i i ib t d r  is a real constant; 

( )cf x  is a general Convex function 

, , , , ,j j j j j jB T f R U N  are integer functions 

[1,.........., ]N n→  

Each ( )U tf  is a concave univariate function term; 

Each ( )N tf  is a general non-convex function term. 

 
Relaxation for bilinear term xy 

For a bilinear term xy, McCormick’s under estimators [5] 
are used. A New variable WB is added to the problem (it 
replaces the bilinear term xy) and following inequality 
constrains are instead in the relaxed problem 
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The above Linear inequalities have been shown to be the 
convex envelope of a linear term [6]. The maximum 
separation of the linear term xy from its convex envelope 
max ( , )L L L L U U U Ux y y x x y x y y x x y+ − + − inside the 
rectangle 
[ , ] [ , ]L L Ux x y y×U  Occurs at the middle point 

[ , ]
2 2

L U L UX X Y Y+ +  and is equal to 

( ) ( )
4

U L U Lx x y y− −  [7] 

 
Relaxation for trilinear term in xyz 

For a trilinear xyz  a new variable TW  is introduced to replace 

the trilinear term xyz, together with the following constraints [8]. 

2L L L L L L L L L
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Relaxation for fractional term in x/y 

Fractional terms x/y are underestimated by replaced them with a 
new variable WF and adding two new constraints to the problem. 
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Relaxation for fractional Linear terms xy/z 

Fractional Linear terms
xy

z can be underestimated by Replacing 

them by a new variable FTW and adding a new constraints for 

( , , 0)L L LX Y Z ≥  
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To relax a concave univariate function ( ) ( )U if x  

over ( , )L Ux x , the αββ  algorithm uses a chord under 

estimator 
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The main innovation of the αββ  algorithm is in the 

underestimation of a general non-convex function term
( )

( )
iNf x .  

This is underestimated over the entire domain [ , ]L U nx x R⊆  

by the function ( )L x  defined as follows: 

1
( ) ( ) ( )( )

n
L U

i i i i i
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L x f x a x x x x
=
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Where ia are positive scalars that are sufficiently large to render 

the underestimating function convex. A good feature of this kind of 
under estimator is that, unlike other under estimators, it does not 
introduces any new variable or constraint, so that the size of the 
relaxed problem is the same as the size of the original problem 
regardless of how many non-convex terms it involves. 

Since the sum 
1

( )( )
n

L U
i i i i i

i

a x x x x
=

− −∑  is always negative, 

( )L x  is an under estimator for ( )f x . Since the quadratic term 

is convex. 
 
Conclusion 

This paper has provided a literature review of various techniques for 
reformulation of optimization problem. It is clear from the review 
presented in this paper that much progress has been achieved in 
both exact reformulation and convex relaxation of non-convex NLPs. 
Then quadratic, bilinear, trilinear and fractional terms reformulate by 
convex relaxation in linear form. Convex (Linear) relaxation at each 
step to calculate the lower bounds region. Thus many engineering 
optimization problem can be formulated as non-convex non-linear 
programming problems involving a non-linear objective function 
subject to non-linear constraints. 
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