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Abstract 

The triazole induced changes of antioxidants such as ascorbic acid, 
α-tocopherol, riboflavin, anthocyanin, and xanthophylls and the 
activities of antioxidant enzymes like ascorbate peroxidase, 
superoxide dismutase and catalase in Ipomoea batatas L. during 
initiation and maturation of storage roots were studied in field 
experiments. Each plant was treated with one liter of aqueous 
solution containing 20 mg L-1 triadimefon and 15 mg L-1  
hexaconazole on 40, 55 and 70 days after planting (DAP). The 
treatments were given by soil drenching. The plants were harvested 
on 45, 60, 75, 90 and 105 DAP and used for analyzing antioxidant 
contents and antioxidant enzyme activities. It was found that these 
triazole compounds increase the contents of ascorbic acid, α-
tocopherol, riboflavin, anthocyanin, and xanthophylls and activities 
of ascorbate peroxidase, superoxide dismutase, and catalase 
activities at 105 DAP. Triadimefon and hexaconazole treatments 
increased the antioxidation status in all parts of plants when 
compared to the control.  
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triadimefon; HEX,  hexaconazole; FW, fresh weight; DW, dry weight; 
AA, ascorbic acid; APX, ascorbate peroxidase; SOD, superoxide 
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Introduction  

Sweet potato (Ipomoea batatas) is one of the most important food 
crops in the world [1]. Sweet potato storage roots are used for food, 
beverages, alcohol fermentation and as natural colorant [2, 3]. 
Triazole compounds used for their fungi toxicity also have plant 
growth regulating properties, and thus modulate the balance of 
important plant hormones including GA, ABA and cytokinins [4, 5]. 
Triazoles inhibit gibberellin and ergosterol biosynthesis in plants [6] 
and induce a variety of morphological and biochemical responses in 
plants, including inhibited shoot elongation, stimulated root growth, 
and increased cytokinins and ABA, and altered ergosterol 
biosynthesis [5]. Triadimefon and hexaconazole are triazole 
compounds with fungicidal and plant growth regulating properties 
[7, 8]. The application of these triazole compounds can alter the 
metabolic equilibrium, result in stress-like symptoms in plants [9], 
but simultaneously, they can protect plants from apparently 
unrelated abiotic stresses like NaCl stress [10]. The non-enzymatic 
antioxidants including ascorbic acid were important components of 
plant antioxidative systems [11, 12]. α-tocopherol was major lipid 
soluble antioxidant in membranes which can break the chain of lipid 
peroxidation and acts as cell membrane stabilizer [13]. The 
antioxidative effects of riboflavin during lipid peroxidation are 
oxidized by the hydrogen peroxide which acts as an electron 
acceptor and the hydrogen peroxide, itself then decomposes. The 
extent of the phenomenon may be proportional to the amount of 
the antioxidant [14]. Anthocyanin pigments are found in the orange, 
red and blue colours of fruits, vegetables [15] xanthophylls protect 
leaves from photo inhibition [16] and certain flavanoids, flavones, 
flavan-3-oils and hydroxycinnamate have a proven antioxidant 
capacity [17, 18]. Dioxygenase mediated cleavage of xanthophylls 
precursor for ABA has been postulated to regulate the formation of 
xanthophylls in an inducible manner [19].  

The non-enzymatic antioxidants include lipid soluble membrane 
associated antioxidants (α -tocopherol and β–carotene) and water 
soluble reductants (glutathione and ascorbate). Antioxidative 
enzymes include superoxide dismutasse (SOD), ascorbate 
peroxidase (APX) and catalase (CAT). 

The present study is to understand the effect of hexaconazole and 
triadimefon on non-enzymatic antioxidants like ascorbic acid (AA), α-
tocopherol, riboflavin, anthocynanin, and xanthophylls, and 
antioxidative enzymes like APX, SOD and CAT activities  in the 
leaves and storage roots of sweet potato (Ipomoea batatas L.).  

Materials and Methods   
Plant materials and cultivation methods  

The cuttings of sweet potato (Ipomoea batatas L.) cv CO2 were 
collected from Tamil Nadu Agricultural University (TNAU) at Tamil 
Nadu, India. The triazole fungicides hexaconazole and triadimefon 
were obtained from Rallies and Bayer (India) Ltd., Mumbai 
respectively.  During the study, average temperature was 32/26o C 
(maximum/minimum) and the relative humidity (RH) varied between 
60% and 75%. The experiments were carried out in the field of 
Botanical Garden, Department of Botany, Annamalai University, at 
Tamil Nadu, India.  

The plants were cultivated during the months of November-February 
(2003-2004). The sprouts of storage roots were used as seed 
materials. Thirty cm cuttings of uniform thickness with 3 nodes were 
used for planting. One and half by 1.5 m plot was prepared for each 
plant and 105 plots were designed for this study. Vines were trained 
to grow within the plot. Ground water was used for irrigation to 
maintain the optimum moisture level in the soil. Completely 
Randomized Block Design (CRBD) was used for this experiment.   

Triazole treatments       
Each plant was treated with one liter of aqueous solution containing 
active principle concentration of 20 mg L-1 triadimefon and 15 mg L-1 

hexaconazole by soil drenching. The treatments were given on 40, 
55, and 70 days after planting (DAP).  The plants were harvested 
randomly on 45, 60, 75, 90 and 105 DAP. Leaves and storage roots 
were used for analyzing the non-enzymatic antioxidants and 
antioxidative enzymes. 

Antioxidants 

The ascorbic acid contents were estimated by the method of Omaye 
et al. [20], α-tocopherol by Backer et al. [21], and riboflavin by 
Sawhney [22]. 

Pigments 

The anthocyanin content was estimated by the method of Kim et al. 
[23] and the xanthophylls by Neogy et al. [24].     

Antioxidative enzymes 

APX (EC: 1.11.1.11) activity was estimated by the method of Asada 
and Takasaki [25] and APX expressed in units (U= change in 0.1 
absorbance min-1 mg-1 protein).  Superoxide dismutase (SOD) EC: 
1.15.1.1 by the method of Beauchamp and Fridovich [26] and SOD 
activity is expressed in units. One unit (U) is defined as change in 
0.1 absorbance h-1 mg-1 protein under the assay condition.  CAT (EC: 
1.11.1.6) was estimated using the method of Chandlee and 
Scandalios [27] and expressed in units.  (U=1mM of H2O2 reduction 
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min-1 mg-1 protein).  The enzyme protein was determined by the 
method of Bradford [28].   

Results and Discussion 
Effect of triadimefon and hexaconazole on ascorbic acid   

The ascorbic acid contents increased in the leaves and storage roots 
of triazole treated plants (Fig. 1). Triadimefon and hexaconazole 
caused a profound influence upon the regulatory mechanisms of the 
plant as a whole including the increase of antioxidants [5, 29, 30]. 
An increase in ascorbic acid content was reported in uniconazole 
treated tomato seedlings and paclobutrazol treated Dioscorea 
rotundata poir [30, 31]. Ascorbic acid is an important antioxidant 
which functions as the terminal antioxidant because the redox 
potential of ascorbate/monodehydroascorbate pair is lower than that 
of most of the bioradicals [32]. 

Fig. 1: Triazole induced changes in ascorbic acid, α- tocopherol content in the leaf 
and tuber of sweet potato. Values are mean ± S.D. of three samples 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Effect of triadimefon and hexaconazole on α- tocopherol  

α- tocopherol contents in the HEX and TDM treated plants were 
higher than those of controls in all growth stages (Fig. 1). The TDM 
treated plants showed an increased α- tocopherol content in leaves, 
stems as well as in roots, thus showed very good antioxidant 
potentials in different parts of the plant [30, 31, 33]. 
 
Effect of triadimefon and hexaconazole on riboflavin  
Riboflavin content increased with age in the leaves and storage 
roots of sweet potato (Fig. 2).  For triadimefon and hexaconazole 
treated sweet potato plants, storage roots showed an increased 
riboflavin content as compared to the control. Increase of riboflavin 
content in TDM and HEX treated plants can decrease the membrane 
degradation due to oxidation of lipid component of the membrane 
by the reactive oxygen species.  It is involved in the prevention of 
lipid peroxidation, is oxidized and acts as an electron acceptor [34] 
in TDM treated C. roseus [33]. 

Fig. 2: Triazole induced changes in riboflavin content in the leaf and tuber of sweet 
potato. Values are mean±S.D. of three samples 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Effect of triadimefon and hexaconazole on anthocyanin 

Triazole treatments increased the anthocyanin content to a higher 
level in the leaves when compared to storage roots (Fig. 3). 
Anthocyanin pigments are widespread in the plants, like fruits, 
flowers, leaves, roots and storage organs [15]. Concentration of 
anthocyanin was higher in sweet potato storage roots [35]. 
Triadimefon increased the anthocyanin content in radish cotyledons 
and its effect can be comparable to that produced by cytokinin [36]. 
Treatment with ABA stimulated the accumulation of anthocyanin and 
phenolics as well as ethylene production [37]. Triazoles induced an 
transients increase in ABA in rice plants [38]. The transient increase 
in ABA induced by TDM and HEX might have increased the 
anthocyanin content in the storage roots of triazole treated sweet 
potato.  

Fig. 3: Triazole induced changes in the anthocyanin content in the leaf and tuber of 
sweet potato. Values are mean±S.D. of three samples 

 

 

 

 

 

 

 

 

 

 

Effect of triadimefon and hexaconazole on xanthophylls  
Triazole treatments increased the xanthophylls content in the sweet 
potato leaves and storage roots (Fig. 4). Triadimefon treatment 
increased the xanthophylls content in the leaves of barley [39]. 
Xanthophyll protects leaves from photoinhibition [16]. Certain 
flavanoids, flavones, flavan-3-oils and hydroxycinnamate have a 
proven antioxidant capacity [17]. Hence the increased anthocyanins 
might increase the antioxidative potentials in sweet potato when 
treated with triazoles [33] 

Fig. 4: Triazole induced changes in the xanthophyll content in the leaf and tuber of 
sweet potato. Values are mean±S.D. of three samples 

 

 

 

 

 

 

 

 
Effect of triadimefon and hexaconazole on ascorbate 
peroxidase    

The activity of APX was higher in leaves as compared to storage 
roots of sweet potato (Fig. 5). Increased APX activity by TDM and 
HEX treatments would increase the demand for ascorbate 
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regeneration. Similar findings were reported in PBZ treated wheat 
[40, 41]. The increased ascorbic acids in the triazole-treated plants 
were well correlated with the increased APX contents [33].  
Ascorbate peroxidase is the main antioxidant enzyme in the 
chloroplast which contains superoxide dismutase in C. roseus  [33]. 

Fig. 5: Triazole induced changes in the APX, SOD, CAT activity in the leaf and tuber 
of sweet potato. Values are mean±S.D. of three samples 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Effect of triadimefon and hexaconazole on superoxide 
dismutase 

The antioxidative enzyme SOD activity increased with HEX and TDM 
treatment in the leaves and tubers (Fig. 5). According to Pastori [41] 
many stress situations caused an increase of the foliar SOD activity 
[40] and TDM treated radish, C. roseus [33,42] uniconazole treated 
wheat [43] and Cassia seedling [44] showed an increased SOD 
activity.  

Effect of triadimefon and hexaconazole on catalase 

The CAT activity was also increased in the leaves and storage roots 
of sweet potato (Fig. 5). The increase of CAT activity observed in 
TDM treatment is of great importance in plant protective 
mechanism. The H2O2 scavenging system represented by CAT is 
more important in importing tolerance to oxidative stress as 
observed in sweet potato and wheat varieties [45, 46, 47, 48]. The 
result showed that the TDM and HEX treatments enhanced the ROS 
scavenging capacity by the increased activity of the antioxidative 
enzymes like APX, SOD and CAT in the sweet potato [30] 

Conclusion 

In conclusion, our results indicated that the triadimefon and 
hexaconazole application at low concentration could be a potential 
tool to increase the antioxidative defense mechanisms in sweet 
potato.   

References 

1. Food and Agriculture Organization. 1997. FAO production 
yearbook of (1997). Vol. 51. Rome: FAO. 

2. M. Yoshimoto, S. Okuno, M. Yamaguchi, O. Yamakawa,   
Antimutagenicity of deacylated anthocyanins in purple-fleshed 
sweet potato. Biosci. Biotech. Biochem 65 (2001) 1652–1662. 

3. S. Islam, M. Jalaluddin, Sweetpotato—a potential nutritionally 
rich multifunctional food crop for Arkansas. J. Arkansas Agric. 
Rural Dev. 4 (2004) 3–7. 

4. R.A. Fletcher, A. Gilley, T.D. Davis, N. Sankhla, Triazoles as  
plant growth regulators and stress protectants, Hort. Rev. 24 
(2000) 55–138. 

5. R.A. Fletcher, A. Gilley, N. Sankhla, T.M. Davis,  Triazoles as 
plant growth regulators and stress protectants. Horticultural 
Review, John Wiley and Sons Inc. 24 (2000) 56-138. 

6. W. Rademacher, Growth retardants: Effect on Gibberellin 
biosynthesis and other metabolic pathways.  Ann. Rev. Plant 
Physiol.  (2000)    

7. Kishorekumar, C.A. Jaleel, P. Manivannan, B. Sankar, R. 
Sridharan, and R.Panneerselvam, Comparative effects of 
different triazole compounds on growth, photosynthetic 
pigments and carbohydrate metabolism of Solenostemon 
rotundifolius, Colloids Surf. B: Biointerfaces 60(2) (2007): 207-
212.  

8. R.A. Fletcher, Hofstra, Triazole as potential plant protectants, 
in: D.Berg, M. Plempel (Eds.), Sterol Biosynthesis Inhibitors, 
Ellis Horwood Limited., Cambridge, England. (1988) 321-331. 

9. T. Gaspar, T. Frank, B. Bisbis, C. Kevers, L. Jouve, J.F. 
Hausman, J. Dommes, Concepts in plant stress physiology, 
application to plant tissue cultures, Plant Growth Regul. 37 
(2002) 263–285. 

10. R. Panneerselvam, M. Muthukumarasamy, L. Karikalan, 
Triadimefon enhance growth and net photosynthetic rate in 
NaCl stressed plants of Raphanus sativus L., Photosynthetica, 
34 (1997) 605-609. 

11. G. Noctor, C.H. Foyer, Ascorbate and glutathione: keeping 
active oxygen under control. Ann. Rev. Plant Physiol. and Plant 
Mol. Biol., 49: (1998). 249-270. 

12. N. Smirnoff, G.I. Wheeler,   Ascorbic acid metabolism in plants.  
In: Bryani JA, Burrell MM, Kruger NJ. (ed.). Plant carbohydrate 
biochemistry. Oxford: Bios. Scientific Publishers. (1999)  215-
229. 

13. D.G. Davis, H.R. Swanson, Activity of stress-related enzymes in 
the perennial weed Leafy spurge (Euphorbia esula L.), Environ.  
Exp. Bot. 46 (2001) 95–108. 

14. B. Karthikeyan, C.A. Jaleel, R. Gopi, M. Deiveekasundaram, 
Alterations in seedling vigour and antioxidant enzyme activities 
in Catharanthus roseus under seed priming with native 
diazotrophs, J. Zhejiang Univ. Sci. B 8 (2007) 453–457. 

15. G. Sudha, G.A. Ravishankar,   The role of calcium channels in 
anthocyanin production in callus culture of Daucus carota. Plant 
Growth Regul. 40 (2003) 163-169.  

16. S.P. Long, P.P. Humphries, P. Falkowski, Photoinhibition of 
photosynthesis in nature. Ann. Review of Plant Physiol. Plant 
Mol.  Biol. 45(1994) 633-662. 

17. C.A. Rice-Evans, N.J. Miller, G. Paganga, Antioxidant properties 
of phenolic compounds, Trends in Plant Sci.  2 (1997) 152-159. 

18. J.G. Scandalios, Molicular genetics of superoxide dismutase in 
plants, in: J.G. scandalios (Ed.), Monograph 34, oxidative stress 
and the Molecular Biology of Anrtioxidant defense, Cold Spring 
Harbor Laboratory Press, Cold Spring Harbor, New York. (1997) 
PP. 527-568. 

19. A.D. Parry, Abscisic acid metabolism. Methods in plant 
Biochemistry. 9 (1993) 381-402. 

20. S.T. Omaye, J.D. Turnbull, H.E. Sauberilich, Selected methods 
for the determination of ascorbic acid in a  animal cells, tissues 
and fluids. Methods Enzymol. Academic Press, New York. 62: 
(1979) 3-11. 

21. H. Backer, O. Frank, B. De Angells, S. Feingold, Plasma 
tocopherol in man at various times after ingesting free or 
acetylaned tocopherol. Nutr. Rep. Int., 21: (1980) 531-536. 

22. S.K. Sawhney, and M. Sing, Mineral vitamins. 6.5.4 Experiment: 
Measurment of riboflavin in human urine, Introductory Pract. 
Biochem. (2000), 105-106.   

23. H.S. Kim, K. Mizuno, Sawada, S. Fujimura,  Regulation of tuber 
formation and ADP- Glucose pyrophosphorylase (AGP ase) in 
sweet potato (Ipomoea batatas  (L.) Lam.) by nitrate, Plant 
Growth Regul. 37 (2002) 207-213.     

24. M. Neogy, J.K. Datta, S. Mukherji, A.K. Roy,   Effect of 
aluminium on pigment content, hill activity and seed yield in 
mungbean Indian. J. of Plant Physiol. 6(4) (2001) 381- 385.   

25. Y.T. Chen, K.W. Lin, Effects of heating temperature on the total  
phenolic compound,  antioxidative ability and the stability of 
dioscorin of various yam cultivars, Food Chem. 101 (2007)  
955–963.  

26. C.A. Jaleel, R. Gopi, P. Manivannan, R. Panneerselvam, 
Responses of antioxidant defense system of Catharanthus 
roseus (L.) G. Don. To paclobutrazol treatment under salinity, 
Acta Physiol. Plant. 29 (2007) 205– 209. 

27. G.K. Isamah, S.O. Asagba, A.E. Thomas, Lipid peroxidation  o-
diphenolase, superoxide dismutase and catalase profile along 
the three  physiological regions of Dioscorea rotundata Poir. cv. 
Omi., Food Chem. 69 (2000)1–4. 



J Exp Sci Vol. 1, Issue 3, Pages 10-13 [2010] 

 

 

28. M.A. Bradford, a rapid and sensitive method for the 
quantification of microgram quantities of protein utilizing the 
principle of protein dye binding, Ann. Biochem.  72, (1976) 
248-253.  

29. T. Gaspar, T. Frank, B. Bisbis,  C. Kevers,  L. Jouve,  J.F. 
Hausman,  J. Do Concepts in plant stress physiology,
 allocation to plant tissue cultures, Plant growth Regul. 37 
(2002)  263-285. 

30. C.A. Jaleel, P. Manivannan, M. Gomathinayagam, R. Sridharan, 
R. Panneerselvam. Responses of antiodant potentials in 
Dioscorea rotundata poir. Following paclobutrazol drenching, 
C.R. Biol. 330 (2007) 798-805.  

31. M. Kopyra, E.A. Gwozdz, Antioxidant enzymes in paraquat and   
cadmium resistant cell lines of horseradish, Biol. Lett. 40 (2003) 
61–69. 

32. J.G. Scandalios, L. Guan, A.N. Polidoros,  Catalase in plants: 
gene structure, properties, regulation and expression, in: J.G. 
Scandalios (Ed.), Oxidative Stress and the Molecular Biology of 
Antioxidant Defenses, Cold Spring Harbor Laboratry, Cold 
Spring Harbor, New York, USA. (1997) PP. 343-406. 

33. C.A. Jaleel, P. Manivannan, G. M. A.Lakshmanan, R. 
Panneerselvam, Triadimefon induced changes in the 
antioxidant metabolism and ajmalicine production in 
Catharanthus roseus (L.) G. Don. Plant Sci.171 (2006) 271-276.  

34. C.H. Foyer, Prospects for enhancement of the soluble 
antioxidants, ascorbate and glutathione, BioFac. 15 (2001) 75–
78. 

35. M.G. Kulkarni, R.A. Street, J. Van Staden, Germination and 
seedling growth requirements for propagation of Dioscorea 
regeana (Kunth) Dur. and Schinz – A tuberous medicinal plant,  
South Afr. J. Bot. 73 (2007) 131–137. 

36. A.P. Kamountsis, A.G. Chronopoulon-Sereli, Paclobutrazol 
affects growth and flower bud production in gardenia under 
different light regimes, Hort. Sci. 34 (1999) 674–675. 

37. Y.  Jiang, D.C. Joyce, ABA effects on ethylene production, PAL 
activity, anthocyanin and phenolic content of strawberry fruit. 
Plant Grwoth Regul. 39 (2003) 171-174.   

38. K. Izumi, S. Nakagwa, M. Kobayashi, H. Oshio, A. Sakurai, N. 
Takahashi, Levels of IAA, cytokinins, ABA and ethylene in rice 

plants as affected by gibberelin biosynthesis inhibitior 
uniconazole- P, Plant cell Physiol. 29 (1988) 97-104.  

39. M. Drazkiewicz, E.S. Polit, Z. Krupa, Response of ascorbate 
glutathione cycle to excess copper in Arabidopsis thaliana (L.), 
Plant Sci. 164 (2003) 195–202. 

40. G. Pastori, P. Mullineax. C.H. Foyer,  Post transcriptional 
regulation prevents accumulation of glutathione reductase 
protein activity in the bundle sheath cells of maize, implication 
on the sensitivity of maize to low temperature, Plant Physiol. 
(2000) 122, 66. 

41. M. Berova, Z. Zlatev, N. Stoeva, Effect of paclobutrazol on 
wheat seedlings under low temperature stress, Bulg. J. Plant 
Physiol. 28 (2002) 75-84. 

42. M. Muthukumarasamy, S. Duttagupta, R. Panneerselvam, 
peroxidase, polyphenol oxidase and superoxide dismutase 
activities by triadimefon in Enhancement of NaCl stressed 
Raphanus sativus L. Biol.  Plantarum. 43 (2000) 317-320. 

43. C.L.  Sgherri, M. Michada, M.I.  Flavio,   Antioxidant enzymes in 
wheat subjected to increasing water déficit and reatering. J.  
Plant Physiol. 157 (2000) 270-273. 

44. A. Sheela, V. Pandy, Stimulation of stress–related antioxidative 
enzymes in combating stress in cassia seedlings. Indian J. Plant 
Physiol. 8. (2003) 264-269. 

45. S.Y. Hwang, H.W. Lin,  R.H. Chern, H.F. Lo,  L. Li, Reduced 
susceptibility to water logging together with high light stress is 
related to increases in superoxide dismutase and catalase 
activity in sweet potato, Plant Growth Regul. 27 (1999) 167-
172.   

46. R.K. Sairam, P.S.Deshmukh, D.C. Saxena, Role of antioxidant 
system in wheat gnotypes tolerance to water stress, Biol.  
Plantarum. 41 (1998) 387-394. 

47. T. Gaspar, T. Frank, B. Bisbis, C. Kevers, L. Jouve, J.F. 
Hausman, J. Dommes, Concepts in plant stress physiology, 
application to plant tissue  cultures, Plant Growth Regul. 37 
(2002) 263–285. 

48. H. Willekense, S. Chamnogpol, M. Davey, M. Schraudner, M. 
Langebartels, M. Van Montagu, D. Inze. W. Van Camp,  
Catalase is a sink for H2O2 and is indispensable for stress 
defense in C3 Plants, EMBO J. 16 (1997) 4806-4816. 

 

 

                                                 
Please Cite This Article As: T. Sivakumar, G. M. A. Lakshmanan, P. V. Murali and R. Panneerselvam. 2010. Alteration of Antioxidative Metabolism 
Induced by Triazoles in Sweet Potato. J. Exp. Sci. 1(3): 10-13. 
 


