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INTRODUCTION

Extreme weather events are becoming more common and 
more severe as a result of climate change, and this has serious 
implications for the future of livestock, farmer incomes and 
livelihoods, and food security worldwide (Lipper et al., 2014). 
The climate is projected to change rapidly, with global warming 
expected to increase by 1.5 degrees Celsius by 2040 and the 
average surface temperature predicted to increase by 1.88 
degrees Celsius by 2100 (Jevrejeva et al., 2016; Geiger et al., 
2021). Heat stress (HS) caused by climate change is a major 
factor that affects global livestock production. The strength of 
HS is governed by several factors that act together, including 
but not limited to air temperature, humidity, sunshine, and 
wind velocity (Kadzere et al., 2002; Herbut et al., 2018). When 
an animal cannot disperse an excess of endogenous heat to 
maintain homeothermic properly, hyperthermia arises due to 
an imbalance between metabolic heat generation and body 
heat degeneracy (Berman, 2011; Bernabucci et al., 2014). 
These environmental conditions affect animal development, 
reproduction, and productivity (Osei-Amponsah et al., 2019).

Reduced milk production can be traced to several causes, 
including increased body temperature that causes a decrease 
in feed intake, changes in hormone profiles, and modifications 
in energy metabolism (Baumgard et al., 2007; Collier et al., 
2008). HS has been shown to affect milk production in dry cows 
during successive lactations by altering the mammary gland 
(Rhoads et al., 2009; Carabaño et al., 2019). Due to decreased 

feed intake, milk production drops from 25% to 40% in dairy 
cows with HS (Baumgard et al., 2011). The dairy industry 
suffers a significant financial burden when milk production 
decreases by 10 to 35% during the hot summer (St-Pierre et al., 
2003). Annual financial losses due to high-stakes syndrome 
in the dairy sector can be attributed to several factors, the 
most prominent of which is a decrease in milk production. 
However, reduced reproductive efficiency increases diseases, 
and increased mortality plays a role (Vitali et al., 2009). For 
example, heat stress causes billions of dollars per year in losses 
in cattle production worldwide (Osei-Amponsah et al., 2019). 
In the United States, heat stress is responsible for between 
$1.69 and $2.36 billion yearly economic losses to the livestock 
industry. The dairy industry accounts for $897 to $1500 million 
of these losses. The pork industry generates between $299 and 
$316 million, while the poultry sector generates between $128 
and $165 million (St-Pierre et al., 2003). Milk production 
decreases, reproduction slows, metabolic problems increase, 
and immune systems weaken due to high blood pressure, all 
contributing to economic losses in the dairy sector (Sordillo, 
2016; Zigo et al., 2021).

More studies are needed on how to adapt to climate change, 
particularly in developing countries (Escarcha et al., 2018). As 
the world population increases, it will become more necessary 
to expand livestock production to meet food demand 
(FAO, 2018; Henry et al., 2018). The incidence, duration, and 
severity of HS in dairy cattle will increase as global warming 
continues (Min et al., 2007; Theusme et al., 2022). Therefore, 
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it has become a problem for the global dairy sector to reduce 
the impact of HS on dairy herd production (Bouraoui et al., 
2002). This review looks at how heat stress has affected the 
dairy industry’s sustainability and elaborates on genomic 
selection for thermotolerance in dairy cattle as sustainable 
breeding practices to increase dairy cows’ ability to withstand 
high temperatures.

THERMONEUTRAL ZONE

Cattle can keep their core body temperature stable within 
relatively tight parameters. The thermoregulation systems in 
these animals are activated when exposed to temperatures 
that cause pain, cold, or heat (Lezama-García et al., 2002). The 
goal of these processes is to maintain an internal temperature 
that is within the physiologically tolerable range. Body heat 
production equals body heat dissipation in the thermoneutral 
zone (TNZ). The animals are in the thermal comfort range 
when confined within the thermoneutral zone. As a result, 
the body’s metabolism drops to its minimum level (Lezama-
Garca et al., 2002). This disorder prevents the animal from 
using its normal physiological processes to lose heat to its 
surroundings or produce its own internal thermal energy. 
As a result, it can maintain equilibrium in body temperature 
with its surrounding environment and direct all of its available 
energy toward achieving optimal performance levels. In this 
circumstance, the sensory processes of heat exchange are 
sufficient to keep the temperature at thermal equilibrium 
(Mota-Rojas et al., 2021).

Minimal physiological expenses and maximum 
productivity are typically achieved within the TNZ. The TNZ 
range of an animal depends on several factors, including its 
age, breed, species, kind of feed consumed, diet composed of, 
the initial state of temperature acclimatization, production 
method, special housing and pens, tissue insulation, external 
insulation, and behavior (Mota-Rojas et al., 2021). The best 
thermal neutral zone is an ambient temperature below 21 °C 
throughout the day (Kolbe et al., 2022). Dairy cows can only 
perform at their highest levels of efficiency if they maintain 
a constant core body temperature in the TNZ. TNZ ranges 
from 1.7 °C to 21 °C for lactating dairy cattle and depends 
on the breed, degree of acclimatization, milk production, and 
dry matter intake (Kolbe et al., 2022). When an organism’s 
temperature deviates too far from its optimal level, it hinders 
its ability to carry out production operations (Heal & Park, 
2016). Even slight increases in core temperature significantly 
affect tissue and endocrine function, affecting fertility, growth, 
breastfeeding, and working ability (Angilletta, 2009; Heal & 
Park, 2016).

When AT increases and exceeds the UCT limit in the 
homeotherm zone; as a result, animals have difficulty 
activating evaporative thermolysis systems (Kamal et al., 2016; 
Sejian et al., 2018). Animals rely on water evaporation to rid 
their bodies of the excess heat that their metabolisms produce 
(Smith et al., 2015). Cattle begin to change their behavior 

as the variation in environmental temperature reaches the 
limit of the UCT. Performance deteriorates when body 
temperature rises above the UCT, causing a decrease in milk 
production and a change in milk composition when the cow 
experiences heat stress. They respond to a rise in temperature 
by increasing their need for shade, drinking and feeding less, 
and decreasing their activity near cooler surfaces (Ratnakaran 
et al., 2017; Madhusoodan et al., 2019). When an animal’s 
body temperature increases above its ability to cool itself by 
evaporation, a condition known as hyperthermia sets in and 
ultimately causes death (Figure 1).

The LCT is the temperature below which an increase in its 
heat production rate is required to keep the internal temperature 
constant (Figure 1). When the ambient temperature drops 
below the LCT, the animal’s thermoregulation system swings 
into action to maintain body heat or generate more heat inside 
the animal. This is accomplished by consuming more food, 
which generates metabolic heat by breaking down nutrients 
in the digestive system (Hankenson et al., 2018). To retain 
heat, animals form groups, avoid lying on frigid surfaces, 
and expose themselves directly to solar radiation if they have 
access to these resources (Nardone et al., 2006). Animals can 
die if the circumstances of their environment do not change to 
make them more thermally comfortable (Nardone et al., 2006; 
Collier & Gebremedhin, 2015).

HEAT STRESS IN DAIRY COWS

The term “stress” refers to the intensity of external pressures 
destabilizing an organism’s internal systems from their neutral 
or ground position (Kadzere et al., 2002). Heat stress, in the 
context of a dairy cow, can be thought of as the sum of all pressures 
that cause the cow to make modifications on scales from 
molecular to ecological to prevent physiological malfunction 
and better suit its environment (Kadzere et al., 2002; Gagge 
& Gonzalez, 2010). Homeotherms exert considerable effort 
to maintain proper biochemical reactions and physiological 
processes linked to metabolism to maintain their core body 
temperature within relatively restricted limits. An animal 
must maintain homeothermy by being in thermal equilibrium 

Figure 1: Variation in body temperature with increased or 
decreased environmental temperature. LCT is the lower 
critical temperature, and UCT is the upper critical temperature 
(Ehrlemark & Sallvik, 1996)
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with its surroundings, including radiation, air temperature, 
movement, and humidity (Aggarwal & Upadhyay, 2013). 
There is a comfort zone for lactating dairy cows where the 
temperature remains between 5 OC and 25 OC, known as the 
thermoneutral zone (TNZ) (Golher et al., 2021). The cow is 
under heat stress when outside temperatures exceed 26 °C 
and cannot cool off properly. In the absence of extreme heat 
stress, the thermoregulatory systems of the body typically 
keep temperatures within 1 OC of normal (Rejeb et al., 2016).

Temperature readings have been used to evaluate the 
effects of thermal stress and relief (Berman, 2005). The 
body temperature of dairy cattle is a sensitive measure of 
thermal stress due to the high sensitivity of animals to heat 
(Gebremedhin et al., 2016; Shu et al., 2021). The temperature-
humidity index (THI) was proposed as an indication of 
thermal climatic conditions by McDowell et al. (1976). The air 
temperatures of the wet and dry bulb for a given day are used 
to obtain the THI in the following manner.

THI = 0.72(W + D) + 40.6 (2.1)

where W is the temperature of the wet bulb, and D is the 
dry bulb in OC.

Comfortable temperatures have a THI of 70 or less, 
stressful temperatures of 75-78, and extremely uncomfortable 
temperatures of 78 or more, rendering thermoregulation 
mechanisms ineffective and rendering lactating cows 
incapable of maintaining appropriate body temperatures. 
Milk synthesis is traditionally believed to decrease when 
THI reaches 72 (Herbut & Angrecka, 2012; Bernabucci et al., 
2014). The threshold for heat stress was estimated to be a THI 
value of 72 for production and around 68 for reproduction. 
Increased respiration rates and rectal temperatures are 
hallmarks of heat stress, linked to reduced metabolism and 
poor reproductive performance in dairy calves. Therefore, 
herd management choices are influenced by estimated THI 
based on ambient temperature (AT) and relative humidity 
(RH) for dairy cattle during the warm season (Kadzere et al., 
2002; Bohmanova et al., 2007).

RESPONSE TO HEAT STRESS

Homeotherms like dairy cows have evolved to thrive in 
essentially temperature-neutral habitats. Natural metabolic 
balance is disrupted by HS, which often results in a positive 
feedback loop after temperatures rise above the UCT (Kadzere 
et al., 2002; Polsky & von Keyserlingk, 2017). The metabolism 
of significant nutrients in dairy cattle increases metabolic 
heat production, making the high-producing cow susceptible 
to high ambient temperatures and humidity (Sammad et al., 
2020a). Assuming that the methods for dissipating heat are 
the same since TNZ shifts downward as milk output, feed 
intake, and heat generation increase, high-producing cows are 
much more affected than low-producing cows (Sammad et al., 
2020b). The dairy cows’ physical, metabolic, and physiological 
processes are activated to mitigate the effects of heat stress 

and keep the body at a constant temperature (Polsky & von 
Keyserlingk, 2017; Michael et al., 2022). Most of the changes 
involve lowering its metabolic rate and increasing the rate at 
which heat is lost to the environment. Increased respiration 
rates, rectal temperature, heart rate, panting, drooling, intense 
sweating, decreased feed intake, and reduced milk production 
are the reaction of dairy cows to temperatures in TNZ (Roth, 
2008; Hempel et al., 2019). Depending on the breed, dairy cows 
may physically respond differently to heat stress. Compared to 
Bos taurus cattle, Bos indicus and other tropical breeds are 
less susceptible to temperature stress (Kadzere et al., 2002; 
Bilby, 2011). Different breeds of cattle react differently to heat 
stress because their genes have evolved to cope with different 
temperatures (El-Tarabany & El-Tarabany, 2015).

The animal cools in several ways, including convection, 
radiation, evaporation of water, and exhaled air (Dahl, 2020; 
Brito et al., 2021). At higher temperatures, vaporization 
replaces radiation and convection as the environment’s 
primary means of heat dissipation. When environmental 
temperatures rise, a cow’s primary evaporative cooling 
method is thermal sweating. The latent heat of vaporization 
is the energy needed to turn it into a gas. As external 
temperatures increase and the temperature variance between 
the cow and the air decreases, a larger fraction of the cow’s 
metabolic heat is lost by evaporation (Silanikove, 2000; 
Atrian & Shahryar, 2012).

EFFECT OF HEAT STRESS ON THE 
NUTRITION AND METABOLISM OF DAIRY 
COWS

Reduced metabolism in cattle under heat stress was related 
to decreased thyroid hormone secretion and motility, leading 
to increased intestinal fullness (Kadzere et al., 2002; Patra & 
Kar, 2021). High temperatures of 35 °C reduce the plasma 
concentration of growth hormone and the rate at which it 
is secreted (Collier et al., 2008; Roushdy et al., 2018). When 
THI increases to more than 70, growth hormone levels in milk 
from cows with low, medium, and high production decreases, 
indicating that growth hormone production was repressed to 
reduce metabolic heat output (Roushdy et al., 2018). Heat-
stressed cows had lower plasma growth hormone levels even 
when fed the same amount as when not under heat stress 
(Farooq et al., 2010). During heat stress, the thyroid hormones 
triiodothyronine (T3) and thyroxine (T4) decrease, which 
they attributed to efforts to reduce their metabolic heat output 
(Kadzere et al., 2002; Settivari et al., 2007). Higher levels of 
adrenaline and norepinephrine in the blood plasma of dairy 
cows were related to heat stress (Rhoads et al., 1986).

Lactating dairy cows have a total body water content 
between 75% and 81% of their body weight (Kadzere et al., 
2002). The environment, temperature, humidity, dry matter 
intake (DMI), feed composition, and milk production 
significantly regulate milk consumption in lactating dairy 
cows (Gorniak et al., 2014). High-yielding cows have a higher 
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DMI than low-yielding cows and a positive correlation 
between DMI and water intake (Huhtanen et al., 2007). HS 
increases the plasma and extracellular fluid volume to help the 
stressed cow maintain a stable body temperature (Bernabucci 
et al., 2010). Cows experiencing HS have a higher rumen 
water content than usual because their water turnover rate 
is elevated (Conte et al., 2018). HS reduces blood flow to the 
epithelium surrounding the rumen and reduces reticular 
motility and rumination in farm animals (Conte et al., 2018; 
Meneses et al., 2021). HS increases digesta volume and water 
content in the rumen, making it more able to act as a pool of 
water to mitigate the impact of HS on rumen motility (Meneses 
et al., 2021). Heat-stressed cattle had lower ruminal pH and 
higher concentrations of lactic acid, which could reduce 
rumen motility (Yadav et al., 2013). Up to 25% of the body 
weight of ruminants comes from digesta fill, most of which is 
produced in the rumen, where the dry matter to water ratio is 
roughly 1:20 (Van Soest, 2018; Cagle et al., 2019). Increased 
intestinal fullness can contribute to heat discomfort in high-
yielding cattle (Aggarwal & Upadhyay, 2013). HS would limit 
motility due to its decreased concentrations of VFA in cattle 
rumens (Conte et al., 2018).

Milk production decreases due to HS because the rostral 
cooling region of the hypothalamus stimulates the medial 
center of satiety, which impedes the lateral appetite center 
(Jose et al., 2020). The decrease in feed intake was the main 
reason for the observed decrease in milk production. The diet 
of ruminants can be affected by hormones that regulate their 
gastrointestinal motility (Aggarwal & Upadhyay, 2013). HS 
causes a decrease in appetite, which can be associated with 
fullness in the stomach (Yadav et al., 2013). Lactating cows’ 
feed intake decreases at an AT of 26°C (Kadzere et al., 2002), 
and this decrease can reach 40% at an AT of 40 °C (Tao & Dahl, 
2013). Heat stress reduces roughage intake and rumination in 
high-yield lactating dairy cows (Han et al., 2019). In addition 
to consuming less feed, heat-stressed cows alter their feeding 
regimens to lower their endogenous heat output during the 
warmest hours. Depending on the degree of dietary fiber, 
ruminal fermentation contributes between 3 and 8% of the 
total endogenous heat produced by bovines (Min et al., 2019).

HEAT STRESS EFFECT ON MILK 
PRODUCTION

Animal performance is frequently inhibited by climatic 
parameters such as AT, sunlight, RH, airflow, and the 
relationships between these variables (Habeeb et al., 2018). 
Dairy cattle have been found to react differently physiologically 
and productively depending on the type and duration of heat 
stress they experience. Several studies have found a decrease in 
milk and fat production as a direct effect of high AT (Binsiya 
et al., 2017; Habeeb et al., 2018). HS accounted for 3 to 10% 
of the variation in lactation milk production (Aggarwal & 
Upadhyay, 2013). The ideal temperature range for lactating 
cows is 5 to 25 °C, where milk production is at its highest 
(Kadzere et al., 2002). There may be a 10%-40% drop in milk 

production if cows are exposed to AT above the maximum 
limit of their comfort zone (Michael et al., 2022). However, 
the effect of HS on milk production varies according to the 
cow’s genetic potential to produce milk, the stage of lactation, 
and the degree of heat. This means that high-producing 
dairy cows lose more milk than medium- or low-producing 
cows when HS is present (Bernabucci et al., 2010; Min et al., 
2019). When dairy cows are exposed to HS, milk production 
decreases by 35% in medium-lactation cows but only by 14% 
in early lactation cows (Bernabucci et al., 2010). HS increases 
oxidative stress, which changes mammary secretory tissue cell 
metabolic and molecular activity, decreasing cellular efficiency 
for synthesizing milk components (Gao et al., 2019).

EFFECT OF HEAT STRESS ON THE 
REPRODUCTION OF DAIRY COWS

Seasonal high environmental temperatures were associated 
with the poor reproductive success of dairy cows for many 
different reasons (De Rensis et al., 2015; Woodroffe et al., 
2017). The high AT well above the TNZ of cattle dramatically 
decreased the conception rate, likely leading to increased 
embryonic loss (De Rensis & Scaramuzzi, 2003). Selection for 
milk production led to deficits in thermoregulatory abilities 
under heat stress. This accentuates the seasonal decline in 
fertility caused by HS (Wathes et al., 2007). Holstein cows that 
are estrous in the summer have 4.5 mounts per estrus, while 
those that are estrus in the winter have 8.6 mounts per estrus 
(Sammad et al., 2020a). Heat stress decreased peripheral 
estradiol-17b concentrations in the estrus (Ghosh et al., 
2017). When animals were exposed to HS between days 3 and 
5 of the estrous cycle, the dominant follicular fluid contained 
much more androstenedione and significantly less estradiol-
17b (Orief et al., 2014). Another reason for the decrease in 
fertility during summer in hot places was the decline in bull 
fertility caused by heat stress (Hansen, 2007).

Heat stress also negatively affects early embryonic 
development and the ovum and sperm in the reproductive 
canal (Hansen, 2007). Furthermore, heat stress may have 
altered the hormonal balance of the dam (Ayo et al., 2011). 
In culture, heat shock from mature bovine oocytes can lead 
to lower protein synthesis, fertilization rate, and subsequent 
developmental competence (Nabenishi et al., 2012). The 
number of cells in bovine embryos flushed from super-
ovulated heifers on days 6 or 7 of pregnancy was reduced 
when they were subjected to heat shock in culture (Nabenishi 
et al., 2012).

EFFECT OF HEAT STRESS ON THE HEALTH 
OF THE DAIRY COW

During the warmer months of the year, the prevalence 
of animal diseases in dairy cows is known to increase for 
several reasons (De Rensis & Scaramuzzi, 2003; Nardone 
et al., 2010). Conditions in an environment that range 
from warm to hot and humid are optimal for the growth 
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of vectors and other disease-causing agents (Kadzere et al., 
2002). Warmer summer months in tropical regions see an 
increase in ticks and other internal parasites, compelling 
farmers to drench and dip their animals more often than in 
the cooler winter months (Silanikove, 2000). Heat stress can 
directly and negatively affect the health of dairy cows and 
parasite problems that can arise during the warmer months 
(Silanikove, 2000; Das et al., 2016).

Clinical or subclinical health problems are caused by 
the impact of HS on the physiological processes of the 
high-producing cow. 24% of cows who gave birth in the 
summer retained the placenta and developed postpartum 
metritis, while this occurred in just 8% of cows during the 
cooler months of the year (Adnane et al., 2017; Temesgen 
et al., 2022). The effects of heat stress on dairy cows during 
the summer were shown to be solely responsible for this 
difference, which had a significant level. Additionally, cows 
with retained placenta and postpartum metritis were shown 
to have longer gestation periods than those without these 
symptoms (Dubuc et al., 2011). Early pregnancy is linked to 
the retained placenta and postpartum metritis, which have 
serious financial implications for dairy producers (Dubuc 
et al., 2011; Mordak & Stewart, 2015). In certain cases, 
numerous neuroendocrine changes caused by heat stress 
can shorten the gestational period (De Rensi & Scaramuzzi, 
2003; Khodaei-Motlagh et al., 2011). Compared to the colder 
months, scorching summer caused 11% greater ketosis in 
dairy cows (Biswal et al., 2016; Wu, 2020).

POTENTIAL MITIGATION STRATEGIES FOR 
HEAT STRESS IN DAIRY COWS

Environment management

Environmental management is required in most regions 
of the world to improve cow welfare and reduce loss of 
production under harsh temperature conditions throughout 
the summer (Nienaber & Hahn, 2007). Shade, appropriate 
air exchange, excellent air movement, drinking water, and 
evaporative cooling are currently accessible methods to 
reduce the heat stress of dairy cows (Nienaber & Hahn, 2007; 
Henry et al., 2018). The installation of fans has been shown 
to decrease environmental temperatures, alleviate HS, and 
improve respiratory and rectal temperatures and metabolic 
rates (Castro-Montoya & Corea, 2021). During the warmer 
months, air exchanges are required every minute or less to 
remove moisture, gases, heat, and other contaminants from 
the animal area. Turbulent airflow around cows increases 
convective heat transmission, improves evaporation, 
and eliminates hot patches (Kuczynski et al., 2011). In 
resting, feeding, and holding facilities, air speeds of 3.5 
to 5 miles per hour (mph) are desirable. Water is used in 
evaporative cooling to promote heat transmission from 
cows. Because evaporative cooling systems include the 
introduction of water into the air of the animal area, 
ventilation systems with adequate air exchange are required 

to remove moisture-laden air and circulate fans to accelerate 
evaporation (Adin et al., 2009).

Providing cows with self-controlled showers offers 
cooling on an individual animal basis while reducing group 
water use (Polsky et al., 2017). Physical constructions that 
provide shade, such as trees, roofs, or fabrics, can provide 
more favorable microclimates for cows due to the decrease in 
exposure to solar radiation and AT. Cow body temperature 
and respiration rate are reduced when protected from direct 
sun exposure (Polsky et al., 2017; Heras-Molina et al., 2020). 
However, depending on the climatic conditions, dairy cows 
have various preferences for a shade structure, which should 
be addressed when developing farm heat abatement options 
(Tucker & Schütz, 2009). Although cattle prefer natural shade, 
livestock shading can be achieved using trees, buildings, or 
mobile constructions. By decreasing insolation and surface 
temperature and improving heat conduction from the cow’s 
body to the environment, barn orientation may also help 
alleviate HS (Angrecka & Herbut, 2016).

Feeding management

Heat stress affects several systems in cows, including feeding 
and digesting, milk production, and reproduction (Atrian & 
Shahryar, 2012). Fortunately, there are a variety of strategies 
to help cows cope with heat stress, including nutrition 
assistance. The reduction in feed intake caused by heat stress 
can be mitigated partly by boosting the metabolizable energy 
(ME) ratio and the density of nutrients (Atrian & Shahryar, 
2012). The maintenance needs for ME increases by 10-15% 
at 85-105°F compared to 65-70°F because heat dissipation 
requires more energy (Early, 1998). Feeding protein-deficient 
diets increase the heat burden on cows due to increased heat 
output from tissue protein metabolization (Forbes, 2007). 
Supplemental protein can help reduce heat stress and improve 
dry matter intake (DMI) under heat stress. Because bypass 
fats do not affect rumen fermentation, they are an excellent 
alternative to increasing total fat in feed during hot weather 
(Shwartz et al., 2009).

In hot weather, increasing the frequency of feeding has 
been shown to minimize heat production and equalize 
nutrient absorption by spreading the total increase in heat 
caused by feeding and digesting over a longer period. It may 
also help to maintain constant rumen fermentation by helping 
the digestion of greater concentrates without lowering the pH 
of the rumen or the acetate-propionate ratio (Kaufman, 2016). 
The peak generation of heat from digestive activities occurs 
around three hours after consumption by cows. Feeding cows 
earlier in the morning and later in the evening than usual 
could help them reach these peaks during the colder periods 
of the day (Mader et al., 2010). Cool, clean, easily available, 
free choice water is critical for helping cows cope with heat 
stress (Aublet et al., 2009; Mader et al., 2010). To increase fiber 
intake and maintain optimal rumen activity, provide high-
quality feed to your highest-yielding cows under the greatest 
stress. Reduce the amount of starch in food and increase the 
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fat content to maintain energy to reduce the heating impact 
of fermentation on the rumen. To best meet farm objectives, 
choose the most suitable form of fat supplement according to 
the fatty acid composition of the supplement (Moran, 2005; 
Knapp et al., 2014). Increasing the pH of rumen, yeast, and 
rumen buffers can help reduce the danger of acidosis (Humer 
et al., 2018).

Supplementation of vitamins, minerals, and 
electrolytes in diets

When cows are stressed by heat, their potassium loss 
increases five times due to perspiration (Kadzere et al., 
2002). Concentrates are often potassium-deficient; therefore, 
potassium supplementation is required in the diet of dairy 
cows when concentrate feeding is increased (Soetan et al., 
2010; Wilhelm-Olany, 2019). Sodium supplementation is 
recommended, as heat-stressed cows excrete more sodium 
through their urine. Due to their buffering capabilities, 
dietary bicarbonates (HCO3) can also be beneficial (Mader 
et al., 2010; Kundu et al., 2013). Adding buffers to ration 
concentrates provides rumen-calming support, with a 
recommended dose of approximately a third-pound buffer to 
45 pounds DMI. Trace minerals such as Mn, Zn, Mo, P, and 
Se have improved metabolic state and general health (Bicalho 
et al., 2014). B-complex vitamins, ascorbic acid, vitamin E 
(tocopherol), rumen-protected niacin, and nicotinic acid 
are all useful (Taniguchi et al., 2006). Thiazolidinediones 
(TZD) can increase glucose use and energy breakdown and 
maybe a beneficial therapy during HS (Taniguchi et al., 2006; 
Schoenberg & Overton, 2011). Dietary betaine, such as TZD, 
can be a preferable alternative in heat-stressed nursing cows 
(Wang et al., 2019). Chromium supplementation has also 
increased energy metabolism and output in heat-challenged 
nursing cows (Knapp et al., 2014; Bin-Jumah et al., 2020). 
In animals, niacin (vitamin B3) has been shown to increase 
vasodilation and lipid metabolism. Niacin reduces the effects 
of HS and increases metabolism in nursing dairy cows (Panda 
et al., 2017). Niacin at 6g/cow/day is recommended to lower 
skin temperature and increase milk production. Heat stress 
depletes vitamin C levels in plasma and tissue; therefore, 
supplementation may be necessary (Dos Santos et al., 2019; 
Bin-Jumah et al., 2020).

Selection for heat tolerance

Cattle suffering from heat stress can be helped with shade 
structures, fans, and sprinklers (Moran, 2005). However, 
this might not be a viable option in the prevalent pastoral 
systems in many nations. Furthermore, the modification of 
its environment and its management as a mitigation strategy 
for heat stress in dairy cows is temporary. Dairy cows produce 
less milk when temperature and humidity exceed a specific 
threshold, and genetics correlate with the degree to which 
milk production drops. Different authors have shown that 
the degree to which milk production decreases in response 
to increased HS differs between animals and is only a weak to 

moderately heritable trait (Ravagnolo et al., 2000; Bernabucci 
et al., 2014). Rectal temperature and the rate at which milk 
production drops in hot weather are two measures of heat 
tolerance in dairy cattle that can be influenced by selective 
breeding due to their low (0.1) to moderate (0.3) heredity 
(Ravagnolo et al., 2000; Dikmen et al., 2012; Nguyen et al., 
2016). Given the size of the estimated heritability, genetic 
selection for resistance to HS may be feasible. Increasing the 
temperature tolerance would be an additional tactic with 
long-lasting results. To breed dairy cows that are more heat 
tolerant and have a smaller decrease in milk production 
during heat stress conditions, breeding values for heat 
tolerance in dairy cattle must be determined (Dikmen et al., 
2012; Nguyen et al., 2016).

Genes involved in heat tolerance

The degree to which dairy cattle handle high temperatures 
depends on genetics and physiology. According to genomic 
research, certain areas of the genome appear to be significant 
in controlling body temperature in dairy cattle, suggesting 
that heat tolerance is a quantitative trait impacted by multiple 
regions of the genome (Nguyen et al., 2016). The slick hair 
gene in cattle is one of the most significant thermotolerant 
genes discovered to date. A dominant gene called the slick 
hair gene produces animals with extremely short and smooth 
hair (Huson et al., 2014). There was a significant difference 
between respiratory rate, sweat rate, vaginal temperature, and 
rectum temperature of slick and normal-haired Holstein cattle 
(Dikmen et al., 2014). One reason why slick-haired animals can 
better regulate body temperature is an increased sweating rate 
(Dikmen et al., 2008). Holsteins with slick hair have a greater 
thermoregulatory capacity than animals with non-slick hair, 
and their milk production decreases less dramatically over the 
summer. During heat stress, smooth-haired Holstein cows can 
control their body temperature more successfully than wild-
type cows (Dikmen et al., 2008; Dikmen et al., 2014).

The Slick gene has been identified as a significant candidate 
gene that affects hair length and controls heat tolerance in Bos 
taurus cattle (Olson et al., 2003). Huson et al. (2014) identified a 
consensus area for the SLICK locus on BTA20, including SKP2 
and SPEF2 as probable candidate genes. Dikmen et al. (2013) 
reported that BTA24 is the main genomic region associated 
with rectal temperature. Other SNPs associated with RT were 
located in BTA16, BTA5, BTA4, and BTA26. Macciotta et al. 
(2017) also detected BTA26 as a genomic region associated 
with milk production under HS conditions. Luo et al. (2021) 
identify FAM107B and PHRF1 as the main candidate genes that 
influence the response of dairy cattle to heat stress. Among the 
200 differentially expressed genes found by Liu et al. (2020), 
several were associated with heat tolerance and can be used 
for the Marker Assisted Selection Program to improve heat 
tolerance and minimize loss of production in dairy cows. 
These genes include IGFB2, OAS2, MX2, IFIT5, FGF2, ALAS2, 
AOX1, SCT, TGFB2, BPI, GPX2, EGF, and IFIT2. Cheruiyot 
et al. (2021) identified specific potential variations and genes 
associated with the nervous system (ITPR1, ITPR2, and 
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GRIA4) and neuroactive ligand-receptor interaction activities 
for heat tolerance (NPFFR2, CALCR, and GHR). Grisart et al. 
(2004) identified the substitution of non-conservative lysine 
into alanine (K232A) in the DGAT1 gene, which was projected 
to be the nucleotide of causative quantitative traits underlying 
a quantitative trait locus) that affects milk fat composition. 
Littlejohn et al. (2016) discovered that the percentage of milk 
fat and other traits related to milk compositions are strongly 
influenced by a group of 17 non-coding variations throughout 
MGST1. Carvalheiro et al. (2019) found evidence linking 
REG3A and REG3G to the sensitivity of beef cattle to adverse 
conditions. Zeng et al. (2018) suggested that the two mutations 
of the PRLH and SOD1 genes in Chinese cattle were associated 
with heat tolerance.

Deng et al. (2010) postulate that EIG121 is connected to 
endosome-lysosome compartments and may play a crucial 
role in autophagy. EIG121 may protect cells against cell death 
under adverse circumstances, such as starvation and exposure 
to cytotoxic chemicals, by upregulating the autophagy 
pathway. Sigdel et al. (2019) reported that at least three 
distinct genomic regions in BTA5, BTA14, and BTA15 were 
shown to be highly correlated with milk production in the face 
of heat stress. Such areas contain potential genes, including 
(HSF1, MAPK8IP1, and CDKN1B), that are directly involved 
in the cellular response to heat stress. Zamorano-Algandar 
et al. (2021) reported that three SNPs in AVPR1A, PRLR, and 
SSTR2 were related to the opening day, while five SNPs in 
IGFBP2, IGFBP5, PRLR, PIAS1, and SSTR2 were shown to be 
related to the pregnancy rate in Holstein cattle. Hernandez-
Cordero et al. (2017) identified seven SNPs within seven 
genes (AVPR1A, Furin, IGFBP5, IGFBP6, PMCH, PRLR, and 
STAT5B) that were found to be related to milk yield in heat-
stressed Holstein cows.

Genomic selection

Genomic selection is an attractive option because it enables 
the selection of young bulls (and heifers) based on heat 
tolerance to GEBV and other traits (Figure 2). A heat tolerance 
selection program should aim to breed more resilient dairy 
cattle (Nguyen et al., 2016). Milk production and conception 
rates naturally drop in summer, but this decline can be 
mitigated by selective breeding to tolerance to heat (Sammad 
et al., 2020a). For dairy bulls, commonly chosen for breeding 
based on GEBV rather than progeny testing, heat tolerance is 
necessary if such a trait should be considered. Since most young 
dairy bulls have already been genotyped, the comparative cost 
of extra GEBV is relatively cheap, making adding a GEBV for 
heat tolerance even more advantageous. Subsequently, the 
frequency of occurrence is expected to increase, and it will 
be crucial to accelerate the heat tolerance breeding process in 
specific dairy regions to adapt to future climates (Chang-Fung-
Martel et al., 2017). To determine estimated genomic breeding 
values (GEBV) for heat tolerance, Nguyen et al. (2016) used 
only genotyped sires in the reference set and only first-parity 
data to achieve precision for heat tolerance with changes in 
milk, fat, and protein yields of 0.48, 0.50, and 0.49 in Holstein 

validation sires and 0.44, 0.61, and 0.53 in Jersey validation 
sires. Gene expression breeding values (GEBV) for heat 
tolerance were positively correlated with fertility (0.29-0.39 
in Holstein and 0.15-0.27 in Jerseys) but negatively correlated 
with several productivity traits. On the other hand, selection 
might result in cows with less resistance to cold. Therefore, 
before introducing heat tolerance into dairy cattle selection 
criteria, it is necessary to examine the negative correlations 
between heat tolerance and other economically important 
traits (Osei-Amponsah et al., 2019).

Creating a reference population of genotyped animals 
exhibiting heat tolerance phenotypes, the choice of the 
phenotypic itself, and the model used to incorporate genomic 
information pose the most hurdles in building a GEBV for heat 
tolerance (Osei-Amponsah et al., 2019). When considering 
the phenotype to select, some studies have combined test day 
records for milk yield traits with THI as a measure of heat load 
to assess heritable components of heat tolerance (Bernabucci 
et al., 2014; Nguyen et al., 2016). Animal thermal adaptations 
and performance can be evaluated using several methods, 
including monitoring changes in internal body temperature 
and THI. The drop rate in milk production related to variability 
in response to HS was first measured using daily milk yield 
and temperature-humidity data (Ravagnolo et al., 2000). Due 
to the availability of large datasets from regular recordings on 
dairy farms, this approach has been widely used (Nguyen et al., 
2016). Since heat stress is already a part of dairy cattle breeding 
programs in several regions of the world, much work has been 
put into finding breeding solutions. As THI increased above 
a thermoneutral threshold, Ravagnolo et al. (2000) found 
that heat tolerance exhibited an increase in additive genetic 
variation. Another theory suggests that the variation in heat 
tolerance increases with each consecutive lactation (Aguilar 
et al., 2009; Bernabucci et al., 2014). Protein production in 
Australian dairy cattle decreased to a THI of 60. Reduced 
milk production can be used as heat tolerance since it is 
easily collected on a massive scale by integrating data from 
weather stations and herd recording systems. For practically 
all genotyped sires, this allows us to calculate the daughter 
trait deviations (DTD) for the trait in question, paving the way 

Figure 2: Schematic illustration of population and genomic 
selection (Calus et al., 2013)
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for building a large reference population to calculate GEBV 
(Nguyen et al., 2016).

CONCLUSIONS

The negative consequences cause hyperthermia, oxidative 
stress, and other physiological changes in dairy cows. These 
cause a decrease in feed intake, leading to a decrease in 
milk production in dairy cows. The main method to check 
for reductions in milk production in dairy cows during 
the summer is an accurate assessment of HS and effective 
mitigation strategies. Three primary management strategies 
have been proposed to reduce HS and stabilize the performance 
of dairy cattle in increasingly hot and humid climates. Short-
term management options include physical alteration of the 
environment and nutritional management, while long-term 
management strategy includes a genomic selection for heat 
tolerance.

Therefore, it may be possible to prevent substantial 
economic losses caused by heat stress by identifying certain 
genes or gene markers associated with heat tolerance and the 
genomic selection of animals with such genes. Ultimately, 
examining the negative correlations between heat tolerance 
and other economically important traits is necessary before 
introducing heat tolerance into dairy cattle selection criteria.
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