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Abstract 
Salinity is considered as the most important abiotic stress limiting the crop production. The present 
investigation was made to study the impact of different concentrations of sodium chloride on growth, 
biochemical constituents and antioxidant enzymes of the seedlings of Setaria italica. Seeds were grown at 
different concentrations of NaCl [(0, 25, 50, 75 and 100 mM] for twenty five days. Salt stress influenced a 
significant modification in the level of osmolyte accumulation. The accumulation level of osmolytes such 
as proline, glycine betaine, phenol and antioxidant enzyme such as catalase (CAT) and hydrogen peroxide 
increased significantly with increasing salt stress conditionwhen compared to the control. A statistically 
significant decrease of seed germination percentage, root and shoot length, photosynthetic pigments like 
chlorophyll a, chlorophyll b and proteins when higher concentration of NaCl added were recorded. From 
this experiment it was found that the foxtail millet crops can be sustained in optimum (75 mM) salinity 
condition. It was concluded that these osmolytes play a key role in generating tolerance against salt stress. 
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Introduction 

Salinity is considered as the most important 
abiotic stress limiting the crop production. 
Worldwide, 20% of total cultivated and 33% of 
irrigated agricultural lands are exacerbated by high 
salinity. There is a serious competition for fresh 
water so that high quality water is often used for 
industrial or domestic purposes and saline and 
polluted water is allocated for cultivated lands 
(Bouwer, 2002). Phenomena like low precipitation, 
high surface evaporation, irrigation with saline water, 
weathering of native rocks, and poor agricultural 
practices have increased the rate of soil salinization 
to 10% per annum (Pooja and Rajesh, 2015).The 
greatest cause of salinity may be due to the use of 
poor quality irrigation water (Sifola and Postiglione, 
2002). Salts also affect a number of physiological 
processes such as photosynthesis, stomata 

conductance, osmotic adjustment, ion absorption, 
protein and nucleic acid synthesis, enzymatic activity 
and hormone balance (Hernandez et al., 2000). 
Salinity reduces the ability of plants to utilize 
water and causes a reduction in growth rate, as 
well as changes in plant metabolic processes 
(Munns, 2002).  If under saline stress plants are 
not capable of photosynthetic transformation of all 
the solar energy they receive, the energy excess 
may produce an increase in singlet and triplet 
forms of chlorophyll and singlet oxygen. The 
decrease of NADP+ pool with excess excitation 
energy causes an increase in the flow of electrons 
from the donor part of photosystem I (PSI) to 
oxygen, generating reactive oxygen species 
(Johnson et al., 2003), produced principally in 
chloroplasts, which provoke metabolic disorders 
such as oxidation of membrane lipids, proteins and 
nucleic acids (Imlay, 2003). Reactive oxygen species 
(ROS) generated under oxidative stress at 
dangerous levels are detrimental to cellular 
components, like membrane lipids, proteins, and 
nucleic acids (Halliwell and Guteridge 1989). 
Anumber of plant species have evolved antioxidant 
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defense mechanisms to combat the devastating 
effects of oxidative stress. The ability to tolerate 
salinity by plants is often related to qualitative and 
quantitative changes in antioxidant systems. 
Enzymatic ROS - scavenging system includes 
Hydrogen peroxidases (POX), catalase (CAT), 
superoxide dismutase (SOD), and glutathione 
reductase (GR). Elevated levels of H2O2 and 
malondialdehyde (MDA) reflect altered balance in 
ROS production and detoxification. Salinity 
induced osmotic stress is also countered by plants 
through metabolic adjustments, such as synthesis of 
osmoprotectant like proline (Zhang et al., 2014). 
In response to various environmental stresses, 
plants have developed different physiological and 
biochemical mechanisms such as accumulation of 
compatible solutes like proline, glycine betaine 
and increase the activities of antioxidant to adapt 
or to tolerate stress (Rahnama and Ebrahimzadeh, 
2005; Faicalet al., 2009). Limited success in 
improving crop salt tolerance has been mainly 
achieved due to the lack of knowledge on the 
plant-NaCl interaction affecting fundamental 
physiological, biochemical and cellular processes 
which inturn affect plant growth and development 
(Chinnusamyet al., 2005; Munns and Tester, 2008). 

India is the largest producer of many kinds of 
millets, which are often referred to as coarse cereals. 
Setaria italica L. is a grass that belongs to the 
family Poaceae that has been reported to have 
comparable tolerant level to drought and salinity, 
thus it became an important food crop in the arid 
and semi-arid regions. This plant is originated 
from Northern China and it has been widely 
cultivated in Asia and Europe. The short life cycle 
of foxtail millet has made this plant suitable as a 
second food or fodder crop after wheat or barley. 
Although foxtail millet is a potential crop to be 
grown in the saline affected areas where high 
salinity levels prevent crop production, considerable 
variation for salt tolerance has been reported 
within foxtail millet genotypes. Identification of 
genetic materials contrasting in tolerance level to 
salinity stress is an important step in generating 
salt tolerant varieties in an efficient breeding 
program. However, there is only limited information 
available for response of foxtail millet to salinity 
at germination and seedling stages. The present 
investigation helps to understand the mechanism 

that regulate form and function and the significance 
of those processes to plant physiology, ecology 
and agriculture must include knowledge of plant 
stress physiology. 

Materials and Methods 
Foxtail millet was chosen for the investigation 

and the seeds were obtained from the Agriculture 
Cooperative Society, Union Office, Somarasam-
pettai, Tiruchirappalli. The experiments were 
carried out in Botanical Garden and Laboratory  
of Botany Department, Bishop Heber College, 
Tiruchirappalli, India. The seeds were soaked in 
distilled water and sown in polythene bags filled 
with soil as growth medium and were allowed to 
grow for 20 days by treated with normal water. 
After 20 days the salt treatment was imposed for 
further studies. The seeds of Setaria italica were 
irrigated with distilled water as a control and NaCl 
in different concentration 25 mM, 50 mM, 75 mM 
and 100 mM. After 5 days root and shoot length 
was measured and performed various biochemical 
and antioxidant enzyme activities. 

Germination percentage  

Germination percentage was calculated 
depending on the germination ability of the treated 
seeds and this was done after 24 hours of sowing. 
Germination percentage for each treatment was 
calculated. 

Growth parameters  

Root length was recorded by measuring below 
the point of root-shoot transition to the fibrous root 
and the length of lateral roots was taken as total 
root length. The root lengths are expressed in 
centimeters per plant. The length between shoot 
tip and point of the root shoot transition region 
was taken as shoot length. The shoot lengths are 
expressed in centimeters per plant. 

Photosynthetic pigments 

Chlorophyll and carotenoid contents were 
measured from the S. italica leaves according to 
Arnon (1946). Fresh leaves (100 mg) were 
extracted with 80% acetone (v/v) and chlorophyll a, 
chlorophyll b and carotenoid contents were 
estimated at 663, 645 and 470 nm using a spectro-
photometer and were expressed in terms of mg 
chlorophyll present g-1 fresh mass. 
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Biochemical constituents  

Total protein content 

Total protein were extracted and estimated by 
following the method of Lowery et al., (1951). 
Fresh samples (250 mg) were homogenized in 2.5 ml 
of phosphate buffer (pH 7.0). The extract was 
centrifuged at 5000 g for 15 min at 4°C and the 
supernatant was transferred to a tube containing a 
mixture of 20 ml acetone and 14 ml β- Mercapto-
ethanol for precipitation of protein. The sample tubes 
were stored at 0°C for 5 h and then centrifuged at 
10000 g for 20 min. The supernatant was discarded 
and the pellet was dissolved in 2.5 ml 1 N sodium 
hydroxide solution. Aliquot of 0.2 ml from this  
sample was used to prepare the reaction mixture. 
The intensity of blue color developed was recorded 
at 660 nm and protein concentration was measured 
using bovine serum albumin as standard. 

Proline estimation 
Free proline was assayed spectrophotometrically 

by the ninhydrin method. The plant material was 
homogenized in 3% aqueous sulfosalicylic acid and 
the homogenate was centrifuged at 14,000 rpm. 
The supernatant was used for the estimation of the 
proline concentration. The reaction mixture 
consisted of acid ninhydrin and glacial acetic acid, 
which was boiled at 100°C for 1 h. After termination 
of reaction in ice bath, the reaction mixture was 
extracted with toluene, and absorbance was read at 
520 nm using L-proline as standard. 

Glycinebetane 
Glycinebetaine was estimated by the method 

of Grieve and Grattan. Briefly, finely ground dried 
plant tissue (0.5 g) was stirred with 20 cm3 distilled 
water for 24 h and filtered. The filtrate was diluted 
with equal volume of 1 M H2SO4, made into 
aliquots of 0.5 cm3 in micro centrifuge tubes, 
cooled over ice for 1 h and to each of these were 
added 0.2 cm3 cold KI-I2 reagent. The reactants 
were gently stirred, stored at 4°C overnight and 
centrifuged at  12 000 g for 15 min at 4°C to get 
the precipitated per iodide crystals. The crystals 
were dissolved in 1,2-dichloroethane, and absorbance 
was measured at 365 nm after 2 h. Glycinebetaine 
dissolved in 1 M H2SO4 served as standard. 

Total phenol 
Total phenol contents were estimated by 

following Malick and Singh (1980). Total phenols 
were extracted from 500 mg of fresh roots  
and shoot tissues separately in 80% (v/v) ethanol 
and estimated by Folin-Ciocalteau reagent. The 
absorbance of the reaction was measured at 650 nm 
wavelength on spectrophotometer. Total phenols 
were calculated by using standard graph of catechol. 
Antioxidant enzymes activity 
Catalase activity 

CAT (EC 1.11.1.6) was measured according to 
the method of Chandlee and Scandalios (1984) with 
small modification. The assay mixture contained 
2.6 ml of 50 mM potassium phosphate buffer 
(pH 7.0), 0.4 ml of 15 mMH2O2, and 0.04 ml of 
enzyme extract. The decomposition of H2O2, is 
followed by the decline in absorbance at 240 nm. 
The enzyme activity is expressed in U mg-1 protein 
(U = 1 mM of H2O2 reduction min-1 mg-1 protein). 

Hydrogen peroxide 

The content of H2O2 was determined according 
to Velikova et al. (2000). Plant tissues were homo-
genized in 0.1% (m/v) trichloroacetic acid (TCA). 
The homogenate was centrifuged at 12,100×g,  
15 min, 4 and 200 ml of the supernatant was added 
to 200 ml of 100 mM potassium phosphate buffer 
(pH 7.0) and 800 mlof 1M KI. The absorbance was 
read at 390 nm. H2O2 content for all samples was 
determined using H2O2 as a standard. 
Metabolic enzymers 

α-amylase 

The  assay  of α-amylase  activity  was  performed  
from  1 g  of  tissues  (Tarrago  and  Nicolas,  1976)  
after inactivating β-amylase by heating at 70°C for 
5 min with 9 mM CaCl2 and performing the assay 
following the standard method (Chrispeels and 
Varner, 1967). Each unit of activity is defined as the 
number of μmoles of maltose released per minute. 
Results and Discussion 

Germination percentage 

The foxtail millet seeds were irrigated with 
distilled water as control and treated at 25 mM, 
50 mM, 75 mM and 100 mM of NaCl. Germination 
percentage of S. italic was recorded everyday and 
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day after sowing. The germination percentage was 
found to be more in control when compared to 
NaCl treatments and the lowest seed germination 
was found in 100 mM of NaCl. The seed germination 
percentage was found significantly affected by the 
different concentration of salt treatments (Table 1). 
Jamil et al. (2012) also found that different 
treatments showed different germination pattern in 
control and seeds stressed with NaCl. Increasing 
salt levels had detrimental effects on germination 
percentage. Seed germination percentage was found 
to be highest in control (Distilled water). Rate of 
germination of wheat cultivars were significantly 
affected due to salt stress from 75mMNaCl salt 
concentration onwards. According to the previous 
work it can be concluded that seeds of five different 
wheat cultivars were susceptible to higher 
concentrations of salt solutions in germination 
stage which was supported by the works of  Ungar 
et al.,(1996) and Gul et al., (1999).The reduced 
level of seed germination may be due to loss of 
viability at higher salinity level, delaying germination 
of seeds at salinities that cause some stress to but 
not germination percent as reported by Gulzar et al., 
(2001) and also due to salinity induced high 
oxidative stress for halophytic seeds as reported by 
Amor et al., (2005). A similar report of reduced level 
of germination of Suaeda salsa seeds under increased 
salinity level was also reported (Duan, 2007). 

Table 1. Effect of salt stress on seed germination 
percentage of Setaria italica of 10 days old seedlings 

Treatments Seed Germination % 
Control 88 
25mM 81 
50mM 76 
75mM 72 

100mM 53 
Root and shoot length 

Root and shoot length of Setaria italica was 
measured both in control and NaCl treatment  
and it was found that the root and shoot length  
was higher in control when compared to other 
concentration [Figure 1(a) and 1(b)]. But at higher 
concentration of NaCl i.e., 75 mM and 100 mM, 
root and shoot length was affected. Salinity caused 
a significant reduction on root length and shoot 
length at the higher NaCl concentration. Increase 
in the salinity from 0 to 25mM of NaCl had no 
effect on plant root and shoot length, while further 
increase from 50 mM onwards significantly reduced 

the root length and shoot length. These results are 
in agreement with those obtained by Orabi et al., 
(2013) in faba bean, Meloni et al., (2001) in cotton, 
Neves et al. (2004) in umbu plants. The reduction 
in root and shoot development may be due to toxic 
effects of the higher level of NaCl concentration as 
well as unbalanced nutrient uptake by the seedlings 
(Datta et al., 2009). High level of salinity may 
have also inhibit the root and shoot elongation due 
to slowing down of water uptake for overall 
osmotic adjustments of the plant body under high 
salt stress condition. Bukhari et al., (2012) studied 
salinity stress in pearl millet (Pennisetum glaucum) 
found the root and shoot length of the pearl millet 
decreases with the increase in the salinity level. 
Halima et al., (2014) found in Oat (Avena sativa) 
that the root and leaf lengths were adversely 
affected due to NaCl treatments when compared to 
control. There was a gradual decrease in the root 
and shoot lengths with an increase in NaCl level. 
The present study results were registered as well, 
including the study done by Mathur et al. 
(2006)on moth bean, Jamil et al. (2007) on radish 
plant, Taffouo et al. (2009) on cowpea and Kapoor 
and Srivastava (2010) on Vigna mungo L. They 
found that increasing the concentrations of NaCl 
developed a decline in the lengths of the plants. 
The study noticed decrease in the length of the 
stem, also due to treatment with sodium chloride 
solution, could be due to the negative effect of this 
salt on the rate of photosynthesis, the changes in 
enzyme activity (that subsequently affects protein 
synthesis), and also the decrease in the level of 
carbohydrates and growth hormones, both of 
which can lead to inhibition of the growth (Mazher 
et al., 2007). 

 
Fig. 1a. Effects of different concentration of NaCl 

on root and shoot length (cm) in Setaria italica 
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Fig. 1b.Effects of different concentration of NaCl 

on root and shoot length (cm) in Setaria italica  
on 10th days 

Pigment content  

Chlorophyll a, b and carotenoids 

In this experiment the result showed that the 
25 mM of NaCl concentration in chlorophyll a 
was increased when compared to control and other 
concentration of NaCl in foxtail millet [Figure 2(a)]. 
This is due to enhance the enzymatic activities to 
increase the chlorophyll a. The seeds of foxtail 
millet were treated with distilled water as a control 
and different concentration of NaCl i.e.25 mM, 
50 mM, 75 mM and 100 mM [Figure 2(b)]. The 
highest content of chlorophyll b was found in control 
compared to the different concentration of NaCl. 
This is due to influence of NaCl in enzyme activities. 
The carotenoid content of foxtail millet was higher 
in control compared to the different concentration 
of NaCl i.e. 25 mM, 50 mM, 75 mM and 100 mM. 
The higher concentration of NaCl reduced the 
carotenoid content in S. italica [Figure 2(c)]. The 
reduction of pigment content such as chlorophyll a, 
chlorophyll b and carotenoids are due to enzyme 
activities suppressed by NaCl. Chlorophyll a content 
enhanced in 25mM concentration of NaCl and 
chlorophyll b suppressed the rate of photosynthetic 
pigment in foxtail millet. Chlorophyll a and b 
molecule supressed the carotenoids pigment which 
is shown in Figure 2 (a, b & c).Singh et al., (2015) 
studied the maize (Zea mays) under the salt stress 
and found that the content of photosynthetic 
pigments (chlorophyll a, b and carotenoids), 
especially chlorophyll a decreased sharply with 
increasing stress levels. High doses of NaCl 
appeared with deleterious effects on the content of 
chlorophyll a. Chlorophyll b also decreased sharply 

with increasing stress levels. According to Moradi 
and Ismail (2007), reduced chlorophyll contents at 
higher salinities are due to decrease in photosynthetic 
rate because of salt osmotic and toxic. Ali et al., 
(2013) studied salt stress in Jojoba (Simmondsia 
chinensis) and found the effect of salinity 
concentrations on the chlorophyll content of jojoba 
leaves revealed that increasing salinity concentrations 
significantly decreased chlorophyll a, b and total 
chlorophyll ionic stress. These results are in good 
agreementswith those obtained by Atlassi-Pak  
et al. (2009) in rape, and El-Khallal et al. (2009)in 
maize plant, Taie et al. (2013) in faba bean, and 
Bahari et al. (2013) in wheat plant. The inhibitory 
effect of salinity stress on the photosynthetic 
pigments may be due to the effect of salinity on the 
activities of photosynthetic enzymes and this may 
be a secondary effect mediated by the reduced 
CO2 partial pressure in the leaves caused by 
stomatal closure (DeRidder and Salvucci, 2007). 

 
Fig. 2a. Estimation of Chlorophyll a  

after treatment 

 
Fig. 2b. Estimation of Chlorophyll b  

after treatment 
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Fig. 2c. Estimation of Carotenoids after treatment 

Sairam et al., (2002) showed higher decrease in 
pigment contents of wheat genotypes under salinity 
at the three stages. Carotenoids are responsible for 
quenching of singlet oxygen hence their comparative 
levels in a variety may determine its relative 
tolerance (Knox and Dodge, 1985). The observed 
decrease of Chl and Car content in the plants 
grown under saline conditions may be attributed to 
both of the increased degradation and the inhibited 
synthesis of that pigment (Garsia et al., 2002). 

Protein content  

The Setaria italica seedlings irrgated with 
100mM concentration of NaCl showed the lower 
protein content compared to control and other 
concentration (Figure 3). Singh et al. (1987) found 
higher level of salt stress showed that there was 
proteolytic activity that occurred due to stress 
condition for the synthesis of osmoprotectant. 
Other possibility is that if accumulation of proteins 
appeared in plants under salinity stress then it may 
provide nitrogen in storage form that is again 
utilized for biosynthesis of chlorophyll which is 
directly correlated with photosynthesis and helps 
in osmotic adjustment. Osman et al., (2007) studied 
salt stress on response of Catharanthus roseus shoots 
to salinity and drought in relation to vincristine 
alkaloid content and it was observed that proteins 
content in Catharanthus roseus have significantly 
decreased along with increasing NaCl concentrations. 
In lentil, Ashraf and Waheed reported that leaf 
soluble proteins decreased due to salt stress in  
all lines, irrespective of their salt tolerance. In 
Bruguiera parviflora a decrease in the intensity of 
some polypeptides was reported by Parida et al. (2011). 
These results are conjectured by Khosravinejad  
et al. (2009) as they reported that treatment with 
sodium chloride reduced protein concentration in 

the plant seedlings. Jamil et al., (2012) studied salt 
stress in Oryza sativa and it showed that the protein 
content was high in control and significantly 
diminished in plants grown under salt stress. At 
100 mM salt stress, protein content was reduced in 
all varieties, which showed that rice plants were 
severely affected at high salt concentration. In 
contrast, Kapoor and Srivastava (2010) as they 
observed an increase in protein concentration with 
increasing salt concentration. Ashraf and Harris 
(2004) observed that the higher content of soluble 
proteins has been observed in salt tolerant cultivars 
of barley, sunflower, rice, sugarcane (Pagariya  
et al., 2012) and (Patade et al., 2009). 

 

Fig. 3. Estimation of Protein after treatment 

Proline content  

Proline content was induced by the NaCl 
treatments over the foxtail millet. A higher proline 
content was recorded in 100 mM concentration. 
Proline content of the salt-stressed and control 
plants are illustrated in Fig. 4. Proline is known to 
play as an osmoprotectant in plants subjected to 
osmotic stresses resulted from drought and soil 
salinity. A positive correlation between proline 
accumulation and osmoticstress tolerance has been 
reported by Muthulakshmi et al., (2013),Abraham 
et al., (2003), Abdelhamid et al. (2013), Khattab 
(2007), Amirjani (2010), Sadak and Dawood (2014) 
and Taie et al. (2013). Remarkable increase in 
proline content under stress conditions could be 
due to changes in proline metabolism profile under 
salinity stress, with an increased expression of proline 
synthetic enzymes and breakdown of proline-rich 
protein (Tewari and Singh, 1991). Jia et al., (2011) 
studied salt stress with when salinity was raised 
above 0.45 M, the proline contents increased with 
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rising salinity in Simarouba glauca. According to 
Kaouther et al. (2012) investigations with Chili 
pepper (Capsicum frutescens) obtained results 
showing significant increase in proline in all 
cultivars with the increase of salt concentration in 
irrigation water. The accumulation of osmolyte 
compounds is often proposed as a solution to 
overcoming the negative consequences of water 
deficits in crop production which has been proposed 
as an adaptive mechanism for drought and salt 
tolerance. Indeed, osmolyte accumulation (OA) in 
plant cell results in a decrease of the cell osmotic 
potential and help in the maintenance of water 
absorption and cell turgor pressure, which might 
contribute to sustaining physiological processes, 
such as stomatal opening, photosynthesis and 
expansion growth (Kaouther et al., 2012). 

 
Fig. 4. Estimation of Proline after treatment 

Glycine betaine 

In the present study revealed that the glycine 
betaine content also increased with the increasing  
the concentration of salt stress in Setaria italica 
and 100 mM of salt treatment showed that the 
higher content of glycine betaine was increased 
when compared to control and 25 mM, 50 mM and 
75 mM of salt concentration (Figure 5). Glycine 
betaine is regarded as an effective compatible 
solute that accumulates in the chloroplast of 
plants, when exposed to environmental stresses 
(Sawahel, 2004). The accumulation of glycine 
betaine assumed to have constructive functions in 
relation to the maintenance of membrane integrity 
and the constancy of other cellular structures 
under salt and drought stress has been reported  
in Atriplex halimus (Martínez et al., 2005). GB 

accumulates in response to stress in many crops, 
including spinach, barley, tomato, potato, rice, carrot 
and sorghum (Yang et al. 2003). Several investigators 
have noticed that accumulation of glycine betaine 
under salt stress was found to be high in salt tolerant 
species (Jagendorf and Takabe, 2001). Besides 
osmoregulation, glycine betaine stabilizes the 
oxygen evolving activity of photosystem-II protein 
complexes at high concentration of NaCl. The 
major role of glycine betaine might be to protect 
membranes and macromolecules from damaging 
effects of stress (Sawahel, 2004). Ranganayakulu 
(2013) in groundnut (Arachis hypogaea) cultivars 
namely cv. K-134 and cv. JL-24 found that the 
level of glycine betaine content was significantly 
increased in both cultivars at all stress regimes. 
The rate of increase in glycine betaine content was 
found to be higher at severe stress level (150 mM 
NaCl). Salt stress episode shows no significant 
effects on glycine betaine content of tomato. 
Similarly, according to Elayaraj et al.,(2015) with 
Ceriops roxburghiana  the glycine betaine content 
was also increased significantly at all concentrations 
of NaCl. 

 
Fig. 5. Estimation of Glycine betaine after 

treatment 

Total phenols 

In this investigation the phenol content studied 
in both control and 25, 50, 75 and 100 mM 
concentration of NaCl. The result showed that 
content of phenol was increased and the phenols 
content was found more in 100 mM of NaCl 
compared to control and the other concentrations 
(Figure 6). Phenolic compounds exhibit antioxidant 
activity by inactivating lipid free radicals or by 
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preventing the decomposition of hydroperoxides 
into free radicals (Pokorny et al., 2001). The degree 
of cellular oxidative damage in plants exposed to 
abiotic stress is controlled by the capacity of the 
plants to produce antioxidant agents. Therefore, 
salt tolerance seems to be favored by the increase 
in plant antioxidant levels to detoxify the reactive 
oxygen species produced under these conditions 
(Noctor and Foyer, 1998). Rajakumar (2013) showed 
the results that total phenol content was gradually 
increased with progressing salt stress, however 
contrasting results were evidenced lower magnitude 
of increase in phenol contents. According to 
Muthulakshmi et al., (2013) in Solanum nigrum 
the studies found that the phenol value increases as 
the salt concentration increases. Phenol are synthesized 
in the leaves and then carried to other tissues and 
organs. Similarly, Pandey et al., (2015) in Cumin 
plant (Cuminum cyminum) found total phenolic 
and flavonoid contents were decreased initially to 
some extent  at 50 mM and thereafter increased at 
100 mM concentration  under salt stress condition. 

 
Fig. 6. Estimation of Total phenol after treatment 

Catalase activity 

The foxtail millet seeds irrigated with control 
and different concentration of 25, 50, 75 and 100 mM 
of NaCl was found that as increased the concentration 
and the amount of catalase also increased (Fig. 7). 
Higher activity of CAT decrease H2O2 level in cell 
and increase the stability of membranes and CO2 
fixation because several enzymes of the calvin 
cycle within chloroplasts are extremely sensitive 
to H2O2. CAT activity mostly increased in salt 
stressed plants. Jin et al., (2011) was investigate 
that the CAT activity of the control in Kalidium 
foliatum was relatively high and the activity of 
catalase (CAT) increased with increasing sodium. 

Unal et al., (2014) studied in barley (Hordeum 
vulgare) and found CAT activity increased by 
increasing salt concentration. Chernane et al., (2015) 
in Wheat (Triticum durum) and observed CAT activity 
increased in treated plant compared to control. 

 
Fig. 7. Estimation of catalase activity after 

treatment 

Hydrogen peroxidase 

The activity of hydrogen peroxidase increased 
significantly in Setaria italica with increasing NaCl 
of different concentration (Figure 8). The increase 
of H2O2 activity in treated plants was accompanied 
by elevated lipid peroxidation as evidenced by  
the change in MDA levels. Salt stress caused 
increases of H2O2 content in foxtail leaves, indicating 
that salt stress could cause damages to the integrity 
of the cellular membrane and to cellular 
components that were sensitive to oxidative stress. 

 
Fig. 8. Estimation of Hydrogen peroxide   

after treatment 

According to Hernandez et al., (2010) different 
concentration of NaCl treatments are significantly 
increase of H2O2 compared to control. Weisany et al. 
(2012) studied salt stress in Soybean (Glycine max) 
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the hydrogen peroxide concentration of leaf tissue 
was significantly increased with increasing salinity, 
so that the most hydrogen peroxide concentration 
was observed under the highest salinity level. 
Sairam et al., (2002) investigatedthe effect of 
salinity in wheat cvs, the H2O2 activity in KRL 19 
over Kharchia 65 increased with increasing salinity 
level. Other authors observed similar effects in 
rice (Lee et al., 2001), cumin (Pandey et al., 2015) 
and barley (Li et al., 2008). 

α-Amylase activity 

There was significant decrease in alpha amylase 
activity in the presence of different concentration 
of NaCl compared to control in Setaria italica 
(Figure 9). Studies conducted by Lúcia et al. (2009) 
in Plantago ovata and it showed that the water 
potentials induced by NaCl led to lower amylase 
activity. NaCl induced potential and a significant 
reduction in alpha amylase which was detected 
under CaCl2, which indicates that only the latter 
influenced amylase activity due to both its osmotic 
effect and toxic levels in the cells. Sakil et al. 
(2016) studied that alpha-amylase activity in the 
germinating seeds of Rice was reduced significantly 
due to salt stress which is also mentioned by Ben 
and Denden (2010). Oprica and Marius (2014) in 
Soybean (Glycine max ) they found after the NaCl 
treatment the α-amylase activity in soybean seedlings 
had the same trend. Thus, at four days after treatment, 
the decrease in α-amylase activity was observed at 
50 mM and 100 mM concentrations but the higher 
inhibition rate was at 100 mM. 

 
Fig. 9. Effect of salt stress in α-amylase  

of S. italica 

Conclusion  

In the present investigation, Setaria italica 
was found to survive in NaCl concentration up to 
75 mM. It was found that the seeds treated  
with different concentration of NaCl at 100 mM 
treatment showed the reduction in some parameters 
such as germination percentage, root and shoot 
length, protein content and α–amylase. Salt stress 
reduces crop growth in different ways. Under normal 
condition the osmotic pressure in plant cells is 
higher than that in salinity or soil solution and salt 
stress condition the osmotic pressure in the soil 
solution exceeds the osmotic pressure in plant 
cells due to the presence of high salt, and thus, 
reduces the ability of plants to take up water and 
minerals. On the other hand, Na+ and Cl- ions can 
enter into the cells and have their direct toxic 
effects on cell membranes, as well as on metabolic 
activities in the cytosol. As a result, in extreme 
case plants may die under salt stress. It was also 
observed that with higher concentration of NaCl 
there was an increase in the proline content, 
glycine betaine, total phenol, catalase and hydrogen 
peroxide because the accumulation of proline and 
the enzyme acts as a strategy against the salt stress. 
Accumulation of proline, GB and antioxidant 
enzyme under stress protect the cell by balancing 
the osmotic strength of cytosol with that of 
vacuole and external environment. In addition to 
osmolytes may interact with cellular macromolecules 
such as enzymes and stabilize the structure and 
function of such macro-molecules. Some solutes 
perform an extra function of protection of cellular 
components from dehydration injury and are called 
osmoprotectants. 

Plants always experience the fluctuation of 
environment that cause stress and leads to  
crop loss worldwide. One of the most important 
problems is to develop stress tolerant plants  
with maximum yield. Since the development  
of modern biotechnology, a vast research has  
been carried out to understand the various 
approaches that plants have adopted to overcome 
the environmental stress. 
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