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INTRODUCTION

The potential use of remote sensing in the classification of crops 
over a broad area has been broadly investigated on the basis of 
the classification and mapping of croplands (Arel et al., 2010; 
Radford et al., 2015). Using remote sensing data, the Department 
of Agriculture and Cooperation (DAC), Ministry of Agriculture, 
Govt. of India, initiated steps to set up a center for routine check-
up of crop statistics using AWIFS and LISS III data 20. The 
Mahalanobis National Crop Forecast Centre (MNCFC) was set 
up by the Govt. of India, New Delhi, for estimating the crop yield 
and its planting area using land use (LU)/Land Cover (LC) data.

Initially, high-resolution RS data such as LISS IV, PAN, Landsat 
8, and Sentinel-2 act as the main data source for information on 

crop area (Bolton & Friedl, 2013; Esch et al., 2014; Gao et al., 
2017). As is for the most part the case with measurable testing, 
the more preparation sets that are not entirely settled, the more 
noteworthy the probability of getting the right characterization 
exactness; this assumption is also true with MLC. Parametric 
classifiers fail to classify when there is insufficient training data 
and when they are unable to satisfy the rule of thumb defined for 
training data set size (Gallego et al., 2012; Hedhli et al., 2016).

Deep learning-based pixel-wise classifiers have acquired 
consideration in RS data classification (Kussul et al., 2017). 
Even though a nonparametric classifier algorithm’s accuracy 
is less compared to TVSM, RNN, 2D TVSM and others, the 
main disadvantage associated with them is that they are either 
expensive in computation or complex in execution because 
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of the prerequisite of different parameter settings for their 
ideal exhibition, which is widely used in remote sensing-based 
crop classification (Mathur & Foody, 2008; Löw et al., 2013; 
LeCun et al., 2015; Li et al., 2017). The black-box nature of 
the ANN structure and the knowledge automation problem 
associated with fuzzy systems in soft classification have failed 
to prove themselves user-friendly and compelled the analysts 
to inevitably use MLC on non-Gaussian data (Mathur & 
Foody, 2008; Omkar et al., 2008; Mei et al., 2019). A review 
of machine learning classification methods was proposed by 
Kussul N (Bruzzone et al., 2005; Kussul et al., 2017; Jayanth 
et al., 2020), one of their conclusions is that there is typically 
no valid or right methodology, yet it is important to consider 
approaches for choosing a suitable strategy for a specified issue.

In addition, this transformation-based model has been used to 
resolve misclassification in similar crop phenology by selecting 
the features of targeted classes and improving the accuracy 
of the classification. When evolutionary strategic algorithms 
are advocated, the Spare learning and deep belief networks 
do gain importance due to their transformational nature used 
for classification. Even though GAN (Radford et al., 2015) 
an unsupervised learning method, achieves better results in 
overall classification accuracy (OCA) through hyperspectral 
data, it fails to update the velocity of each particle during its 
parameter settings to achieve optimal performance. A deep 
residual network with 49 layers was used in Deep Multi-View 
Learning algorithm to extract features for classification and 
also to overcome the labeled training sample in a sequential 
manner. 3DCAE takes much longer to classify each class than 
other methods (Mei et al., 2019).

In this work, we use self-supervised decomposition for the 
transfer learning model, which can overcome the difficulties 
of keeping track of subpixel heterogeneity without aligning 
information while testing and training the RS data and for 
validation of classified data. The objective of this article is to 
classify multispectral LISS IV remote sensing data to classify 
agricultural land cover and assess the 2S-DT technique by 
comparing it with other approaches. For this purpose, we have 
used 2S-DT to urge coarse-to-fine exchange learning in light 
of a self-managed test deterioration approach. 2S-DT can 
manage any abnormalities in the information dispersion and 
the restricted accessibility of preparing tests in certain classes. 
The commitments of this work can be summed up as follows:
1. Give a clever instrument to self-directed example 

disintegration utilizing an enormous arrangement of 
unlabelled classes for an appearance preparation.

2. Give a nonexclusive coarse-to-fine exchange learning 
procedure to step by step work on the power of information 
change from enormous scope picture acknowledgment 
errands to a particular class arrangement.

3. Give a downstream CD layer in the downstream preparation 
stage that can adapt to any abnormalities in the information 
circulation and improve its neighbourhood.

The present article is organized in the following manner: An 
introduction to the article and the study area is elaborated upon 
in Section 1, while Section 2 provides a brief introduction to 

the self-supervised decomposition for Transfer learning (2S-DT) 
model. Sections 3 and 4 present the results and discussion, as 
well as the conclusion.

Dataset

Datasets drawn are from the DodakavalandeHobli, in Nanjangudu 
taluk, Mysore district, Karnataka, India. The data drawn are 
verified using cadastral maps and topo sheets using the official 
data provided by the Government of India and the Government 
of Karnataka. Dataset 1 consists of 42*776 pixels, and six classes 
are marked. The number of training and testing samples for 
Dataset 1 is shown in Table 1. The study area consists of three 
zones: residential, agricultural, and natural environment. Dataset 
2’s study area consists of four zones with 422*1056 pixels, and 
eleven classes are marked. The number of training and testing 
samples for Dataset 2 are tabulated in Table 2, in which coconut 
trees, some teak trees, and other trees are permanent and have 
covered 3 ha, 1ha is the residential, and the remaining 6 ha are 
used for agriculture, as shown in Figures 1 and 2. Plot level crop 
inventory was carried out using a Trimble GPS device in the 
field survey, where 720 reference plots were collected for the 
land cover information. There is a substantial variation in the 
dimensions of the crop plots and also in cultivation practices. 
In this work, the satellite data available for this work is from the 
month of November. Following that, we can notice rabi crops 
in November. We choose 6 observed surface classes as shown in 
Table 1 for Dataset1, 11 classes as shown in Table 2 for Dataset 2. 
The specifications of the image data product for this study area are 
shown in Table 3. The data are from the LISS-IV (Linear Imaging 
and Self Scanning) sensor, which was procured from the National 
Remote Sensing Centre (NRSC) in Hyderabad, India. Information 
from the satellite data is geo-referred and projected regarding the 
reference of global positioning system (GPS) readings (Table 4).

Table 1: Number of training and testing sample for Dataset1
S. No. Class Training Testing

1 AnnualCrop 5 1024
2 FallowLand 5 421
3 WaterBodies 5 345
4 Built‑upland 5 480
5 Natural Space 5 270
6 other 5 80

Total 30 2,620

Table 2: Number of training and testing sample for Dataset2
S. No. Class Training Testing

1 Jowar 1357 1024
2 Turmeric 4571 421
3 TurDal 4018 345
4 Bark 3258 480
5 Horsegram 2362 270
6 Vegetable 1362 80
7 Plantation 1978 24
8 Built‑upland 1918 256
9 Fallowsland 1978 356
10 ShurbLand 1362 424
11 WaterBodies 1052 93

Total 25,216 3,773
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Table 3: Confusion matrix for TVSM algorithm for Dataset1
Classes 1 2 3 4 5 6 Row 

Total
UA%

1 518 10 1 529 97.92
2 6 16 1 23 69.56
3 17 30 6 53 32.07
4 19 2 118 2 141 83.68
5 8 2 10 39 59 66.10
6 10 60 70 85.17
Column  
Total

551 18 19 151 43 66 875

PA % 94.01 88.88 89.47 78.14 90.69 90.90 OCA87.77
Kappa 0.783 0.73 0.78 0.65 0.89 0.70

1‑AnnualCrop, 2‑Waterbodies, 3‑Built‑upland, 4‑Fallowland, 
5‑NaturalSpace and 6‑others

Figure 2: Study area of Dataset 2 Husguru village

Figure 1: Study area of Dataset1 Devnur village

PROPOSED SELF-SUPERVISED DECOMPOSITION 
FOR TRANSFER LEARNING (2S-DT) MODEL

In this section, the 2S-DT model for the classification of remote 
sensed data will be examined and analyzed. Starting with the 
architectural outline, the section discusses the workflow and 
formalizes the method illustrated in Figure 3.

The proposed model, 2S-DT, consists of three training phases.

Phase1

•	 Adopt the self-supervised algorithm to learn the 
pattern features of images like crops, Jowar, and building 
blocks.

•	 Preparing an AE model to remove the profound to conquer 
the restricted accessibility of marked images by utilizing the 
colossal accessibility of unlabeled

•	 When the component space of the unlabeled image dataset 
is built, a sample decomposition approach is used to make 
pseudo-marks for the classification.

Phase 2

We utilize the pseudo-marks to accomplish coarse exchange 
learning by utilizing an ImageNet-pretrained CNN model for 
the ordered (classification) pseudo-mark, which helps in fine-
tuning the parameter.

Phase 3

Trained convolutional features have been utilized to accomplish 
the training of RS data. This task is more explicit by adjusting 
a fine exchange, gaining from unique features in the image, to 
arrange the information.

•	 CD layer has been adjusted to work on the nearby design 
of pixel information circulation, where a refined inclination 
drop improvement technique is utilized.

Class decomposition

The objective of our super sample decomposition component 
is to identify and leverage pseudo labels in the pretext training 
process of 4S-DT, using a collection of unlabelled images denoted 
as Y = {y1, y2.,yn}. For this purpose, an autoencoder (AE) is initially 
employed to extract profound characteristics linked to every image. 
The representation vector hd in equation (1) and reconstructed 
image ŷ in equation (2) can be defined for each input image y as.

  h f W y bd = +( ) ( )( )1 1   (1)

  ˆ ( )( ) ( )y f W h bd= +2 2  (2)

Where f ->Active Function; W -> Weight Matrices; b -> 
Bias Vector. The reconstruction error between input and 
reconstructed image is defined as shown in equation (3)

  F y y y y, ˆ ˆ( ) = −1
2

2
 �  (3)

The overall cost function of the n’ unlabelled images, E W bAE ,( ) , 
can be defined as shown in equation 4.
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The initial term represents the reconstruction error of the 
complete dataset, while the subsequent term is the weight 
penalty term for regularization purposes. The latter term is 
intended to limit the weight magnitudes and prevent overfitting. 
The aforementioned variables are integral components of a 
neural network. Specifically, λ represents the weight decay 
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parameter, nl denotes the layer number of the network, sl 
signifies the neuron number in layer l, and iWji

l( ) refers to the 

connecting weight between neuron i in layer l+1 and neuron j 
in layer l.

Upon completion of the AE training, the image data 
distribution Y is subjected to Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) in order to classify it 
into multiple classes c, utilizing the extracted features hd. The 
DBSCAN algorithm is a type of unsupervised clustering method 
that is widely recognized as a significant density-based clustering 
approach. It characterizes clusters as the most extensive 
collection of points that are linked by density.

The given image dataset Y is projected onto a feature space of 
lowered dimensions, represented by H Rn d∈��

’

. Here, H is a vector 
comprising of individual elements h1, h2., hn. The density-based 
clustering algorithm considers two images yi and yj, represented 
by hi and hj respectively, to be density-connected in relation to 
Eps (i.e. neighbourhood radius) and MinPts (i.e. minimum 
number of objects within the neighbourhood radius of core 
object) if a core object yk exists such that both yi and yj are directly 
density-reachable from yk with respect to Eps and MinPts. In the 
context of density-based clustering, an image yi is considered to 

be directly density-reachable from another image yj if it falls 
within the Eps-neighbourhood of NEps(yj) and yj is classified as 
a core object as shown in equation 5. The Eps-neighbourhood is 
a mathematical construct and used to define a region around a 
given point, and is determined by a specified distance metric.

 N y y dis y y EpsEps j i i j( ) = ∈ ≤{ Y| �( , })  (5)

The DBSCAN algorithm yields C clusters, wherein each cluster is 
formed by optimizing the density reachability correlation among 
images belonging to the same cluster. The n’ unlabelled images 
will be assigned C cluster labels, which will serve as pseudo labels 
for both the pretext training task and the subsequent downstream 
training task. The dataset of pseudo-labelled images can be 
formally denoted as Y’, where.Y’ꞌ={(yi,xc)|c∈C}.

Pretext training

Due to the widespread availability of extensively annotated 
image datasets, there is an increased probability that the various 
classes will be adequately represented. Thus, it is probable that 
the acquired knowledge within class boundaries is sufficiently 
generalizable to novel instances. Conversely, due to the restricted 
accessibility of annotated medical image data, particularly when 
certain categories are disproportionately underrepresented in 

Table 4: Satellite data and its details
S.
No.

Classes Date of
acquisition

Spectral
Resolution

Spatial
resolution

1 IRSP‑6
(Resourcesat1)
Multi‑spectral

15‑11‑2018 Green (0.52‑0.59 μm);
Red (0.62‑0.68 μm); Infrared (0.77‑0.86 μm)

5.8 m

LISS IV
dataset

Unlabelled
Images

Autoencoder

Deep Features

Sample
Decomposition

Pseudo Labels

Pretext Training

ImageNet Weight Initialization

Transfer Learning

Downstream Class Decomposition

Classified Image and Overall Classification
accuracy

Figure 3: Architectural outline
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terms of size and representation, there is a possibility of an 
escalation in the generalisation error. This phenomenon can 
occur due to a potential misalignment between the minority and 
majority categories. The utilization of extensive annotated image 
datasets, such as ImageNet, presents a viable approach to address 
this challenge through the process of transfer learning. This 
involves the training of CNN architectures, which necessitates 
the training of tens of millions of parameters.

During the adaptation and training process of an ImageNet 
pre-trained CNN model with a collected remote sensed dataset, 
a shallow-tuning mode was employed. The image feature space 
was constructed by utilizing pre-trained models on ImageNet, 
specifically the off-the-shelf CNN features, with training limited 
to the final classification layer.

The categorical cross entropy loss function, Ecoarse(·), as shown 
in equation 6 was minimized using a mini-batch of stochastic 
gradient descent (mSGD).

 E x z y W x z y Wcoarse
c j

c

C
c j, , � ln ( ,� )' ' ' '( )( ) = −

=
∑
1

 (6)

In this study, the set of self-labelled images in the training is denoted 
as yj, while their associated self-labels are represented by xc. The 
predicted output from a softmax function is denoted as 
z y Wj' '( ,� ) , with the converged weight matrix associated to the 
ImageNet pre-trained model being represented by W’. It is worth 
noting that Wꞌ of the ImageNet pre-trained CNN model was 
utilized for weight initialisation to achieve a coarse transfer learning.

Downstream training

During the adaptation of the ResNet model, a fine-tuning mode 
was employed whereby feature maps from the coarse transfer 
learning stage were utilized. PCA was utilized to reduce the 
dimensionality of the images, as the high dimensionality of 
the feature space posed a challenge. This involved projecting 
the feature space into a lower dimension, where features that 
were highly correlated were disregarded. The aforementioned 
step holds significant importance in the subsequent phase 
of downstream training, as it facilitates the process of class-
decomposition by producing classes that are more homogeneous. 
This, in turn, leads to a reduction in memory requirements and 
an improvement in the overall efficiency of the framework.

Let us consider the scenario where the feature space, obtained 
through PCA, is presented as a two-dimensional matrix, referred 
to as dataset A. In addition, let L denote a categorical variable 
representing the class. The symbols A and L can be expressed 
in an alternative manner as shown in equation 7.
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where (n, m, cꞌ) stands for the total number of images, features, 
and categories. K-means clustering was employed for the 
purpose of downstream class decomposition (Löw et al., 2013). 
This involved dividing each class into sub-classes that were 
homogeneous. The assignment of each pattern in the original 
class L to a class label was based on the nearest centroid, as 
determined by the squared Euclidean distance (SED) as shown 
in equation 8.
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Cj is the centroid, when clustering is refined, the connection 
between dataset A and B can be numerically depicted as shown 
in equation 9

  A=(A|L) B=B|C) (9)

Where the quantity of examples in An is equivalent to B 
while C encodes the new names of the subclasses (e.g.,  
C’= {l11,l12...,l1k,l21,l22...,l2k...,lc k}).

Algorithm

With defined numerical definitions of the 2S-DT model, 
the procedural strides are exhibited and summed up in the 
algorithm.

Procedure

A. Input
•	 Remote	sensed	data	is	divided	into	training	and	testing	sets.
•	 Ground	Truth	images	with	labels.

B. Output
•	 Classes	are	classified	based	on	Labels	which	are	predicted.

Self-supervised Decomposition

•	 Training	 an	 AE	model	 to	 separate	 profound	 nearby	
highlights from the unlabelled Images.

•	 Apply	an	unaided	grouping	calculation	for	developing	the	
pseudo-names.

Pretext Training

•	 Utilize	an	ImageNet	pre-prepared	by	CNN	model	(for	example	
ResNet18) for grouping of pseudo-named image dataset.

•	 Tweak	boundaries	are	used	on	pre-training	CNN	model

Down Stream Task
A. Class decomposition

•	 Utilize	an	ImageNet	pre-prepared	CNN	model	(for	example	
Alex Net) as an element extractor to remove highlights from 
info images.

•	 PCA	is	used	for	profound	component	space	aspect.
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•	 Utilize	decreased	element	space	of	the	info	images	to	decay	
unique classes into various sub (or deteriorated) classes.

B. Fine exchange learning

•	 Adjust	 the	 last	grouping	 layer	 in	 the	CNN	model	 to	 the	
deteriorated classes.

•	 Adjust	boundaries	of	the	affection	preparing	CNN	model.

C. Class composition

•	 Compute	 the	 predicted	 labels	 and	 classify	 related	 to	
decomposed classes.

•	 Classified	output

End Procedure

Parameter setting

The local size is a significant boundary that affects the 
characterization execution. To investigate the impact of 
neighborhood size on characterization precision, the area size 
is set to be 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 
and 35, separately. Concerning Dataset 1, setting the area size 
to 26 or 28 has a small impact on the last grouping results. For 
Dataset 2, the neighborhood sizes of the data sets are set to be 
27 × 27. AE was prepared, consisting of 78 neurons as the main 
hidden layer and 40 neurons as 2nd second hidden layer for the 
reconstruction of info un-labeled images. We utilized ResNet 
18 (Li et al., 2017) pretrained network to separate discriminative 
highlights of the marked Dataset.
•	 Input image size for Dataset 1 consists of 42*776 pixels and 

dataset 2 consist of 422*1056 pixels. A 3x3 kernel size was 
effective for capturing local features and patterns in the 
image while maintaining computational efficiency.

•	 Our ResNet architecture is structured with a series of 
residual blocks, with each block comprising two 3x3 
convolutional layers. Following each convolutional layer, 
we incorporate batch normalization and apply a Rectified 
Linear Unit (ReLU) activation function.

•	 In our experiments, for layer Conv1 in ResNet18, we employed 
a 7x7 convolutional layer with 64 filters and a stride of 2. This 
configuration resulted in an output size of 112x112x64.

•	 For layer Conv2 in ResNet18, which includes Res2a and 
Res2b, the output size was set to 48x48x64.

•	 For Conv3 in ResNet18, encompassing Res3a and Res3b, 
we achieved an output size of 28x28x128. This architectural 
configuration was adopted for our experiments.

•	 Our ResNet engineering comprises lingering blocks, and 
each square has two 3×3 Conv layers, where each layer is 
trailed by cluster standardization and an amended straight 
unit (ReLU) initiation. Our ResNet design comprises 
lingering blocks, and each square has two 3×3 Conv layers, 
where each layer is trailed by clump standardization and a 
ReLU initiation work.

•	 During the training of the backbone network, we maintained 
a fixed learning rate of 0.0001 for all the layers, with the 
exception of the last fully connected layer, which had a 
learning rate of 0.01 to expedite learning.

•	 Our training utilized a mini-batch size of 256 samples and 
was conducted over a minimum of 200 epochs. To prevent 
overfitting during model training, we applied a weight decay 
of 0.0001 and set the momentum value to 0.95.

•	 Additionally, we employed a learning rate drop schedule, 
reducing it by a factor of 0.95 every five epochs. The training 
process for 2S-DT was executed in both shallow and fine-
tuning modes.

•	 4085 traits were set at this stage and utilized PCA to reduce 
the component elements. For the CD advance, we utilized 
k-implies bunching [8], where k is set to 2, and subsequently, 
each class in L has been additionally separated into two 
subclasses, resulting in a new Dataset with six classes.

For validating the proposed algorithm, the 3DCAE, TSVM, 
and GAN methods are used as benchmarks for classification. 
Detailed descriptions and parameters are provided as follows:
•	 3DCAE (Mei et al., 2019) is a solo spatial-spectral 

element learning strategy in light of a three-dimensional 
convolutional auto encoder. It is exceptionally successful 
in extricating spatial-spectral highlights.

•	 TSVM (LeCun et al., 2015; Li et al., 2017) is a semi-
supervised technique that could utilize unlabeled samples 
to further develop characterization exactness. It likewise 
utilizes a SVM classifier with an outspread premise work 
part. All unlabeled samples are utilized for training.

•	 GAN (Radford et al., 2015) is an unsupervised feature-
learning technique in light of a generative adversarial 
networks. PCA is utilized to lessen the HSI to three 
aspects. Then, at that point, a 2-D GAN is utilized to learn 
highlights. The local size is too set to be 28 × 28.

RESULTS AND DISCUSSION

The performance of the 2S-DT algorithm was investigated 
for datasets 1 and 2 and compared with TVSM, 3DCAE, and 
GAN. Classification results are analyzed through qualitative 
and quantitative analysis with overall accuracy.

Visual Analysis

We also evaluate the visualization outcomes using the features 
derived from the original spectral features, the features derived 
from the MSE loss function, and the features derived from the 
contrastive loss function. In which different colors represent 
the distribution of spatial features in different classes by the 
selected samples. By observing this spatial distribution dataset, 1 
and 2 features are distributed significantly and can show better 
classification results for all the algorithms.

Basically, all the maps provided in Figures 4-7 provided better 
classification results. Red and white circles are used to highlight 
the correct and incorrect classification results in the image. It 
was also observed that some salt and pepper noise was also 
identified in all the algorithms, and unstable behaviors were 
also observed with different classifiers, such as, for example: In 
dataset 1, the 2S-DT algorithm showed a quite good result when 
compared with other algorithms. When compared to TVSM, 
the dataset’s 2S-DT and 3DCAE provided decent results, and 
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the GAN algorithm produced slightly worse results. This may 
be due to the large number of mixed pixels in the datasets.

In addition to this, Figures 8-11 show that in TVSM and GAN 
algorithms, fallow land and shrub land were misclassified due to 

the influence of illumination conditions. Also, built-up land is 
misclassified with fallow land in 3DCAE due to the huge spectral 
similarity between these two classes. As the study area considered 
is rural areas, there is a lot of confusion between classes like others 
and annual crops. These problems are gradually reduced in the 
2S-DT algorithm. At the same time, visual analysis of the 2S-DT 
algorithm shows reasonably smooth and acceptable results for 
fallow land when compared with other algorithms. In addition to 
this fallow land, Shurb land is classified correctly in the 2S-DT 
algorithm. For 3DCAE, built-up land is misclassified with fallow 
land in TVSM due to the huge spectral similarity between these 
two classes, which was classified correctly in the 2S-DT algorithm. 
Classes like Tur Dal and Horsegram were gradually reduced in the 
2S-DT algorithm when compared with other algorithms. Besides, 
the misclassification of shrubs as vegetables was rectified and 
accurately identified in the 2S-DT algorithm.

Qualitative Analysis

To further evaluate the land cover performance of the 2S-DT 
method, classification results are compared with SVM and ABC.

Figure 4: Image classified for six classes using TSVM (Dataset1)

Figure 6: Image classified for six classes using GAN (Dataset 1)

Figure 5: Image classified for six classes using 3DCAE (Dataset1)

Figure 8: Image classified for twelve classes using TVSM (Dataset 2)

Figure 7: Image classified for six classes using 2S-DT (Dataset 2)
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Figure 10: Image classified for twelve classes using GAN (Dataset 2)

Figure 11: Image classified for twelve classes using 2S-DT (Dataset 3)

Figure 9: Image classified for twelve classes using 3DCAE (Dataset2)

The 2S-DT algorithm was able to achieve the highest overall 
classification accuracy with all of the datasets. The performance 
of the annual crop is better in the 2S-DT algorithm when 
compared with another algorithm.

For dataset set 1, 2S-DT algorithms show an improvement 
when compared with 3DCAE, GAN, and TVSM. The 
classification results are tabulated in Tables 3-7. For the class 
build-up lands, 2S-DT shows a marginal improvement of 5% 
in PA when compared to 3DCAE and GAN but doesn’t show 
any improvement in UA. For class fallow land, the 2S-DT 
algorithms indicate an improvement of 8.33% in PA when 
compared with GAN and 26.33% in PA when compared with 
3DCAE. For class 5, the 2S-DT algorithm shows a marginal 
improvement when compared with GAN and TVSM. For 
class 6 (water bodies), 2S-DT and GAN show 100% in UA 
and 95.45% in PA, but it’s marginally high when compared 
with 3DCAE.

Table 5: Confusion matrix for 3DCAE algorithm for Dataset1
Classes 1 2 3 4 5 6 Row 

Total
UA%

1 460 31 8 20 519 88.63
2 18 18 100
3 17 7 10 34 50.00
4 50 100 3 6 159 62.89
5 30 10 22 62 35.48
6 11 2 10 3 30 56 53.57
Column Total 551 18 19 151 43 66 875
PA % 83.48 100 89.47 66.22 51.16 45.45 OCA73.94
Kappa 0.89 0.93 0.85 0.42 0.53 0.72

1‑AnnualCrop, 2‑Waterbodies, 3‑Built‑upland, 4‑Fallowland, 
5‑NaturalSpace and 6‑others

Table 6: Confusion matrix for GAN algorithm for Dataset1
Classes 1 2 3 4 5 6 Row 

Total
UA%

1 530 1 10 1 1 543 97.60
2 5 16 20 2 1 44 36.36
3 17 1 18 94.44
4 15 1 2 140 1 158 88.60
5 1 8 39 48 81.25
6 63 63 100
Column Total 551 18 19 168 43 66 875
PA % 96.18 88.88 89.47 83.33 90.69 95.45 OCA92.00
Kappa 0.92 0.84 0.86 0.82 0.86 0.90

1‑AnnualCrop, 2‑Waterbodies, 3‑Built‑upland, 4‑Fallowland, 
5‑NaturalSpace and 6‑others

Table 7: Confusion matrix for proposed algorithm for Dataset 1
Classes 1 2 3 4 5 6 Row 

Total
UA%

1 542 1 4 1 1 549 98.72
2 2 17 1 20 85
3 19 10 29 65.53
4 7 154 1 162 95.06
5 42 42 100
6 63 63 100
Column Total 551 18 19 168 43 66 875
PA % 98.36 94.44 100 91.66 97.67 95.45 OCA95.65

1‑AnnualCrop, 2‑Waterbodies, 3‑Built‑upland, 4‑Fallowland, 
5‑NaturalSpace and 6‑others

The study was extended to compare the performance of the 
2S-DT algorithm in Dataset 2. The classification results are 
tabulated in Tables 8-11. The highest overall classification 
accuracy (OCA) of 88.91% was obtained in the 2S-DT algorithm 
when compared with GAN (OCA of 80.68%), 3DCAE (OCA of 
62.63%), and TVSM (OCA of 59.08%). For the classes Water and 
Build-up Land, PA and UA show an improvement for the entire 
algorithm since they are spread less in this area and they are 
spatially homogenous. The UA of the plantation class remains 
the same for all the classifiers, but PA has an improvement of 
up to 6% when compared with 3DCAE and shows a marginal 
improvement with the GAN algorithm. For the class of land with 
or without shrubs, 2S-DT doesn’t show marginal improvement 
when compared with GAN and 3DCAE. The class of fallow land 
is spatially homogeneous, it is not spectrally distinct. Hence, 
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Table 8: Confusion matrix of TVSM algorithm for Dataset 2
Classes 1 2 3 4 5 6 7 8 9 10 11 Row Total UA %

1 127 1 3 22 15 3 171 74.26
2 13 36 49 73.46
3 43 2 50 9 104 48.07
4 52 1 4 84 1 142 59.15
5 5 33 38 86.84
6 1 1 23 15 40 37.5
7 9 18 27 66.66
8 1 19 101 1 122 15.57
9 2 5 4 62 4 16 93 66.66
10 2 2 2 38 12 56 67.85
11 35 35 100
Column Total 239 42 68 147 34 21 18 19 178 43 66 875 OCA59.08
PA % 53.36 85.71 73.52 57.14 97.05 71.42 100 100 34.83 88.37 53.03
Kappa 0.63 0.72 0.35 0.42 0.63 0.72 0.68 0.69 0.43 0.58 0.67

1‑Jowar, 2‑Turmeric, 3‑TurDal, 4‑Bark, 5‑Horsegram, 6‑Vegetable, 7‑Waterbodies, 8‑Built‑upland, 9‑Fallowsland, 10‑ShurbLand and  
11‑Plantation

Table 9: Confusion matrix for 3DCAE algorithm for Dataset2
Classes 1 2 3 4 5 6 7 8 9 10 11 Row Total UA %

1 127 12 101 240 52.91
2 7 39 46 84.78
3 2 2 58 14 76 76.31
4 53 84 137 61.31
5 1 3 33 1 5 43 76.74
6 4 9 1 15 4 33 45.45
7 18 4 22 81.81
8 7 19 26 73.07
9 1 10 4 62 77 80.51
10 32 38 2 72 52.77
11 32 2 1 55 58 94.82
Column Total 239 42 68 147 34 21 18 19 178 43 66 875 OCA62.63
PA % 53.14 92.85 85.29 57.14 67 71.42 100 100 34.83 88.37 83.33
Kappa 0.64 0.56 0.43 0.60 0.57 0.87 1 1 0.79 0.23 0.72

1‑Jowar, 2‑Turmeric, 3‑TurDal, 4‑Bark, 5‑Horsegram, 6‑Vegetable, 7‑Waterbodies, 8‑Built‑upland, 9‑Fallowsland, 10‑ShurbLand and  
11‑Plantation

Table 10: Confusion matrix for GAN algorithm for Dataset2
Classes 1 2 3 4 5 6 7 8 9 10 11 RowTotal UA %

1 169 7 41 217 77.88
2 10 38 6 54 70.37
3 2 1 54 57 94.73
4 37 102 5 10 154 66.23
5 16 1 33 50 66
6 3 2 2 1 15 23 65.21
7 1 18 19 94.73
8 19 42 7 68 61.76
9 2 1 169 11 1 184 91.84
10 1 4 16 32 1 54 59.29
11 2 57 59 96.61
Column Total 239 42 68 147 34 21 18 19 178 43 66 875 OCA80.68
PA % 70.71 90.47 79.41 69.38 97.05 71.42 100 100 94.94 74.41 86.36
Kappa 0.67 0.59 0.74 0.61 0.79 0.98 1.0 1.0 0.82 0.42 0.88

1‑Jowar, 2‑Turmeric, 3‑TurDal, 4‑Bark, 5‑Horsegram, 6‑Vegetable, 7‑Waterbodies, 8‑Built‑upland, 9‑Fallowsland, 10‑ShurbLand and  
11‑Plantation

it shows a marginal improvement in 2S-DT when compared 
with GAN (4% in PA and 2% in UA) and 3DCAE (3% in PA and 
2% in UA). This also results in an improvement in the Kappa 
value from 0.63 to 0.881 in comparison to other algorithms. 
As Jowar is one of the major crops grown in the winter region 

during this season, this class shows an improvement of 10% in 
PA and 5% in UA when compared with other algorithms. For 
class Tur Dal, most of the misclassification has come from the 
BARK crop, and a major portion has also been misclassified. 
The GAN algorithm reveals an improvement in PA and UA 
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Table 11: Confusion matrix for proposed algorithm for Dataset 2
Classes 1 2 3 4 5 6 7 8 9 10 11 RowTotal UA %

1 214 6 10 1 1 232 92.24
2 40 2 42 95.23
3 13 2 56 2 83 67.46
4 10 6 130 1 5 142 84.50
5 2 3 32 37 86.48
6 2 15 17 88.23
7 18 18 100
8 19 8 27 70.37
9 2 170 17 189 89.94
10 4 26 30 86.66
11 58 58 100
Column Total 239 42 68 147 34 21 18 19 178 43 66 875 OCA88.91
PA % 89.53 95.23 82.35 81.63 94.11 71.42 100 100 88.76 60.46 87.87
Kappa 0.85 0.92 0.83 0.79 0.92 0.78 1.0 0.92 0.88 0.75 0.89

1‑Jowar, 2‑Turmeric, 3‑TurDal, 4‑Bark, 5‑Horsegram, 6‑Vegetable, 7‑Waterbodies, 8‑Built‑upland, 9‑Fallowsland, 10‑ShurbLand and  
11‑Plantation

Table 12: Execution Time of training and feature extraction
TVSM 3DCAE GAN Proposed method

Dataset1
Training (Min) 20.36 19.23 6.54 32.23
Feature Extraction (Sec) 31.26 15.32 3.56 20.23

Dataset2
Training (Min) 19.32 19.37 7.02 82.00
Feature Extraction (Sec) 5.22 32.04 0.54 40.13

when compared with 2S-DT and 3DCAE. For the spectrally 
overlapping classes such as turmeric and vegetables, 2S-DT 
has shown a PA of 83.33% and a UA of 85.26% for both classes. 
On the contrary, GAN and 3DCAE have shown a fall of 5% 
on PA and UA for turmeric class and 7% on vegetables. For 
class Horesgram, the 2S-DT algorithm exhibits a PA of 100% 
and a UA of 93.75%, which is high when compared with other 
algorithms. There is no serious misclassification among other 
classes. For class Bark 2S-DT algorithm, the performance of all 
the algorithms is almost the same.

Execution Time

Input dimensions, network parameters, and the quantity of 
samples used during TP all affect the training period (TP) of a 
deep neural network. The 2S-DT model needs less time when 
compared with other algorithms when the number of classes 
is under Dataset 1 and requires more time when the number 
of classes is under Dataset 2. As the 2S-DT approach is a 
learning based algorithm, different hierarchy levels may lead to 
different feature extraction times. Table 9 shows the comparison 
of different methods with the 2S-DT method. The 2S-DT 
method takes about 32.23 minutes to train the data set and 
20.23 seconds to extract the features at Dataset 1, 82 minutes 
to train the data set, and 40.13 seconds to extract the features 
at Dataset 2. However, there is an increase in execution time 
and training time when compared with other methods, but 
the 2S-DT method shows an improvement in classification 
accuracy in all the hierarchy levels and datasets (Table 12). All 
the studies are performed on a CPU using Python software. 
As can be observed, the 2S-DT algorithm is the fastest for the 
selected study area when compared to other algorithms.

CONCLUSIONS

The 2S-DT (Self-Supervised Decomposition for Transfer 
Learning) model, a ground-breaking approach to crop 
categorization utilizing high-resolution remote sensing data, 
is introduced as a result of our study. This methodology 
successfully handles the persistent problem of misclassification, 
particularly when dealing with unlabeled classes. To maximize 
information structure depending on geographical context, the 
2S-DT model makes use of self-supervised learning approaches 
and adds a Class Decomposition (CD) layer. Our model uses 
residual blocks with two 3x3 convolutional layers, followed by 
batch normalization and ReLU activation functions, and is 
based on the reliable ResNet architecture. The output size of 
ResNet18 is 112x112x64 because to our careful architecture 
decisions, which include using a 7x7 convolutional layer with a 
stride of 2 for Conv1. The output size of Conv2, which includes 
Res2a and Res2b, is 48x48x64, while the output size of Conv3, 
which includes Res3a and Res3b, is 28x28x128. These choices 
are made in accordance with the details of our experiments. 
The usefulness of the 2S-DT model has been demonstrated 
through extensive experimentation on two datasets. It achieves 
95.65% accuracy for dataset 1 and 88.91% accuracy for dataset 
2, showing a considerable improvement in overall accuracy. In 
particular, our model performs better than counterpart models 
like TVSM, 3DCAE, and GAN Model. We also emphasize 
the advantages of the 2S-DT method in our comparison 
study. Dataset 1 demonstrates advancements in a number of 
significant classifications, such as “build-up lands” and “fallow 
land.” The model outperforms rival algorithms in Dataset 2 by 
achieving the greatest overall classification accuracy (OCA) 
of 88.91%.

Our findings pave the way for more investigation and 
improvement in the future. The continuing improvement 
of the 2S-DT model is one path that shows promise. Further 
improvements in classification performance may be unlocked 
by fine-tuning hyperparameters and investigating alternate 
setups. It’s intriguing to think about using the 2S-DT algorithm 
for more diverse remote sensing jobs. In order to determine its 
adaptability to various geographic and environmental situations, 
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further research will be needed. Additionally, given the model’s 
efficacy in differentiating spectrally overlapping classes like 
“turmeric” and “vegetables,” additional study may explore 
related problems in a variety of areas.
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