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INTRODUCTION

Wheat, along with rice and maize, is one of the main three 
world food crops (Cai et al., 2019). Soft wheat is one of the most 
important food crops that feed 40% of the world population 
(Liu et al., 2020). Without forgetting, barley grain which ranks 
fourth in terms of quantity produced and area cultivated in 
the world after wheat, rice and corn (Geng et al., 2022). In 
Algeria cereals play a significant role in the dietary habits of 
the population, encompassing production and processing 
activities such as semolina production and bakery in the food 
industry (Ammar, 2014). According to the Algérie Eco (2022), 
the area occupied by cereals is 3.5 million ha which is very 
small compared to the total area of Algeria (238 million ha). 
The national agricultural production is heavily influenced by 
its climatic conditions, which are primarily characterized by 
annual fluctuations in precipitation, water scarcity, and high 
temperatures during crop growth periods, these factors have a 
negative impact on production (Mekhlouf et al., 2012). In 2022, 
Algeria imported 10.6 million tons of cereals. The majority of 
these imports were soft wheat, accounting for almost 6.1 million 
tons, followed by maize with 2.6 million tons (a decrease from 
4.8 million tons in the previous campaign), durum wheat with 

nearly 1.4 million tons, and 571,000 tons of barley (Algérie Eco, 
2022). For this reason, accuracy and timeliness of regional crop 
yield estimation is crucial for ensuring national and international 
food security (Becker-Reshef et al., 2020), it is also beneficial 
for policymakers in making informed decisions regarding import 
and export policies and determining acceptable support prices 
for the market (Dorosh & Salamn, 2006). In particular, weather 
variability and biological stresses (including pathogens and 
arthropods) have an increasing impact on food security (Al-Ani 
et al., 2011; Khalaf et al., 2019, 2023; Adhab & Alkuwaiti, 2022), 
the importance of accurate and timely regional crop yield 
estimation has become even more significant (FAO, 2018). 
Although traditional field surveys and crop statistics are useful 
for accurately estimating crop yield, they prove to be insufficient 
when predicting crop yield for large regions due to constraints 
such as budget, time, and shortage of skilled manpower 
(Fang et  al., 2008). Using Artificial Intelligence (AI) and 
computerization have contributed to the field of biotechnology 
and agriculture and supported the sustainability endeavor (Anaz 
et al., 2023). Advancements in satellite sensor technology have 
led to the development of remote sensing, which is a science 
and technique focused on acquiring information about on-
land objects from satellite imagery without the need for direct 
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contact (Sabins, 1987). Today, remote sensing is widely used for 
monitoring and predicting crop yields across region of varying 
sizes due to its large coverage area, non-invasive nature, and 
ability to provide rapid and long-term time series data. This 
makes it an important tool for policymakers and stakeholders 
in ensuring food security and developing effective agricultural 
policies (Zhang et al., 2020). The application of vegetation 
indices (VIs) derived from satellite images is considered the 
most promising and convenient method for forecasting crop 
yield using remote sensing data, they are effective indicators of 
vegetation status and have a positive correlation with crop yield. 
Among the various VIs, the Normalized Difference Vegetation 
Index (NDVI) is frequently used for studying vegetation 
dynamics because of its high correlation with photosynthetic 
capacity, leaf area index, biomass, and net primary productivity 
(Li et al., 2014). The NDVI is also a popular choice for crop 
yield prediction due to its accessibility and ease of use (Phiri 
et al., 2020). The Normalized Difference Vegetation Index 
(NDVI), which was first introduced by Rouse et al. (1974), 
defined as the ratio between the difference in near-infrared and 
red spectra reflections from the Earth’s surface and their sum. 
The NDVI scale ranges from -1 to 1, with higher positive values 
indicating greater vegetation coverage and activity (Fang et al., 
2004). Negative NDVI values indicate the presence of clouds, 
snow, water, or a bright, non-vegetated surface (Yin & Williams, 
1997). In recent years, the focus of remote sensing-based yield 
forecasting research has shifted towards the use of National 
Aeronautics and Space Administration’s (NASA) Moderate 
Resolution Imaging Spectroradiometer (MODIS) and other 
sensors with different spatial resolutions. The MODIS data has 
a spatial resolution of 250 m, 500 and 1000 m (Atzberger et al., 
2016). Remote sensing studies used the empirical regression 
models linking historical crop yield as dependent variable and 
administrative units-averages of seasonal satellite data for 
cultivated region as independent variable (Becker-Reshef et al., 
2010). Numerous research studies have proved the effectiveness 
of remote sensing in predicting crop yields, such as, Mulianga 
et al. (2013) used the MODIS-NDVI data in the study on the 
sugarcane yield estimation on large territories. Kouadio et al. 
(2014) applied MODIS-NDVI and EVI data to forecast spring 
wheat yield at the ecodistrict scale. Huang et al. (2013) used time 
series data of NDVI values in their regression model to predict 
rice yield. Nagy et al. (2018) developed regression models using 
15 different peak-season MODIS-derived NDVI time series 
to predict wheat and maize yields. The reported yield values 
were regressed against the NDVI data, and they found that 
MODIS-NDVI data could effectively predict crop yield for the 
Tisza river catchment area 6-8 weeks before harvest. Similarly, 
Lykhovyd (2020) and Vozhehova et al. (2020) applied NDVI-
based regression models for forecasting yield of spring row crops 
at the field scale. The combination of crop models and remote 
sensing data has increasingly been used to forecast crop yield.

This study fills a significant research gap by introducing a new 
methodology for accurately forecasting cereals grain yield in 
Algeria’s semi-arid region using MODIS-NDVI remote sensing 
data. The study’s objectives are two-fold. To begin, it intends 
to assess the feasibility of using MODIS-NDVI data at various 
dates between 2002 and 2022 to forecast cereal yields before 

harvest, specifically wheat and barley, in semi-arid region of Algeria. 
Second, it seeks to determine the best time of year for accurate 
prediction of cereal grain yield at a regional level in Algeria, given 
that previous studies have produced inconsistent results regarding 
the best time for prediction in this specific semi-arid area.

MATERIALS AND METHODS

Study Area

The research was conducted at the Technical Institute of Large 
Crops (ITGC) in Setif, Algeria. The experimental site is located 
at latitude 36°10’17’ North, longitude 5°21’55’ East, and an 
altitude of 1080 m (Google Earth Pro, 2023). The experimental 
site is located in the central zone of the high plains, which is 
favorable for cereal cultivation (Figure 1). The climate site was 
characterized by hot and dry summers and cold and humid 
winters (Chennafi et al., 2006). The annual precipitation reaches 
458 mm (Rouabhi, 2017), which mainly occurs between January 
to April and an average annual temperature of 13.5 °C (Climate 
Data, 2022). The experimental site is characterized by flat, 
relatively infertile land and a high risk of late frost and drought 
towards the end of the crop cycle. The physic-chemical analysis 
shows that the soil has a silty-clayey texture and an average organic 
matter content of 2.13%. The Bulk density of is 1.51 g/cm³, with 
a field capacity of 23% and a wilting point of 10%.

Data Collection

Crop yield data

The crop grain yield data (t ha-1) of wheat and barley were 
collected from the Technical Institute of Large Crops (ITGC) 
of Setif, which cover a period of twenty years (2002-2022).

MODIS-NDVI data

The time series of average NDVI for the study area were 
obtained from the Global Agricultural Monitoring (GLAM) 
system (https://glam1.gsfc.nasa.gov/), hosted by the USDA 
and NASA. The data was downloaded on January 12th, 2021 
(GIMMS, 2021). The GLAM system was developed as part of 
the Global Agricultural Monitoring project. This initiative has the 
objective of regularly assessing worldwide forecasts of agricultural 
production and conditions affecting global food security in an 
unbiased and timely manner. The GLAM system provides 8-day 
composited NDVI data sets that are derived from MODIS sensors 
onboard the Terra satellite platform. These data sets have a spatial 
resolution of 250 or 500 m and are based on the MOD09 product 
(MODIS collection 6). Our study focused on the growing season 
in Algeria, which spans from February end to June 1st, and covers 
data collected from 2002 to 2022. To obtain the NDVI values, 
we used the GFSAD30 2015 Crops crop mask developed by the 
NASA Global Food Security-Support Analysis Data project, which 
has a spatial resolution of 30 m (https://croplands.org) (USGS, 
2021). To ensure high-quality data, the collected information 
underwent radiation, atmospheric, and geometric corrections. 
These measures were taken to make the data more accurate and 
reliable for use in studying regional vegetation.
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Statistical Analysis

In this study we employed a separate correlation and linear 
regression analyses for each crop. The independent variable was 
the NDVI values, while the dependent variable was the yield data 
of two cereal crops. Regression analysis aims to identify trends 
in the relationship and describe the relationship mode with a 
particular function, thereby quantifying causal relationships. 
The regression coefficient measures the average change in the 
explanatory variable per unit change in the response variable. 
Meanwhile, the linear correlation coefficient, determines the 
percentage of variance in the response variable that is explained 
by the factor variable, thereby indicating its reliability. We can 
represent this relationship using the following equation:

Y = β0 + β1X� (1)

Where β1 represents the regression coefficient. Parameter β0 
can usually only be interpreted mathematically if the variable 
X is set to 0, then β0 is the estimate given 0 in X.

To assess the performance of the developed models, widely 
employed statistical metrics were used in this study. The 
coefficient of determination (R2) was used to measure the 
degree of linear relationship between observed and forecasted 

cereal yield. The mean squared error (MSE) was used to measure 
the average of the squares of the errors. Meanwhile, the Root 
Mean Square Error (RMSE) measured the discrepancy of the 
forecasted yield around observations. All statistical analyses were 
carried out using SPSS (version 19). The R2, RMSE, MSE was 
calculated using equations (2), (3) and (4).
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RESULTS

Temporal Variability of Cereal Grain Yield

The average grain yields of two cereals varied over the study 
period (2002-2022) are presented in Figure  2. Wheat had 

Figure 1: Geographical location of the experimental site
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the highest averaged grain yield in 2018 with 3.07 t ha-1 while 
barley had the highest averaged grain yield in 2019 with 2.2 t 
ha-1. Conversely, the lowest grain yield for wheat was observed 
in 2015 with 1 t ha-1, for barley it was in 2002 with 0.7 t ha-1. 
Differences in the mean grain yield of two cereals in arid and 
semi-arid regions of Algeria across years were primarily due 
to weather conditions, such as Variability of rainfall, very low 
temperatures during winter or droughts during spring and early 
summer.

NDVI Temporal Variability from 2002 to 2022

Figure  3 illustrate the temporal patterns of vegetation 
index throughout the growth period of barley and wheat 
crops respectively. The NDVI values were lowest during the 
transplanting phase and gradually increased as the vegetative 
parts grew. They reached their peak during the late vegetative 

phase and remained high until the flowering phase, which 
occurred between March and April.

During the post-flowering phase, (i.e., the ripening phase), the 
vegetation index values started to decrease and reached their 
minimum at the fully ripened harvesting phase in June. The 
NDVI values ranged from 0.212 to 0.539 for all study years for 
barley, and from 0.197 to 0.537 for wheat. The NDVI values 
varied from one year to another, depending on factors such 
as rainfall, temperature during the seasons and sowing dates.

Relationship between NDVI at Different Dates and 
Cereals-grain Yield

The NDVI is an effective tool for measuring the impact of 
various environmental factors and their interactions with 
crops. It provides valuable information on the combined 
effects of weather conditions, crop varieties, soil types, 
cultivation methods, and other factors. The results of our study 
demonstrate a strong linear relationship between MODIS-NDVI 
and grain yield for the two winter cereals (wheat and barley) 
at the regional level. The correlation coefficients are presented 
graphically in Figure 4.

The highest correlation between NDVI and cereals grain yield 
occurs between 26 February and 13 March (R² ranged from 0.71 
to 0.8 for barley, R² ranged from 0.55 to 0.82 for wheat). The 
peaks of correlation correspond to the NDVI peaks during the 
growing season. We can observed that at later dates (growing 
season progresses), the relationships and the prediction accuracy 
were weaker, which may have been caused by NDVI saturation 
in the later growth stages of cereals. Based on these results, the 
best time to predict cereals grain yield accurately using MODIS-
NDVI in semi-arid region of Algeria is the beginning of spring, 
specifically 13 March (120th after sowing). We can observe that 
at later dates, the relationships and the prediction accuracy were 
weaker, which may have been caused by NDVI saturation in the 
later growth stages of cereals.

A linear regression analysis was conducted to examine the 
relationship between NDVI and cereals grain yield (wheat 
and barley). The means NDVI values from 18  February to 

Figure 2: Temporal variability of cereals grain yield (wheat and barley) 
from 2002 to 2022

Figure 4: Correlation coefficients between grain-yield and NDVI for the 
two cereals (barley, and wheat) from February 18th to June 1st, covering 
the period from 2002 to 2022

Figure 3: NDVI temporal variability for a) barley and b) wheat from 
2002 to 2022

b

a
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01 June (2002-2022) were used as independent variables, while 
the dependent variable was grain yield for wheat and barley. The 
results are graphically presented in Figure 5, indicating a strong 
relationship between NDVI in early spring (13 March) and grain 
yield for two cereals. The regression coefficients for wheat and 
barley were 6.598 and 7.461 respectively which implies that an 
increase of 0.1 in NDVI is associated with an average increase of 
0.659 t ha-1 and 0.746 t ha-1 in grain yield for wheat and barley 
respectively. The strength of the relationship is supported by 
strong Pearson’s correlation coefficients (R) of 0.82 and 0.80 
for wheat and barley, respectively.

Model Performance Verification

The accuracy of the models was assessed by comparing the 
predicted yields with the actual yields obtained in the study 
area. Four measures of forecast accuracy were used: root mean 
square errors (RMSE), mean square error (MSE), correlation 
coefficients (R) and the coefficient of determination (R²) for 
each cereals crop (wheat and barley). The results showed a 
strong correlation between the measured and predicted yield, 
with correlation coefficients of 0.80, 0.901 for wheat and barley, 
respectively. And low RMSE values ranged from 0.01 to 0.276 
t ha-1, the MSE values ranged from 0.061 to 0.076, the results 
are presented in the Table 1, these results indicating that the 
predicted values are close to the actual observed values, which 
confirm that the yield was predicted with great accuracy, three 
months before harvest which implies the proper functioning of 
the created model (Figures 6 & 7).

DISCUSSION

Forecasting crop yields is a critical and complex task in modern 
agriculture due to various challenges. These challenges include 
the impacts of global climate change, such as extreme weather 
events like droughts, floods, and other natural disasters, as 
well as the increasing global population and demand for 
food. Accurately predicting crop yields is crucial for effective 
agricultural planning, maintaining food safety and availability. 
Satellite remote sensing is widely used for forecasting cereal 
yield production, given its ability to be utilized at a global level. 
According to our results, we have demonstrate that the early 
spring stage of development is critical for achieving high grain 
yield for the three dominant cereals (durum wheat, soft wheat, 
and barley) in Algeria’s most valuable semi-arid areas. Mkhabela 
et al. (2010) found that MODIS-NDVI could effectively predict 
crop yields across the Canadian Prairies with a lead time of one 
to two months before harvest. The results indicated that a power 
function best described the relationship between MODIS-
NDVI and grain yield for all the crops and agro-climatic zones 
studied, with coefficient of determination (R²) ranging from 
0.48 to 0.90 for barley and 0.47 to 0.80 for wheat. Interestingly, 
the strength of the relationship was similar or even stronger 
when compared to the findings of our study, with R²= 0.64 
for barley, and R²= 0.643 for wheat. In a study on predicting 
the grain yields of wheat Adeniyi et al. (2020), proves that the 
use of Normalized Difference of Vegetation Index (NDVI) 
derived from Landsat 8  time series data, from 2013 to 2019 
growing seasons, are effective in predicting winter wheat yield 
in Jász-Nagykun-Szolnok county (Northern Great Plain region 
of central Hungary). The highest determination coefficient 
(R²=of 0.569) was found on the 160th day, which is lower than 
the value obtained in the current study (R² = 0.643). The study 
reported an average increase of 0.1 t/ha in grain yield of wheat 
with an increase of 0.1 in NDVI value, which is lower than the 
result obtained in the current study. Panek and Gozdowski 
(2021), employed a linear regression analysis to investigate the 
correlation between normalized difference vegetation index 
(NDVI) obtained from MODIS satellite data, and grain yield 
of wheat and barley in 20 European countries between 2010 
and 2018. They found a strong relationship between NDVI and 
cereals grain yield in early spring for several countries, including 
Croatia, Czechia, Germany, Hungary, Latvia, Lithuania, Poland 
and Slovakia, which is similar to the results of our study. The 
strength of the relationship was also similar to our study, with 
an R² of 0.610 for wheat and 0.614 for barley. The results of the 
regression showed that a 0.1 unit increase in NDVI is related 
to a 1.35-1.65 t ha-1 increase in grain yield of cereals. Wang 
et al. (2019), employed an enhanced Carnegie-Ames-Stanford 
approach (CASA) model, combined with time-series satellite 
remote sensing images obtained from MODIS, to estimate the 

Figure 5: Linear regression model and correlation of barley (above), 
wheat (At the bottom), yield with the MODIS- NDVI for March 13th

Table 1: Model performance results expressed as the correlation 
coefficients (R), coefficients of determination (R2), root mean 
square errors (RMSE), and mean squared errors (MSE)
Crop R² R RMSE MSE Equation

Barley 0.811 0.901 0.01 0.061 Y=1.187x‑0.266
wheat 0.640 0.8 0.276 0.076 Y=1.02x‑0.003
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yield of winter wheat in selected regions of China. The study 
reported a determination coefficient of R2 = 0.56 between the 
estimated and measured winter wheat yield, which is lower than 
that found in our study (R²= 0.640), a root mean square error 
(RMSE) of 1.22 t ha-1, which is higher than that found in our 
work (RMSE= 0.276 t ha-1). Nagy et al. (2021), found a high 
regression coefficients between the vegetation indices and the 
wheat yield (R²= 0.757, RMSE= 0.357 tha-1). The best time for 
wheat yield prediction with Landsat 8-NDVI was found to be 
the beginning of full biomass period from the 138th to 167th day 
after sowing (18 May to 16 June), which it is the same period 
that we found in our study. Gop and Savenkov (2016), found 
that The correlation was significant between the yield of spring 
wheat and the NDVI (R²= 0.859). The study demonstrated that 
the NDVI was shown to be responsible for 85% of the variation 
in the yield of spring wheat. The approximate average increase 
in the grain yields of spring wheat was about 6.7 t ha-1, with 
an increase of 0.1 in NDVI value. Tuğaç et al. (2022) found 
that the highest correlation between NDVI and yield was 
during the flowering period (R²= 0.63). They also found that 
the best prediction performance was achieved with the MLP 
model for MODIS, with a root mean square error (RMSE) 
ranging from 0.23-0.65  t ha-1. According to Mashaba et al. 
(2017), the relationship between NDVI and wheat yield was 
significant with an R2 value of 0.73 and RMSE of 0.41 t ha-1. In 

Latvia, Vannoppen et al. (2020) found that the linear regression 
model fit had a good estimate of the model parameter, with an 
adjusted R2 of 0.71. Pismennaya et al. (2021), investigated the 
correlation between MODIS-NDVI and winter wheat yield in 
the arid zone of the Central Pre-Caucasus region, using data 
from 2017-2020. Their findings revealed a very strong positive 
correlation (R²= 0.78) between winter wheat yield and NDVI. 
Moreover, they reported an average increase of 0.20 t ha-1 in 
wheat grain yield for every 0.1 increase in NDVI value. In 
central Europe, Panek and Gozdowski (2020), found a strong 
relationship between cereal-grain yield and MODIS-NDVI in 
spring (April), three to four months before the harvest. The 
increase in the NDVI in early spring by 0.1 unit increases the 
grain yield of cereals by about 1.1 to 2.6 t ha-1.

This fluctuation in results between different studies is due 
to That NDVI measures the potential yield and does not 
account for any subsequent crop developments that occur 
after the forecast date. Factors such as drought, diseases, or 
pest outbreaks occurring after the forecast date may lead to 
overestimations of crop yield. Additionally, satellite images are 
susceptible to various atmospheric effects, including clouds 
and volcanic eruptions, which can compromise data quality and 
subsequently affect the developed crop-yield models. Further 
research is necessary to validate the equations under different 

Figure 6: The scatter plot between observed and predicted values according to the created model for barley

Figure 7: The scatter plot between observed and predicted values according to the created model for wheat
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weather scenarios and to enhance the relationship’s strength 
by incorporating auxiliary data

CONCLUSION

This study has successfully demonstrated the effective 
utilization of MODIS-NDVI for predicting cereal crop 
yield (wheat and barley) in the semi-arid regions of Algeria, 
providing reliable forecasts two to three months before harvest. 
A robust correlation between cereals-grain yield and NDVI was 
observed during early spring (specifically on March 13th). From 
the forecasting model that was developed based on twenty 
training years a 0.1 unit increase in mean NDVI during April 
corresponded to a cereals-grain yield increase ranging from 0.659 
to 0.746 t ha-1. The root mean square error (RMSE) for the two 
crop cereals ranged from 0.01 t ha-1 to 0.276 t ha-1. These findings 
highlight the utility of MODIS satellite data in enhancing 
the accuracy of regional-level cereal-grain yield prediction in 
Algeria, particularly during the early spring period. This enables 
improved planning of trade and food policies, which heavily rely 
on cereals-grain production.
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