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Abstract  
A computer program in C++ language has been developed to calculate square roots of numbers from 1 to 25 in interval [0, 6] 
using bisection method. Accuracy of bisection method has been found out in each calculation. Lowest accuracy has been 
observed in the calculation of square root of 1 in the interval [0, 6] and percentage error is equal to 0.000381469700. Highest 
accuracy has been observed in the evaluation of square root of 13 in the interval [0, 6] and percentage error is equal to 
0.000000905160. Average percentage error of bisection method in the calculation of square roots of natural numbers from 1 
to 25 has been found to be 0.000041549568 which indicates that the accuracy of bisection method can be increased by 
reducing tolerance value. 
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INTRODUCTION 
 
     Numerical analysis involves the study of methods of 
computing numerical data. Many problems across mathematics can 
be reduced to linear algebra, this too is studied numerically. 
Numerical solutions to differential equations require the 
determination not of a few numbers but of an entire function; in 
particular, convergence must be judged by some global criterion.[1-5]  
     The bisection method is the simplest and most robust 
algorithm for finding the root of a one-dimensional continuous 
function on a closed interval. The basic idea is a follows- 
     Suppose that f(x) is a continuous function defined over an 
interval [a; b] and f(a) and f(b) have opposite signs. Then by the 
intermediate value theorem, there exists at least one r ε [a; b] such 
that f(r) = 0. The method is iterative and each iteration starts by 
breaking the current interval bracketing the root into two subintervals 
of equal length. One of the two subintervals must have endpoints of 
different signs. This subinterval becomes the new interval and the 
next iteration begins. Thus we can define smaller and smaller 
intervals such that each interval contains r by looking at subintervals 
of the current interval and choosing the one in which f(x) changes 
signs. This process continues until the width of the interval 
containing a root shrinks below some predetermined error tolerance. 
[6-8] This method’s major drawback is that it is the slowest among all 
the root finding methods.  However, the method always converges 
to a solution and would be good to use as a starter for one of the 
other methods. 
 
MATERIAL AND METHOD 
      
     The bisection method is developed with the support of the 

Intermediate-Value Theorem. Let us consider a continuous function 
f(x) over the interval [a, b]. If  
f(a)f(b) < 0 
      Then the values of f(a) and f(b) must be nonzero and each of 
different sign. That is, if f(a) is negative, f(b) must be positive.[9-13] 
Likewise, if f(a) is positive, f(b) must be negative. In light of the 
Intermediate-Value theorem, the intermediate-value that we seek is 
zero, which certainly lies between the positive and negative numbers 
represented by f(a) and f(b). The conclusion of the Intermediate-
Value theorem is that there is a point, ξ  , between a and b 
where  f(ξ)=0. That is, the solution to f(x)=0 lies somewhere between 
a and b.  
     The bisection method checks the midpoint, c, of the interval [a, 
b]. If f(c) = 0, the task of finding a root is complete.  If f(c) ≠ 0 , then 
for the same reason, there must be a root in either [a, c] if f(a)f(c) < 0 
or on [c, b] if f(c)f(b) < 0.  
     This procedure defines the bisection method. At each step the 
interval in which there is guaranteed to be a root of the equation is 
halved (bisected), and the method terminates as soon as the width of 
the interval containing the root is less than some error tolerance δ > 
0. Since the bisection method keeps a bounded interval where there 
is at least one root at each step, it falls in the category of bracketing 
methods.[14-18]  
      An algorithmic definition of the bisection method is as follows [7] 
Inputs: the function f(x), the initial interval [a, b] and the stopping 
tolerance δ 
 
if ( (f(a) * f(b) ≥ 0) then 
begin 
c=(a + b) / 2 
while ( f(c) < δ ) 
Begin 
c=(a + b)/2 
if ( sign f(a)) = (sign f(c)) then a=c else b=c 
end 
return c; 
end 
else 
write(“Root does not exist”) 
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     Computer program for bisection method developed by us is 
given below- 

 
#include<conio.h> 
#include<stdio.h> 
#include<math.h> 
//Bisection method 
void main(void) 
{ 
   FILE *fpt; 
   int n; 
   float a[1000],b[1000],c[1000],delta,rl,ru,d,aa; 
   double f(float x); 
   //avr is the variable whose square root is to be calculated 
   double avr=25.0; 
   clrscr(); 
   //Filename to store result 
   fpt=fopen("nddb25.txt", "w"); 
   rl=0; ru=6.0; n=1; a[1]=rl; b[1]=ru; aa=fabs(rl-ru); 
   //Value of function f(x) 
   fprintf(fpt,"f(x)=x^2-25\n"); 
   fprintf(fpt,"rl= %6.2f\n",rl); 
   fprintf(fpt,"ru= %6.2f\n",ru); 
   //to check existence of root between the interval 
   d=f(rl)*f(ru); 
   delta=0.00001; 
   fprintf(fpt,"   n    a[n]        b[n]       c[n]  f(c[n])\n"); 
   printf("   n        a[n]        b[n]       c[n]  f(c[n])\n"); 
   if (d<0) 
   { 
 while(aa > delta) 
 { 
   if (a[n]==b[n]) break; 
   c[n]=(a[n]+b[n])/2; 
   if (((f(c[n])>0) && (f(a[n])>0)) || ((f(c[n])<0) && (f(a[n])<0))) 
   { 
      a[n+1]=c[n]; 
      b[n+1]=b[n]; 
   } 
   else 
   { 
      b[n+1]=c[n]; 
      a[n+1]=a[n]; 
   } 
   aa=fabs(f(c[n])); 
   fprintf(fpt,"%3d %15.12f %15.12f %15.12f %18.12f\n", n,a[n], b[n], 
      c[n], f(c[n]));           
   printf("%3d %15.12f %15.12f %15.12f %18.12f\n", n,a[n], b[n], 
      c[n],f(c[n])); 
      if (aa > delta)   n=n+1; 
 } 

 printf("Root= %20.15f\n",c[n]); 
 printf("Value of function=%20.15f\n", f(c[n])); 
 printf("No. of iterations=%3d\n",n); 
 printf("Actual value of root=%15.12f\n",sqrt(avr)); 
 fprintf(fpt,"Actual value of root=%15.12f\n",sqrt(avr)); 
 printf("\n"); 
 getch(); 
   } 
   else 
     { 
       printf("There is no root in the given interval\n"); 
       getch(); 
     } 
   fclose(fpt); 
 } 
//Function definition 
double f(float x) 
{ 
   double r; 
   r=x*x-25; 
   return(r); 
} 
  
     With the help of above computer program, square roots of the 
natural numbers from 1 to 25 in the interval [0, 6] have been 
calculated. For this, the following functions have been taken 
f(x) = x2 - n = 0    where n = 1, 2, 3, ……. , 25 
     Numerical accuracy of bisection method has been has been 
measured by percentage error and defined as follows– 
     

Percentage error = error in the value of square root * 100/actual 
value of square root 
     Numerical accuracy of bisection method is inversely 
proportional to percentage error. 
  
RESULT AND DISCUSSION 
 
     Square roots of natural numbers from 1 to 25 have been 
calculated using bisection method in the interval [0, 6] with stopping 
tolerance 0.00001.  
 
Calculation of square root of 1 by bisection method 
 
     Bisection method has been applied to calculate the roots of 
equation  
f(x) = x2 – 1 = 0 
     In the interval [0, 6] using computer program developed by us. 
Initial value, last value, middle point of interval and value of function 
at middle point of the interval in each iteration is included in Table-1. 
Estimated value of square root of 1 by bisection method after each 
iteration is shown in Graph-1.

 
Table1. Initial value, last value, middle point of interval and value of function at middle point of the interval in the calculation of square root of 1 by bisection method 

 
Number of 
iterations 

Initial value (a) Last value (b) Middle point (c) Value of function f(x) at x=c 

1 0.000000000000 6.000000000000 3.000000000000 8.000000000000 

2 0.000000000000 3.000000000000 1.500000000000 1.250000000000 

3 0.000000000000 1.500000000000 0.750000000000 -0.437500000000 

4 0.750000000000 1.500000000000 1.125000000000 0.265625000000 

5 0.750000000000 1.125000000000 0.937500000000 -0.121093750000 

6 0.937500000000 1.125000000000 1.031250000000 0.063476562500 
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7 0.937500000000 1.031250000000 0.984375000000 -0.031005859375 

8 0.984375000000 1.031250000000 1.007812500000 0.015686035156 

9 0.984375000000 1.007812500000 0.996093750000 -0.007797241211 

10 0.996093750000 1.007812500000 1.001953125000 0.003910064697 

11 0.996093750000 1.001953125000 0.999023437500 -0.001952171326 

12 0.999023437500 1.001953125000 1.000488281250 0.000976800919 

13 0.999023437500 1.000488281250 0.999755859375 -0.000488221645 

14 0.999755859375 1.000488281250 1.000122070312 0.000244155526 

15 0.999755859375 1.000122070312 0.999938964844 -0.000122066587 

16 0.999938964844 1.000122070312 1.000030517578 0.000061036088 

17 0.999938964844 1.000030517578 0.999984741211 -0.000030517345 

18 0.999984741211 1.000030517578 1.000007629395 0.000015258847 

19 0.999984741211 1.000007629395 0.999996185303 -0.000007629380 

 

Actual value of square root of 1 1.000000000000 

Calculated value of square root of 1 by bisection method 0.999996185303 

Difference between actual and calculated values of square root of 1 0.000003814697 

Percentage error in the value of square root of 1 calculated by bisection method 0.000381469700 

 
Graph 1. Estimated value of square root of 1 by bisection method after each iteration 

 

Estimated value of square root of 1 in each iteration of bisection method
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     Similarly, the square roots of natural numbers from 2 to 25 
have been calculated with the help of computer program to draw the 
appropriate conclusion. 
 
CONCLUSION 
 
     Lowest percentage error has been obtained in the calculation 
of square root of 13 in the interval [0, 6] and is equal to 
0.000000905160. It means if roots lies in the middle of the interval 
then the error in the calculated value of root of equation by bisection 
method is least. 

     Highest percentage error has been obtained in the calculation 
of square root of 1 in the interval [0, 6] and is equal to 
0.000381469700. It means if roots lies in the beginning of the interval 
then the error in the calculated value of root of equation by bisection 
method is greatest. Exact value of root, value of root calculated by 
bisection method and percentage error in the calculation of root by 
bisection method is shown in Table-2. Average percentage error of 
bisection method in the calculation of square roots of natural 
numbers from 1 to 25 has been found to be 0.000041549568 which 
indicates that the accuracy of bisection method can be increased by 
reducing tolerance value. 

 
Table 2. Numerical accuracy of bisection method in the calculation of roots of functions f(x) = x2 – n; n=1, 2, …., 25 

 

S. No. Function Exact Value of root 
Value of root obtained by 

bisection method 
Percentage error in bisection 

method 

1 f(x)=x2-1 1.000000000000 0.999996185303 0.000381469700 

2 f(x)=x2-2 1.414213562373 1.414215087891 0.000107870412 

3 f(x)=x2-3 1.732050807569 1.732051849365 0.000060148120 

4 f(x)=x2-4 2.000000000000 1.999998092651 0.000095367450 

5 f(x)=x2-5 2.236067977500 2.236066818237 0.000051843817 

6 f(x)=x2-6 2.449489742783 2.449490547180 0.000032839370 

7 f(x)=x2-7 2.645751311065 2.645750999451 0.000011777902 

8 f(x)=x2-8 2.828427124746 2.828427314758 0.000006717939 

9 f(x)=x2-9 3.000000000000 2.999998569489 0.000047683700 

10 f(x)=x2-10 3.162277660168 3.162277221680 0.000013866208 

11 f(x)=x2-11 3.316624790355 3.316623687744 0.000033244973 

12 f(x)=x2-12 3.464101615138 3.464100837708 0.000022442471 

13 f(x)=x2-13 3.605551275464 3.605551242828 0.000000905160 

14 f(x)=x2-14 3.741657386774 3.741657257080 0.000003466218 

15 f(x)=x2-15 3.872983346207 3.872983932495 0.000015137891 

16 f(x)=x2-16 4.000000000000 3.999999046326 0.000023841850 

17 f(x)=x2-17 4.123105625618 4.123106002808 0.000009148201 
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S. No. Function Exact Value of root 
Value of root obtained by 

bisection method 
Percentage error in bisection 

method 

18 f(x)=x2-18 4.242640687119 4.242639541626 0.000026999529 

19 f(x)=x2-19 4.358898943541 4.358900070190 0.000025847101 

20 f(x)=x2-20 4.472135955000 4.472136497498 0.000012130624 

21 f(x)=x2-21 4.582575694956 4.582574844360 0.000018561526 

22 f(x)=x2-22 4.690415759823 4.690415382385 0.000008047005 

23 f(x)=x2-23 4.795831523313 4.795831203461 0.000006669375 

24 f(x)=x2-24 4.898979485566 4.898979663849 0.000003639187 

25 f(x)=x2-25 5.000000000000 5.000000953674 0.000019073480 

Average percentage error in bisection method 0.000041549568 
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