
International Multidisciplinary Research Journal 2012, 2(1):01-04
ISSN: 2231-6302
Available Online: http://irjs.info/

Numerical accuracy of bisection method

R. B. Srivastava* and Narendra Deo Dixit

Department of Mathematics, M. L. K. P. G. College, Balrampur, U. P., India

Abstract
A computer program in C++ language has been developed to calculate square roots of numbers from 1 to 25 in interval [0, 6]
using bisection method. Accuracy of bisection method has been found out in each calculation. Lowest accuracy has been
observed in the calculation of square root of 1 in the interval [0, 6] and percentage error is equal to 0.000381469700. Highest
accuracy has been observed in the evaluation of square root of 13 in the interval [0, 6] and percentage error is equal to
0.000000905160. Average percentage error of bisection method in the calculation of square roots of natural numbers from 1
to 25 has been found to be 0.000041549568 which indicates that the accuracy of bisection method can be increased by
reducing tolerance value.

Keywords: Bisection method, numerical accuracy, percentage error, Intermediate-Value theorem, algorithm.

INTRODUCTION

 Numerical analysis involves the study of methods of
computing numerical data. Many problems across mathematics can
be reduced to linear algebra, this too is studied numerically.
Numerical solutions to differential equations require the
determination not of a few numbers but of an entire function; in
particular, convergence must be judged by some global criterion.[1-5]
 The bisection method is the simplest and most robust
algorithm for finding the root of a one-dimensional continuous
function on a closed interval. The basic idea is a follows-
 Suppose that f(x) is a continuous function defined over an
interval [a; b] and f(a) and f(b) have opposite signs. Then by the
intermediate value theorem, there exists at least one r ε [a; b] such
that f(r) = 0. The method is iterative and each iteration starts by
breaking the current interval bracketing the root into two subintervals
of equal length. One of the two subintervals must have endpoints of
different signs. This subinterval becomes the new interval and the
next iteration begins. Thus we can define smaller and smaller
intervals such that each interval contains r by looking at subintervals
of the current interval and choosing the one in which f(x) changes
signs. This process continues until the width of the interval
containing a root shrinks below some predetermined error tolerance.
[6-8] This method’s major drawback is that it is the slowest among all
the root finding methods. However, the method always converges
to a solution and would be good to use as a starter for one of the
other methods.

MATERIAL AND METHOD

 The bisection method is developed with the support of the

Intermediate-Value Theorem. Let us consider a continuous function
f(x) over the interval [a, b]. If
f(a)f(b) < 0
 Then the values of f(a) and f(b) must be nonzero and each of
different sign. That is, if f(a) is negative, f(b) must be positive.[9-13]
Likewise, if f(a) is positive, f(b) must be negative. In light of the
Intermediate-Value theorem, the intermediate-value that we seek is
zero, which certainly lies between the positive and negative numbers
represented by f(a) and f(b). The conclusion of the Intermediate-
Value theorem is that there is a point, ξ , between a and b
where f(ξ)=0. That is, the solution to f(x)=0 lies somewhere between
a and b.
 The bisection method checks the midpoint, c, of the interval [a,
b]. If f(c) = 0, the task of finding a root is complete. If f(c) ≠ 0 , then
for the same reason, there must be a root in either [a, c] if f(a)f(c) < 0
or on [c, b] if f(c)f(b) < 0.
 This procedure defines the bisection method. At each step the
interval in which there is guaranteed to be a root of the equation is
halved (bisected), and the method terminates as soon as the width of
the interval containing the root is less than some error tolerance δ >
0. Since the bisection method keeps a bounded interval where there
is at least one root at each step, it falls in the category of bracketing
methods.[14-18]
 An algorithmic definition of the bisection method is as follows [7]
Inputs: the function f(x), the initial interval [a, b] and the stopping
tolerance δ

if ((f(a) * f(b) ≥ 0) then
begin
c=(a + b) / 2
while (f(c) < δ)
Begin
c=(a + b)/2
if (sign f(a)) = (sign f(c)) then a=c else b=c
end
return c;
end
else
write(“Root does not exist”)

Received: Sept 13, 2011; Revised: Dec 17, 2011; Accepted: Dec 27, 2011.

*Corresponding Author

R. B. Srivastava
Department of Mathematics
M. L. K. P. G. College, Balrampur, U. P., India

Tel: +91-9415036245; Fax:
Email: rambux@gmail.com

R.B.Srivastava et al.,

2

 Computer program for bisection method developed by us is
given below-

#include<conio.h>
#include<stdio.h>
#include<math.h>
//Bisection method
void main(void)
{
 FILE *fpt;
 int n;
 float a[1000],b[1000],c[1000],delta,rl,ru,d,aa;
 double f(float x);
 //avr is the variable whose square root is to be calculated
 double avr=25.0;
 clrscr();
 //Filename to store result
 fpt=fopen("nddb25.txt", "w");
 rl=0; ru=6.0; n=1; a[1]=rl; b[1]=ru; aa=fabs(rl-ru);
 //Value of function f(x)
 fprintf(fpt,"f(x)=x^2-25\n");
 fprintf(fpt,"rl= %6.2f\n",rl);
 fprintf(fpt,"ru= %6.2f\n",ru);
 //to check existence of root between the interval
 d=f(rl)*f(ru);
 delta=0.00001;
 fprintf(fpt," n a[n] b[n] c[n] f(c[n])\n");
 printf(" n a[n] b[n] c[n] f(c[n])\n");
 if (d<0)
 {
 while(aa > delta)
 {
 if (a[n]==b[n]) break;
 c[n]=(a[n]+b[n])/2;
 if (((f(c[n])>0) && (f(a[n])>0)) || ((f(c[n])<0) && (f(a[n])<0)))
 {
 a[n+1]=c[n];
 b[n+1]=b[n];
 }
 else
 {
 b[n+1]=c[n];
 a[n+1]=a[n];
 }
 aa=fabs(f(c[n]));
 fprintf(fpt,"%3d %15.12f %15.12f %15.12f %18.12f\n", n,a[n], b[n],
 c[n], f(c[n]));
 printf("%3d %15.12f %15.12f %15.12f %18.12f\n", n,a[n], b[n],
 c[n],f(c[n]));
 if (aa > delta) n=n+1;
 }

 printf("Root= %20.15f\n",c[n]);
 printf("Value of function=%20.15f\n", f(c[n]));
 printf("No. of iterations=%3d\n",n);
 printf("Actual value of root=%15.12f\n",sqrt(avr));
 fprintf(fpt,"Actual value of root=%15.12f\n",sqrt(avr));
 printf("\n");
 getch();
 }
 else
 {
 printf("There is no root in the given interval\n");
 getch();
 }
 fclose(fpt);
 }
//Function definition
double f(float x)
{
 double r;
 r=x*x-25;
 return(r);
}

 With the help of above computer program, square roots of the
natural numbers from 1 to 25 in the interval [0, 6] have been
calculated. For this, the following functions have been taken
f(x) = x2 - n = 0 where n = 1, 2, 3, ……. , 25
 Numerical accuracy of bisection method has been has been
measured by percentage error and defined as follows–

Percentage error = error in the value of square root * 100/actual
value of square root
 Numerical accuracy of bisection method is inversely
proportional to percentage error.

RESULT AND DISCUSSION

 Square roots of natural numbers from 1 to 25 have been
calculated using bisection method in the interval [0, 6] with stopping
tolerance 0.00001.

Calculation of square root of 1 by bisection method

 Bisection method has been applied to calculate the roots of
equation
f(x) = x2 – 1 = 0
 In the interval [0, 6] using computer program developed by us.
Initial value, last value, middle point of interval and value of function
at middle point of the interval in each iteration is included in Table-1.
Estimated value of square root of 1 by bisection method after each
iteration is shown in Graph-1.

Table1. Initial value, last value, middle point of interval and value of function at middle point of the interval in the calculation of square root of 1 by bisection method

Number of
iterations

Initial value (a) Last value (b) Middle point (c) Value of function f(x) at x=c

1 0.000000000000 6.000000000000 3.000000000000 8.000000000000

2 0.000000000000 3.000000000000 1.500000000000 1.250000000000

3 0.000000000000 1.500000000000 0.750000000000 -0.437500000000

4 0.750000000000 1.500000000000 1.125000000000 0.265625000000

5 0.750000000000 1.125000000000 0.937500000000 -0.121093750000

6 0.937500000000 1.125000000000 1.031250000000 0.063476562500

International Multidisciplinary Research Journal 2012, 2(1):01-04

3

7 0.937500000000 1.031250000000 0.984375000000 -0.031005859375

8 0.984375000000 1.031250000000 1.007812500000 0.015686035156

9 0.984375000000 1.007812500000 0.996093750000 -0.007797241211

10 0.996093750000 1.007812500000 1.001953125000 0.003910064697

11 0.996093750000 1.001953125000 0.999023437500 -0.001952171326

12 0.999023437500 1.001953125000 1.000488281250 0.000976800919

13 0.999023437500 1.000488281250 0.999755859375 -0.000488221645

14 0.999755859375 1.000488281250 1.000122070312 0.000244155526

15 0.999755859375 1.000122070312 0.999938964844 -0.000122066587

16 0.999938964844 1.000122070312 1.000030517578 0.000061036088

17 0.999938964844 1.000030517578 0.999984741211 -0.000030517345

18 0.999984741211 1.000030517578 1.000007629395 0.000015258847

19 0.999984741211 1.000007629395 0.999996185303 -0.000007629380

Actual value of square root of 1 1.000000000000

Calculated value of square root of 1 by bisection method 0.999996185303

Difference between actual and calculated values of square root of 1 0.000003814697

Percentage error in the value of square root of 1 calculated by bisection method 0.000381469700

Graph 1. Estimated value of square root of 1 by bisection method after each iteration

Estimated value of square root of 1 in each iteration of bisection method

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Iteration

E
s
ti

m
a
te

d
 v

a
lu

e
 o

f
ro

o
t

 Similarly, the square roots of natural numbers from 2 to 25
have been calculated with the help of computer program to draw the
appropriate conclusion.

CONCLUSION

 Lowest percentage error has been obtained in the calculation
of square root of 13 in the interval [0, 6] and is equal to
0.000000905160. It means if roots lies in the middle of the interval
then the error in the calculated value of root of equation by bisection
method is least.

 Highest percentage error has been obtained in the calculation
of square root of 1 in the interval [0, 6] and is equal to
0.000381469700. It means if roots lies in the beginning of the interval
then the error in the calculated value of root of equation by bisection
method is greatest. Exact value of root, value of root calculated by
bisection method and percentage error in the calculation of root by
bisection method is shown in Table-2. Average percentage error of
bisection method in the calculation of square roots of natural
numbers from 1 to 25 has been found to be 0.000041549568 which
indicates that the accuracy of bisection method can be increased by
reducing tolerance value.

Table 2. Numerical accuracy of bisection method in the calculation of roots of functions f(x) = x2 – n; n=1, 2, …., 25

S. No. Function Exact Value of root
Value of root obtained by

bisection method
Percentage error in bisection

method

1 f(x)=x2-1 1.000000000000 0.999996185303 0.000381469700

2 f(x)=x2-2 1.414213562373 1.414215087891 0.000107870412

3 f(x)=x2-3 1.732050807569 1.732051849365 0.000060148120

4 f(x)=x2-4 2.000000000000 1.999998092651 0.000095367450

5 f(x)=x2-5 2.236067977500 2.236066818237 0.000051843817

6 f(x)=x2-6 2.449489742783 2.449490547180 0.000032839370

7 f(x)=x2-7 2.645751311065 2.645750999451 0.000011777902

8 f(x)=x2-8 2.828427124746 2.828427314758 0.000006717939

9 f(x)=x2-9 3.000000000000 2.999998569489 0.000047683700

10 f(x)=x2-10 3.162277660168 3.162277221680 0.000013866208

11 f(x)=x2-11 3.316624790355 3.316623687744 0.000033244973

12 f(x)=x2-12 3.464101615138 3.464100837708 0.000022442471

13 f(x)=x2-13 3.605551275464 3.605551242828 0.000000905160

14 f(x)=x2-14 3.741657386774 3.741657257080 0.000003466218

15 f(x)=x2-15 3.872983346207 3.872983932495 0.000015137891

16 f(x)=x2-16 4.000000000000 3.999999046326 0.000023841850

17 f(x)=x2-17 4.123105625618 4.123106002808 0.000009148201

R.B.Srivastava et al.,

4

S. No. Function Exact Value of root
Value of root obtained by

bisection method
Percentage error in bisection

method

18 f(x)=x2-18 4.242640687119 4.242639541626 0.000026999529

19 f(x)=x2-19 4.358898943541 4.358900070190 0.000025847101

20 f(x)=x2-20 4.472135955000 4.472136497498 0.000012130624

21 f(x)=x2-21 4.582575694956 4.582574844360 0.000018561526

22 f(x)=x2-22 4.690415759823 4.690415382385 0.000008047005

23 f(x)=x2-23 4.795831523313 4.795831203461 0.000006669375

24 f(x)=x2-24 4.898979485566 4.898979663849 0.000003639187

25 f(x)=x2-25 5.000000000000 5.000000953674 0.000019073480

Average percentage error in bisection method 0.000041549568

REFERENCES

[1] Speck, G. P., 1977. New Zealand Math. Mag., 14(1):34-36.

[2] Garey M. R., Johnson D. S., Stockmeyer L., 1976. Theoretical
Computer Science, 1(3):237-267.

[3] Nievergelt, Yves,1994. SIAM Rev., 36(2): 258-264.

[4] Bui T., 1984. IEEE FOCS, 181-191.

[5] Jerrum M., 1993. Sorkin G. B., IEEE FOCS, 94-103.

[6] Baushev A.N., Morozova E.Y,2007. Lectures notes in
engineering and computer science, 2:801-803.

[7] Torczon, V, 1991. SIAM J. Optim., 1:123-145.

[8] Torczon V.,1997. SIAM J. Optim, 7(1):1-25.

[9] Kazuo Murota,1982. SIAM Journal on Numerical Analysis, 19(4):
793-799.

[10] Reddien G. W.,1978. SIAM Journal on Numerical Analysis,
15(5): 993-996.

[11] Hart, V. G.; Howard, L. N.,1978. Austral. Math. Soc. Gaz., 5 (3):
73-89.

[12] Speck, G. P.,1977. New Zealand Math. Mag., 14 (1): 34-36.

[13] Franklin F.,1981. American Journal of Mathematics, 4(1/4): 275-
276.

[14] Fiduccia C. M., Mattheyses R. M.,1982. Proceedings of the 19th
Design Automation Conference, 175-181.

[15] Rall L. B.,1974. SIAM Journal on Numerical Analysis, 11(1): 34-
36.

[16] Jorge J. More,1971. SIAM Journal on Numerical Analysis, 8(2):
325-336.

[17] McKinnon, K.I.M.,1998. SIAM J. Optim, 9:148-158.

[18] Kernighan B., Lin S.,1970. The Bell System Technical Journal,
49(2):291-307.

