Discovery of a nuclear haplotype potentially useful for the identification of medicinal rice Njavara (Oryza sativa L.)

R. Dinesh Raj*, U. Suresh Kumar², M. R. Vinitha³, B. C. Patra⁴, O. N. Singh⁴, George Thomas³

¹Post Graduate Department of Botany and Biotechnology, Bishop Moore College, Mavelikkara-69010, Kerala, India, ²Regional Facility for DNA Fingerprinting, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India, ³Plant Facility for DNA Fingerprinting, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India, ⁴Division of Crop Improvement, Central Rice Research Institute, Cuttack-753006, Odisha, India

ABSTRACT

The present study reports the development of an amplified fragment length polymorphism (AFLP)-derived sequence characterized amplified region (SCAR) marker for reliable identification of Njavara (Oryza sativa landrace Njavara), a rice landrace in India used extensively in health foods and Ayurveda treatments. The SCAR locus, named OsSCAR131 after O. sativa landrace Njavara, is located on chromosome 3 between nucleotide positions 7793982 and 7794108, and yields a 151-bp allele in Njavara accessions and a 127-bp allele in other rice cultivars due to a 4-bp Insertion-Deletion (InDel) mutation at nucleotide position 7794026. We standardized the SCAR assay to be like those used for detecting microsatellite markers by using fluorescently (6-FAM) labeled primers and separating the alleles by capillary electrophoresis. As an alternative, we further adapted the method so as to allow allele detection by polyacrylamide gel electrophoresis (PAGE). A single rice grain can be tested for authentication by this PAGE assay. The SCAR marker developed here has great utility in authenticating Njavara grains in both the health food and pharmaceutical sectors.

KEYWORDS: Medicinal rice, Njavara, Ayurveda, SCAR, Health rice

INTRODUCTION

Njavara (Oryza sativa L. landrace Njavara), called shashtika in Sanskrit, is an Indian rice landrace used as a health food and in Ayurveda treatments (Deepa et al., 2008, 2010; Simi & Abraham, 2008; Sreejayan et al., 2011; Disket et al., 2013; Reshmi & Nandini, 2018). Several descriptions about the medicinal and nutritive features of Njavara can be found in ancient Sanskrit treatises of Ayurveda such as Charakasamhita and Susrutasamhita (circa. 300-700 BCE). Scientific research shows significantly higher levels of nutrients, anti-oxidants and anti-inflammatory molecules in Njavara as compared to other rice cultivars (Deepa et al., 2008; Rao et al., 2010; Mohanlal et al., 2011, 2013; Lal preethi et al., 2022). The ayurvedic industry has been utilizing several health-conducive applications using Njavara grains, like Njavavarakizhi and Njavara theppu (shashtika anna lepa), both claimed as therapies for neural, circulatory and rheumatic disorders (Deepa et al., 2008, 2010; Simi & Abraham, 2008; Sreejayan et al., 2011; Reshmi & Nandini, 2018). With the recent upsurge of interest among people in alternative therapeutic approaches, Ayurvedic traditions have recently witnessed a revival in both India and abroad (Patwardhan et al., 2005; Simi & Abraham, 2008). Selection of accurate germplasm in compliance with traditional knowledge is essential for ensuring consistency, quality and efficacy in traditional practices (Patwardhan et al., 2005).

Njavara cultivation is currently localized to Kerala state. We previously characterized accessions of Njavara (Sreejayan et al., 2011) and found that Njavara is morphologically and genetically distinct from syntopic traditional cultivars (Varghese et al., 2013), but no trait was identified that is suitable to authenticate Njavara grains in the commercial sector. Deepa et al. (2009) reported two molecular polymorphisms between Njavara and two other cultivars, Jyothi and IR 64, but the variants were not validated in a larger sample set or converted into commercially amenable markers. Scientific methods are essential to authenticate Njavara grains in the health food and pharmaceutical sectors in order to prevent intentional fraud (Njavara is two to three times costlier than the rice used for regular consumption) or inadvertent mixing due to improper identification by farmers or physicians.

Copyright: © The authors. This article is open access and licensed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Among the different molecular markers used for the identification of cultivars and medicinal species, SCAR markers have several advantages as they are locus-specific, less sensitive to PCR conditions, easy to assay and reproducible across laboratories (Kiran et al., 2010; Sarwat et al., 2011; Zheng et al., 2021; Kethirun et al., 2023). SCAR markers are generally derived from species- or cultivar-specific random amplified polymorphic DNA (RAPD) markers (Bautista et al., 2002; Ohtsubo & Nakamura, 2007; Jain et al., 2008; Moon et al., 2010; Mariachi et al., 2011) or AFLP markers (Shan et al., 1999; Shirasawa et al., 2004). However, the success rate of SCAR development from AFLP markers is generally low (Brugmans et al., 2003; Shirasawa et al., 2004). AFLPs detect Insertion-Deletions (InDels) and single nucleotide polymorphisms (SNPs) (Brugmans et al., 2003; Shirasawa et al., 2004), and the polymorphic nature of an ancestral AFLP fragment is usually lost when amplicons are generated from target genomic DNA by using primers designed to anneal internally to the terminal MseI and EcoRI primer sequences (Shan et al., 1999; Brugmans et al., 2003). Efficiency in the conversion of AFLPs to SCARs can be improved by using primers that anneal to sequences flanking the AFLP (Brugmans et al., 2003). In particular, Shirasawa et al. (2004) successfully developed several SCAR markers able to differentiate the two major Japanese rice cultivars, Nipponbare and Koshihikari, by designing AFLP-flanking primers based on alignments of rice genomic sequences. In the present study, using the method of Shirasawa et al. (2004), we explored the possibility of developing SCAR markers for authentication of Njavara using the predominantly Njavara-specific AFLPs reported earlier (Steejayan et al., 2011).

MATERIALS AND METHODS

Plant Materials

The plant materials used in the study included: 73 accessions of Njavara, covering the complete geographic range of its cultivation in Kerala; 55 traditional rice cultivars from Kerala, comprising most of the cultivars currently grown in Kerala; 107 traditional cultivars randomly chosen from 13 other rice-cultivating states in India; and 21 improved hybrid varieties usually cultivated in Kerala (Supplementary Table S1).

DNA Isolation

Genomic DNA was isolated from 100 mg of tender leaf tissues from a single plant using a GenElute™Plant Genomic DNA Miniprep Kit (Sigma) following the manufacturer’s instructions. Genomic DNA from a single rice grain was isolated using a NucleoSpin® Plant II (Macherey-Nagel) kit according to the protocols provided by the manufacturer. Final elution was in 15 µL of elute buffer and the whole amount was used for PCR amplification.

Gel elution, Sequencing, Primer Design and PCR Analysis

AFLP fragments were eluted from the gel using a GFX™ PCR DNA and Gel Band purification kit (GE Healthcare), re-amplified using the corresponding AFLP primer combination and cloned using a pGEM-T Easy Vector System (Promega). The clones were sequenced on an ABI Prism 3730 genetic analyzer (Applied Biosystems) using the ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit, version 3.0.

Primers for PCR amplification of AFLP sequences were designed according to the method of Shirasawa et al. (2004). In short, the AFLP sequences were aligned with rice genomic sequences following homology searches in the National Center for Biotechnology Information (NCBI) database, and primers were designed to sequences flanking the AFLP sequences using the software FastPCR (Kalander et al., 2009). We scanned approximately 500 bp of sequence flanking both ends of the AFLP sequence to locate a suitable site for primer design, but with the expected amplicon size not exceeding 900 bp including AFLP sequence. The primer combinations were evaluated in silico using FastPCR. The designed primers were custom synthesized by Sigma (Sigma Genosys, Bangalore, India). Homologous sequences retrieved following BLAST searches using AFLP sequence queries in the NCBI database were annotated using the Rice Genome Annotation Project, Release 7: Genomic sequences (http://rice.plantbiology.msu.edu/index.shtml).

Each PCR was carried out in a total volume of 10 µL containing 15 ng of genomic DNA, 0.01 µM each of forward and reverse primers, 2.5 mM MgCl₂, 0.5 mM dNTPs, and 1 unit Taq DNA polymerase (AmpliTaq gold, Applied Biosystems). The PCR cycles were as follows: 94 °C for 5 min, followed by 40 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s, and a final extension at 72 °C for 7 min in a thermocycler (Mastercycler gradient, Eppendorf). The PCR products were fractionated on 2% agarose gels.

SCAR Assay

The SCAR assay was performed using the methodology described by Schuelke (2000) for microsatellite analysis. This method performs allele detection by using a forward primer linked with an 18-nucleotide M13 tail (5’-tgtaaaacgacggccagt-3’) in combination with a single fluorescently (6–FAM) linked with an 18-nucleotide M13 tail. The SCAR assay was performed using the methodology described by Schuelke (2000) for microsatellite analysis. This method performs allele detection by using a forward primer linked with an 18-nucleotide M13 tail in combination with a single fluorescently labeled M13 primers. The alleles were separated by capillary electrophoresis on an ABI Prism 3730 genetic analyzer. Allele sizing was performed by using the software Genescan 3.1.2 (Applied Biosystems) by comparing with the internal size standard ROX 400 (Applied Biosystems). Allele calling and sorting was performed using the software GeneMapper V. 4 (Applied Biosystems) and binning was done manually. Alternatively, SCAR alleles were detected by electrophoretic separation of the PCR products on 15 cm long 8% polyacrylamide gels for 14 h at 50 V. The gels were stained with 0.5 µg/mL ethidium bromide solution and the alleles were scored against 50-bp molecular size standards (New England Biolabs).

RESULTS AND DISCUSSION

The nine predominantly Njavara-specific AFLP fragments (E-AA x M-CAC199, E-AA x M-CAC210, E-AC x M-CAC184, E-AC x M-CAC199, E-AC x M-CAT275 and E-TA x M-CTT275, E-TA x M-CTT275 and E-TG x M-CTA491) identified...
earlier (Sreejayan et al., 2011) were analyzed in this study. Of the nine primer pairs tested, primers designed to sequences flanking E-AA x M-CAC₃₅₈ (forward: 5'-gcgacaagaattatggtcaggtttg - 3'; reverse: 5'-atgactgaagtcgagattgaggaga - 3') consistently yielded a single conspicuous fragment of approximately 900 bp, but was monomorphic between Njavara accessions and traditional cultivars on agarose gels. The other primer pairs yielded either no amplification or multiple faint bands or inconsistent results.

AFLPs mostly detect InDels and SNPs (Shirasawa et al., 2004). As agarose gel electrophoresis cannot resolve length polymorphisms of short InDels (InDels < 5 bp) and SNPs (Shen et al., 2004; Liu et al., 2013), we sequenced the 900-bp fragment in a few samples each of Njavara and traditional cultivars and performed a multiple alignment comparison of the sequences generated together with rice genomic sequences. The consensus sequence was 923 bp and located between nucleotide positions 7793761 and 7794683 of rice chromosome 3, within an expressed protein locus (LOC_Os03g14310.1). The 923-bp sequence comprised 217 bp of exon and 706 bp of intron regions of this locus (Figure 1). The 358-bp MseI- and EcoRI-bordered AFLP fragment lies within the intron region (Figure 1). The multiple sequence alignment revealed a 4-bp InDel at nucleotide position 7794026 that is polymorphic between Njavara accessions and traditional cultivars. Two motifs of an AT repeat were inserted at this region in the Njavara accessions but not in the traditional cultivars (Figure 1).

Sequence analysis of 266 independently amplified 923-bp fragments (NCBI accession numbers: KF731340-KF731605) recovered from 73 Njavara accessions and 193 cultivars (the latter including 80 cultivars from Kerala and 20 improved hybrid varieties) (Supplementary Table S1) confirmed the polymorphism between the Njavara accessions and the other cultivars. Multiple sequence alignment of 266 sequences revealed altogether 47 polymorphic sites, comprising of 17 SNPs and 30 InDels within 748 bp of the aligned 923-bp sequences (Figure 2). Analyses detected eight distinct haplotypes in 266 sequences, and all Njavara accessions invariably belonged to haplotypes 1, 2 or 3 and no other cultivars shared these haplotypes (Figure 2 & Supplementary Table S1). While the genetic relationships among cultivars revealed by SCAR sequences were earlier reported to be inconsistent with known relationships in olive-trees (Bautista et al., 2002), the genetic relationship revealed by the 923-bp sequence between the Njavara and traditional cultivars is consistent with the distinct relationship revealed between two earlier by microsatellite markers as well as morphological traits (Varghese et al., 2013), indicating that this sequence harbors phylogenetic signatures that differentiate between Njavara and other cultivars.

The rice genome has one InDel every 953 bp (1050 InDels/Mb) on average, and 90% of the InDels can be used as molecular markers (Shen et al., 2004). The genomic density of InDels outnumbers that of microsatellite markers (Liu et al., 2013), and microsatellites and InDels are the markers of choice in most laboratories for the development of plant molecular markers (Shen et al., 2004; Liu et al., 2013). However, InDel assay by sequence analysis is time consuming and technically demanding; hence, it may not be commercially viable. InDel

Figure 1: Map of the expressed protein-coding locus LOC_Os03g14310.1 showing the location of the SCAR locus OsN_{SCAR131} on rice chromosome 3. Numbers at the top of the diagram indicate the nucleotide positions on chromosome 3. F1 and R1, and F2 and R2 represent the priming sites for amplification of 923-bp fragment and the SCAR locus OsN_{SCAR131}, respectively. Locations of the MseI and EcoRI restriction sites bordering the original E-AA x M-CAC₃₅₈ fragment and the Njavara-specific InDel ATAT are indicated.

Figure 2: Eight haplotypes identified among sequences of the 923-bp fragment by analyzing 266 rice cultivars, including 73 Njavara individuals. The Njavara-specific InDels are shaded.
markers can be assayed using the same separation and detection technologies as microsatellite markers (Liu et al., 2013).

With the aim of being able to assay the 4-bp InDel in the manner of a microsatellite marker, we designed several primer pairs to the sequences flanking the 4-bp InDel in order to amplify fragments in the range of 100-160 bp. Each primer pair was then assayed as if testing a microsatellite marker using a few Njavara accessions and traditional cultivars following the method of Schuelke (2000), and alleles were separated by capillary electrophoresis. One of the primer pairs yielded a 149-bp (including the 18-nucleotide M13 tail linked to the forward primer) fragment in Njavara (Figure 3a) and a 145-bp fragment in traditional cultivars (Figure 3b). We validated the Njavara specificity of the 131-bp allele (excluding the 18-nucleotide M13 tail) using 286 cultivars, including the 266 cultivars used for assaying the InDel by sequencing (Supplementary Table S1). The locus lies between nucleotide positions 7793982 and 7794108 on chromosome 3 (Figure 1). We named this SCAR marker as OsN\textsubscript{SCAR131} after O. sativa landrace Njavara, and the primers amplifying this SCAR locus as OsN\textsubscript{SCAR131-F} (5'-actactacgacacccaacatactt-3') and OsN\textsubscript{SCAR131-R} (5'-gagatactaagatgtaactgactg-3'). Heterozygosity was recorded at the OsN\textsubscript{SCAR131} locus in six Njavara accessions (N34, N45, N50, N54, N7, N85) (Figure 3c & Supplementary Table S1), indicating the occurrence of genetic admixing events in some Njavara accessions. Several authors reported the occurrence of substantial intra-subspecies genetic admixture events in the evolution of rice (Zhao et al., 2011; Santos et al., 2019).

To facilitate the use of OsN\textsubscript{SCAR131}-based authentication of Njavara grains in less equipped health food or pharmaceutical operations, we adapted the SCAR allele detection methodology to a polyacrylamide gel electrophoresis (PAGE) platform (Figure 3d). We also standardized the DNA isolation procedure (see Materials and methods) and SCAR allele detection from a single grain in order to be able to detect adulterants in the commercial sector, as the grains of Njavara and those of most other cultivars are indistinguishable based on morphology.

SCAR markers have been developed for the authentication of premium cultivars (Vidal et al., 2000; Bautista et al., 2002; Shirasawa et al., 2004; Ohtsbo & Nakamura, 2007; Saengprajak, 2012; Qv et al., 2024) and herbal drugs (Jain et al., 2008; Kiran et al., 2010; Moon et al., 2010; Marieschi et al., 2011). Our results support the earlier report that the success rate in the conversion of AFLPs into SCARs can be improved by designing primers to the flanking regions (Brugmans et al., 2003; Shirasawa et al., 2004). Codominant SCAR markers like OsN\textsubscript{SCAR131} have been reported previously in grapevines (Vidal et al., 2000) and rice (Shirasawa et al., 2004; Saengprajak, 2012). Codominant SCAR markers have an advantage over strictly dominant markers, because the former differentiate between experimental failures and null alleles whereas the latter do not. With the recent upsurge of interest among people in Njavara-based health

Figure 3: Representative chromatograms and an ethidium bromide-stained polyacrylamide gel showing allele detection at the SCAR locus OsN\textsubscript{SCAR131}; a, b, c) alleles detected by capillary electrophoresis on an ABI Prism 3730 genetic analyzer in Njavara accession N2, traditional cultivar Bengi, and Njavara accession 45, respectively. Allele sizes are indicated and the smaller peaks represent the internal molecular size standard ROX 400 and d) alleles detected by PAGE in lanes: 1-Njavara accession N2, 2-Njavara accession N4, 3-traditional cultivar PTB8, 4- traditional cultivar Bengi, 5-Njavara accession N34, 6-Njavara accession N45 and M-50-bp molecular size standard.
food and healthcare systems, we believe that the SCAR marker developed by us will help expand the reach of Njavara-based applications by providing a scientific method for raw material identification and authentication.

Njavara rice is known for its distinct agronomically important traits like short duration (60 days maturity) and upland adaptation (Sreejayan et al., 2011; Disket et al., 2013; Rani & Sukumari, 2016). Nutritional superiority of njavara grains was reported elsewhere (Deepa et al., 2008; Rao et al., 2010; Mohanlal et al., 2011, 2013; Lal preethi et al., 2022). This makes njavara an ideal genetic resource for crop improvement in rice. The identification tool reported in this study will have applications in plant materials selection and other breeding strategies using njavara. Similar approaches using SCAR markers were reported earlier for hybrid rice identification (Li et al., 2012), mutant selection (Sangwijit et al., 2012), and specific trait based selection (Boopathi et al., 2003), etc.

CONCLUSION

Present study developed a SCAR marker for authentication of the Indian health rice Njavara. The marker yields a 131-bp allele in Njavara and a 127-bp allele in other rice cultivars analysed. The marker is located on chromosome 3. A 4-bp Indel yields the polymorphism between Njavara and other cultivars. The marker can be assayed by capillary electrophoresis, like a microsatellite marker and also through PAGE gel assay. The SCAR marker developed here would be a valuable tool to authenticate the perceptually identified raw materials of njavara in the health and pharmaceutical sectors.

ACKNOWLEDGEMENTS

G.T. acknowledges the Kerala State Council for Science Technology and Environment for funding (Research grant No.024/SRSLS/2006/KSCSTE). D. R. R. acknowledges UGC-FDP Teacher Fellowship (No. FIP/11th Plan/KLKE002 TF03).

REFERENCES

