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INTRODUCTION

Withania somnifera Dunal (Ashwagandha), belonging to the family 
Solanaceae, has been known for its array of therapeutic activities. It 
is an important medicinal herb in the traditional medicine. Various 
studies have demonstrated that Withania, in its reasonable dose 
is non-toxic, safe and an edible herb to be used as an adaptogenic 
tonic. Until now, 12 alkaloids, 35 withanolides and several 
sitoindosides have been isolated from this plant and structures 
elucidated (Mishra et al., 2000). Of these withanolides are of prime 
importance (Matsuda et al., 2001). Withanolides, though are a 
group of naturally occurring steroids specific to the Solanaceae 
family are also reported in fewer amounts in Lamiaceae, Taccaceae 
and Fabaceae families. It is the major chemical constituent of 
the Withania genus though is reported in small quantities from 
Physalis, Dature, Nicandra, Dunalia, Lycium, Tubocapsicum and 
Jaborosa genus (Cordero et al., 2009). Ashwagandha extracts from 
various parts like leaf, root and shoots have shown the presence of 
withanolides, of which withaferin A, withanolide A, withanolide 
D and withanone are of prime importance.

Withaferin A (WA), a white crystalline substance with 
maximum absorption in the UV region, is the first member 

of the withanolides group to be isolated from the leaves of 
Indian W. somnifera. It was then later isolated from an Israeli 
variety, characterized and given the name Withaferin A 
(David et al., 1965). Being the major pharmacologically active 
withanolide, it is the most studied molecule (Choudhary et 
al., 2010). WA with potent anti-viral and immunomodulatory 
activity has also been proved as a potent inhibitor of SARS-
CoV2 main protease (Chandel et al., 2020) thus becoming an 
important molecule under focus in this pandemic situation. 
This review highlights the various studies undergone on this 
wonder compound thus highlighting the deficiencies in our 
knowledge. This would further help researchers to direct 
studies to bridge the gaps.

STRUCTURE AND DERIVATIVES OF WITHAFERIN 
A IN RELATION TO ITS ACTIVITY

Withanolides are naturally occurring C28 steroids with an 
ergostane backbone in which the 22nd and 26th carbon are 
oxidized to form a 6 membered lactone ring. Withaferin A 
(4β, 27-dihydroxy-1-oxo-5β, 6β-epoxywitha-2-24-dienolide) is 
a bioactive compound classified as withanolide. Being one of 
the most bioactive compound, it is necessary to have a clear 
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insight into the molecular mechanisms underlying its broad 
range of bioactivities. Therefore, a lot of effort has been made 
to explore the intracellular effects of WA and to characterize 
its target protein (Vanden Berghe et al., 2012). The structure 
of WA also contributes to its cytotoxic activity. WA is a C5, C6 
epoxy compound with hydroxyl groups on C4 and C27. The 
skeletal nature of WA was obtained after several dehydrogenation 
experiments with selenium on the product obtained by lithium 
aluminium hydride reduction of dihydro withaferin A (Lavie 
et al., 1965a, Lavie et al., 1965b). The 2D structure of withaferin 
A is retrieved from pubchem and presented as figure 1 (https://
pubchem.ncbi.nlm.nih.gov/compound/Withaferin-A-Withania 
somnifera). The studies on WA and 9 of its derivatives revealed 
4-dehydro withaferin A and withaferin A diacetate as the most 
potent agents exhibiting equal inhibitory effect on thymidine, 
uridine, and L-valine incorporation in nucleic acid synthesis. 
Further the double bond between C2-3 was responsible for the 
cytotoxic effect, the dissociation of which lead to a decrease in 
the activity of all the derivatives. Also an increase in the activity 
was observed on the addition of a carbonyl group at C4 position. 
Whereas the removal of OH group at C27 or the dissociation of 
the double bond between C24-25 did not cause any change in the 
activity (Fuska et al., 1984). But, a modification at the OH group 
of C27 by a subsequent reversible addition fragmentation chain 
transfer (RAFT) polymerization with hydrophilic N,N-dimethyl 
acrylamide yielded a completely water soluble conjugate of WA. 
Thus overcoming its poor solubility that limits its use (Van Herck 
et al., 2019). Similar studies on the structure activity relationships 
of withaferin A, withanolide D and its semisynthetic analogues 
prepared by chemical and microbial transformations revealed 
the increased efficiency of withaferin A derivatives compared 
to its corresponding withanolide D derivatives. 

The study on the cytotoxicity and heat shock inducing 
activity revealed the importance of the ring A structure for 
its bioactivities. This study proved that the modification of 
the withanolide scaffold can increase its heat shock inducing 
activity (Wijeratne et al., 2014). Study on the in vitro cytotoxic 
effect of WA analogues obtained upon modification of the ring 
A structure reported a 35 fold increase in activity in a 3-azido 

analogue of WA compared to the parent molecule (Yousuf et al., 
2011). Metabolite studies on W. somnifera grown under soil 
free aeroponic condition resulted in the isolation two new WA 
derivatives 3α-(uracil-1-yl)-2,3-dihydroWA and 3β-(adenin-9-
yl)-2,3-dihydroWA along with ten other structurally diverse 
withanolides which were also referred to as WA. The structure of 
these compounds was elucidated on the basis of high resolution 
mass and NMR spectroscopy (Xu et al., 2011).

2,3- dihydro- 3 β-methoxy WA (3βmWi-A), another derivative 
of WA was found to lack the cytotoxic property of WA but it 
helped in the induction of anti-stress and pro survival signaling. 
Thus 3βmWi-A was found to protect normal cells against stress 
(Chaudhary et al., 2019). A few chlorinated forms of WA like 
6α-chloro-5β-hydroxy WA, (22R)-5β-formyl-6β,27-dihydroxy-1-
oxo-4- norwith-24-enolide, 2,3-dihydrowithaferin were also isolated 
from ethyl acetate fraction of W. somnifera and their structures 
elucidated by crystallographic studies (Tong et al., 2011).

THERAPEUTIC POTENTIAL OF WITHAFERIN A

Ashwagandha is a cost effective adaptogenic drug that is 
being used effectively to combat the various complications of 
stress. Since stress is an underlying cause of most of the health 
issues, study on the natural ways to overcome it has become 
a necessity. WA has been reported to increase the antioxidant 
potential, prevent gastric ulcer and hepatotoxicity induced 
by stress. Many investigations has been carried out to explore 
the multifaceted properties of WA and the results showed its 
significant pharmacological properties (Shrilata et al., 2017). 
The ADME studies using QikProp software revealed that WA 
is a small molecule capable of exhibiting antagonistic and 
agonistic activities without any side effects to the organism 
(Vaishnavi et al., 2012). Further the oral bioavailability of WA 
studied in male rats (Dai et al., 2019) showed bioavailability 
of around 32.4% with a strong first pass metabolism. The most 
important medicinal properties studied so far are explained 
below and a few less reported studies are presented in table 1. 

Anti-oxidant and Anti-inflammatory Activities

The studies by Mandal et al (2010) has proved the 
pharmacognostic and free radical scavenging efficiency of the 
different parts of the plant W. somnifera. The active principles 
of Withania somnifera (sitoindosides VII-X and WA) showed 
anti-oxidant activity comparable to the standard drug deprenyl 
(Bhattacharya et al., 1997). The glycowithanolides of Withania 
somnifera was also found to reverse the effects of chronic stress. 
The oral administration of glycowithanolides 1hour before the 
induction of foot shock stress in rats bought back the SOD 
and LPO activities to normal (Bhattacharya et al., 2001). WA 
has proved to reduce oxidative stress against DEN induced 
hepatocellular carcinoma in rats (Murugan et al., 2015). A 
comparative decrease in the levels of reactive oxygen species 
was observed in WA treated rats. 

The anti-inflammatory activity of W. somnifera is attributed to 
the presence of its major biologically active steroid, WA (Patel Figure 1: 2D structure of Withaferin A
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et al., 2015a). In raw 264.7 cells, WA was found to inhibit 
LPS induced expression of both nitric oxide synthase (iNOS) 
protein and its mRNA. Oh et al (Oh et al., 2008) examined the 
mechanism by which WA inhibits iNOS gene expression, and 
suggested that WA inhibited inflammation through inhibition 
of NO production and iNOS expression, by blocking Akt and 
subsequently downregulating NFκB activity. 

Anti- microbial Activity

The aqueous and organic extracts of the leaf, stem and root 
powders of W. somnifera are reported with potent inhibitory 
activity against the fungal species Fusarium oxysporum and 
Radicis lycopersici (Nefzi & Ben Abdallah, 2016). Kumari & 
Gupta (Kumari & Gupta, 2015) has reported the inhibitory 
effect of W. somnifera root extract towards E. coli showing 
maximum up to 57.40% inhibition. The inhibitory activity of 
WA is due to its reaction with the SH group of the enzymes and 
metabolites required by the organisms. Further it was observed 
that this activity of WA is blocked by the presence of glutathione 
in the media (Budhiraja et al., 2000). 

Human papilloma virus (HPV), the cause of cervical cancer, has 
been reported to be the main cause of cancer death in women 
worldwide. The high risk HPV 18 was found to inactivate the 
p53 (tumor suppressor) protein by its interaction through E6 
oncoprotein. Since WA has been used traditionally for the cure 
of various cancers, its interaction with the oncoprotein was 
studied. The docking results revealed that WA interacts with the 
residues 108-117 of the p53 binding site on E6 oncoprotein, thus 

reversing to the normal functioning of p53 (Kumar et al., 2015). 
Another simulation study exhibited the binding potential of the 
terminal hydroxyl groups of WA to sites on DNA polymerase of 
Herpes simplex virus. WA was predicted to bind to the amino 
acid residues Gln 617, Gln 618, Asn 815and Tyr 818 which are 
essential for the functioning of the enzyme. Thus WA can be 
used as a potent anti-herpetic drug (Grover et al., 2011a).

COVID 19 is a transmissible severe acute respiratory syndrome 
caused by SARS-CoV-2 virus. Various anti-viral compounds and 
active phytoconstituents approved by FDA (Chandel et al., 
2020) and nearly forty chemical constituents of W. somnifera 
were studied using molecular dynamic simulation for its activity 
against main protease protein of SARS-CoV-2 (Tripathi et al., 
2020). Withaferin A displayed a strong interaction towards 
the main protease, spike glycoprotein and RNA dependent 
RNA polymerase of SARS-CoV-2, with a binding energy of 
-11.242kcal/mol, -9.631 kcal/mol and -9.27 kcal/mol respectively 
(Pandit, 2020). Withaferin A was shown to interact with 
eleven residues Thr 24,Thr25,His 41,Cys 44,Ser 46,Met 49,Phe 
140,Leu 141,Asn 142,His 164 and Glu 166 of main protease 
Mpro with residues(Sharma & Deep, 2020). Withaferin A 
of W. somnifera has also been reported to target and repress 
TMPRSS2 protein which acts as a gateway for entry of viruses 
into host cells (Wadhwa et al., 2020) and the cellular receptor 
GRP78 protein which facilitates viral entry into cells (Sudeep, 
2020). The severity of this infectious disease was found to 
be increased in aged people and people with cancer or other 
comorbidities. Administration of withaferin A was found to bind 
the viral protein and thereby inhibiting host ACE2 receptor, the 
downregulation of which leads to an increase in the spread of 
the disease (Straughn, 2020). 

Leishmaniasis, an endemic disease caused by protozoan 
leishmania has now become an area of concern since a few 
species like L. donovani has developed resistance to the available 
drugs. Thus making it difficult to cure and therefore there is 
an urge to discover new drugs that can target different sites of 
the protozoan and thus cure the disease. Molecular dynamic 
studies has revealed the inhibitory activity of WA on leishmanial 
protein kinase C, the target protein for anti- leishmanial drugs 
(Grover et al., 2012). Another important enzyme that can be 
targeted for developing an effective anti-leishmanial drug is 
Pteridine reductase 1(PTR1). The molecular docking studies 
of WA against PTR 1 showed the binding efficacy with lowest 
binding energy of -6.73kJ/mol (Chandrasekaran et al., 2015). 
Due to structural similarity between the PTR1 and DHFR-TS, 
the inhibitor that targets PTR1 can also target DHFR-TS. Thus 
the molecular dynamic studies by (Vadloori et al., 2018) against 
Dihydrofolate reductase- thymidylate synthase (DHFR- TS) 
revealed two binding sites of WA one on DHFR and another 
on TS domain both 40Å apart.

Anti -diabetic Activity

Withaferin was found to combat the palmitic acid induced 
oxidative stress effect and thus increase the viability of HUVEC 
cells in a dose dependent manner. This suppression of oxidative 

Table 1: Therapeutic properties of Withaferin A
S. No. Reported activity Model organism

1. Analgesic Abdominal constricted mice (Sabina et al., 
2009)

2. Anti‑pyretic Yeast induced pyrexia mice (Sabina et al., 
2009)

3. Ulcerogenic effect Gastric ulceration mice (Sabina et al., 2009)
4. Anti‑platelet, 

anti‑coagulant
TNF α activated HUVEC cells (Ku & Bae, 
2014a)

5. Endothelial protein 
C receptor shedding

TNF α activated HUVEC cells (Ku et al., 
2014b)

6. Amyotrophic lateral 
sclerosis

SOD1G93A mouse model (Dutta et al., 2018)

7. Advanced 
osteosarcoma

Human patients with osteosarcoma (Pires 
et al., 2019)

8. Prostrate cancer PC3 cell lines (Setty Balakrishnan et al., 
2017)

9. Arthritis Mice (Sabina et al., 2008)
10. Osteoporosis Mice (Khedgikar et al., 2013)
11. Diuretic Laboratory animals (Benjumea et al., 2009)
12. Thyroid cancer DRO81‑1 xenograft mice (Samadi et al., 

2010)
13. Obesity High fat diet induced obese mice  

(Dutta et al., 2019)
14. Renoprotective Male swiss albino mice (Peddakkulappagari 

et al., 2019)
15. Cardioprotective Male wild mice (Guo et al., 2019)
16. Lung cancer Cancer cell lines (Hsu et al., 2019)
17. Alcohol abstinence Rats (Kotagale et al., 2018)
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stress and inflammation protects the cells against endothelial 
insulin resistance (Batumalaie et al., 2016). In the presence of 
Insulin, exposure to palmitic acid generally inhibited insulin 
mediated IRS-1 tyrosine phosphorylation, which leads to the 
deterioration of downstream insulin. This inhibitory effect was 
mitigated by the pre-treatment of the cells with WA. Jonathan 
(Jonathan et al., 2015) reported the increased efficiency of 
WA for the uptake of glucose by the skeletal myotubes among 
the six withanolides studied. Thus, proving its role in the 
anti-diabetic activity of the plant. Further he also reported the 
increased efficiency of the leaf extracts for the uptake of glucose 
than the root extracts. The role of WA was further revealed by 
the increased uptake of glucose by the tissues elicitated with 
methyl salicylate and chitosan (75% and 69% increased WA) 
than non-elicitated plants. 

Hepatoprotective Activity

W. somnifera root extracts showed protective role by reversing 
the liver marker enzymes to normal in bromobenzene induced 
oxidative stress model (Vedi et al., 2014). WA has been reported 
to prevent as well as therapeutically cure liver injury thus 
lowering liver inflammation and fibrosis in mice with non-
alcoholic steatohepatitis (Patel et al., 2019). Jadeja et al, (2018) 
in his study on the effect of WA (40mg/kg) on acetaminophen 
induced liver injury in mice, reported reduced hepatocytic 
necrosis and intrahepatic hemorrhage. The treated mice 
also showed reduced JNK (c-Jun N-terminal kinase pathway) 
activation, mitochondrial Bax (BCL2 associated X protein) 
translocation and nitrotyrosine generation all of which are 
induced by acetaminophen in untreated mice. In addition to 
NFkB activation and vimentin inhibition, the role of WA in 
altering the expression of LOXL2/ Snail1 and thus reversing liver 
fibrosis has also been studied (Sayed et al., 2019). WA was also 
found effective in the inhibition of hepatocellular carcinoma 
via growth inhibition and autophagy (Siddharth et al., 2019). 
WA, being cytotoxic compound is also toxic to normal cells. So 
in order to selectively chemosensitize the cancer cells to WA, 
a new strategy of fortifying the crude extracts of Ashwagandha 
with WA was found to give better results (Sharma et al., 2011).

Neuroprotective Activity

The abnormal accumulation of amyloid β is the main reason 
underlying the pathogenesis in neurodegenerative diseases like 
alzheimer. This abnormal secretion of amyloid β is induced 
by a neurotoxic protein Tat and drug cocaine. Studies on SH-
APP (Amyloid precursor protein –APP plasmid transfected 
SY5Y cells) cells revealed that WA is an potent inhibitor of 
Tat and cocaine induced amyloid β levels and preventing 
neurotoxicity (Tiwari et al., 2018). The MTT assays on the 
Human neuroblastoma (IMR32) and Rat glioblastoma (C6) 
treated with alcoholic and water extracts of leaves has showed 
an increase in the viability of the cells by 20-30% compared 
to untreated controls. The oxidative and DNA damage stress 
caused by H2O2 were also recovered in leaf extract treated 
cells (Shah et al., 2015). Withaferin A also showed a graudual 
increase in the expression levels of the neurotropic genes BDNF 
(Brain derived neurotrophic factor) and GDNF (Glial cell line 

derived neurotrophic factor) and a suppression in the mRNA 
expression of the neurite outgrowth inhibitory genes Nogo-a 
and Rho A compared to untreated SCI mice. Further WA in 
addition to down regulation of the pro- apoptotic protein bax 
also upregulates the anti- apoptotic protein bcl-2 thus reducing 
the apoptotic cells which would otherwise be enhanced in SCI 
induced mice models. Thus reporting a obvious difference in 
the neurobehavior in Spinal cord injury (SCI) model mice 
treated with WA. The administration of WA also attenuated 
the inflammatory response by suppressing the production of 
IL-1b and TNF-a (Yan et al., 2017). 

Ashwamax, a commercially available root extract of W. somnifera 
was tracked orally using bioluminescence imaging in orthotopic 
murine models with glioblastoma. WA is reported to effectively 
inhibit the growth of glioma cell lines (Chang et al., 2016). 
The effect of WA on neuroglial cells was studied in vitro using 
C6 glioma cells and the IC50 value was reported as 355 μg/ml, 
230 μg/ml and 150 μg/ml for 24hr, 48hr and 72hr respectively. 
Further MTT assay deduced a significant reduction in C6 
glioma cell count upon WA treatment thus proving its anti-
proliferating capability in a time dependent manner. Increased 
DNA fragmentation was also observed in C6 cells along with 
increase in WA concentration with maximum fragmentation at 
500 μg/ml. Further analysis on normal and C6 cells revealed that 
WA triggers apoptosis in cancer cells only and not in healthy 
cells (Hou et al., 2017)

Chang et al (2017) reported the synergistic inhibition of Glial 
cell proliferation by WA and Tumor treating fields (TTF). 
TTF is a novel approach which forces the actin filaments 
to align along the electric field lines thus interrupting the 
functionality of mitotic spindle in dividing cells. A study by 
Chang et al. (2016) provides a statistical evidence of reduction 
in Glioblastoma by 55% when WA was used in combination with 
TTFs which showed 25% recovery when used alone. 

Anti- cancer

Cancer, being a formidable health challenge is the second 
leading cause of mortality. Though a wide variety of anti-cancer 
drugs have been developed, the global incidence of various 
cancers, and the mortality thereof, is still increasing. The 
number of cancer deaths is asssumed to increase by two-fold 
in the next 50 years (Mann et al., 2005). Since the growth and 
development of tumors are triggered by oxidative stress and 
chronic inflammation, phytochemicals with anti-oxidative and 
anti-inflammatory properties are thought to play important 
roles in the prevention and/or treatment of cancer. Different 
parts of the medicinal plant W. somnifera are used in a variety 
of traditional ayurvedic formulations. As per research, daily 
administration of Withania root reduced proliferation of 
tumour cells in methyl nitrosourea-induced (similar to estrogen 
receptor positive cancer model) rat mammary tumorigenesis 
(Khazal et al., 2013). These anticancer properties of withania 
are attributable to withanolides, a class of bioactive constituents 
isolated from W. somnifera. Several withanolide compounds 
isolated from various Withania species have shown antitumour 
activity (Mathur et al., 2006). W. somnifera hydroalcoholic 
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extracts have reduced the tumour incidence and its volume in 
methylcholanthrene induced fibrosarcoma in mice. The treated 
mice also showed significant changes in the liver biochemical 
parameters compared to the control mice (Prakash et al., 
2001). WA is an effective anticancer molecule widely used for 
the treatment of wide range of cancers. It works by inducing 
apoptosis in cancerous cells via the generation of ROS and 
suppression of Bcl-2 (Mayola et al., 2011). Since the last two 
decades, WA is being reported to poses tremendous cytotoxic 
activity suggesting its potential as an anti-cancer agent (Dutta 
et al., 2019). The docking efficiency of WA against four target 
proteins mortalin, p 53, p 21 and Nrf2 were studied by Vaishnavi 
et al. (2012) who reported that WA binds strongly to these 
target proteins and hence is considered as a strong cytotoxic 
agent. The in silico studies for understanding the molecular 
insights into the process of senescence induced by WA was 
reported by Bhargava et al. (2019). This study revealed the 
nuclear translocation of Nuclear factor kappa B (NFκB) and 
a Mitogen activated protein kinase (p38 MAPK) activation 
selectively in the cancer cells. This NFκB activation underlays 
various chronic ailments. The molecular mechanism behind 
the suppression of NFκB activation by WA has been elucidated 
using molecular dynamics simulation studies. The formation 
of NEMO- IKKβ complex is an essential step towards NFκB 
activation and its signaling pathway. The docking studies on 
WA revealed its potential to interact with the NFκB essential 
modulator (NEMO) chains to form a stearic barrier that 
prevents the binding of the upcoming IKKβ. WA was also found 
to actively distrupt the existing NEMO- IKKβ complex, thus 
suppressing the NFκB activation (Grover et al., 2010b). WA 
was reported with greater binding energy towards active sites 
of cyclooxygenase(COX-2) than all the other phytoconstituents 
of W. somnifera studied using graphical software (MOLSOFT) 
(Prabhakaran et al., 2012). 

Heat shock protein 90 (Hsp 90) is another molecular chaperone 
compound that serves as a target for the anti-cancer drugs. 
The docking efficiency of WA to distrupt the Hsp 90-Cdc37 
(chaperone- cochaperone complex) supports the anti-cancer 
activity of WA(Grover et al., 2011b). The Structure Activity 
Relationship (SAR) study of WA exposed that the epoxy group 
at C5(6) was responsible for the binding of withanolide to Hsp 
90 and inhibit its chaperone activity. Further the hydroxyl group 
at C4 of ring A enhances the inhibition activity on Hsp 90. It 
also distrupts its interaction with Cdc37 (Hsp 90- Cdc 37) thus 
enhancing the anti-proliferative activity of WA (Gu et al., 2014). 
The SAR and ADMET(Absorption, Distribution, Metabolism, 
Excretion and Toxicity) studies on WA incorporated with silicon 
in addition to carbonyl group at C4 was found to enhance the 
activity on human epithelial ovarian carcinoma thus proving it 
as an essential candidate in ovarian cancer studies (Perestelo 
et al., 2019).The anti-tumour and radiosensitizing effects of 
WA was studied in Ehrlich ascites carcinoma in swiss mice 
and reported to be effective against tumour with a LD 50 
value of approximately 80mg/ kg (Sharada et al., 1996). The 
effect of WA on several malignant cell lines has been assessed 
and it has proved to have anti-proliferative effect against acute 
lymphoblastic leukemia (ALL) and human myelogenous 
leukemia. Mandal and his coworkers (Mandal et al., 2008) 

explored the effect of WA on p38MAPK signaling pathways in 
apoptosis of leukemic cell lines and primary cells of patients 
with ALL.

Falkenberg et al., (2017) used Myb reporter cell line HD11-C3-
GFP1 (chicken myeloid cell line with eGFP reporter gene) to 
screen for small molecules that inhibit Myb- dependent gene 
expression. His study proved withaferin A as a potent inhibitor 
of Myb- dependent transcription factors thus inhibiting 
tumorigenesis. Analysis of the mechanism of inhibition showed 
WA as a more potent inhibitor of C/EBPβ (a transcription 
factor cooperating with Myb in myeloid cells) than Myb by 
distrupting the interaction of C/EBPβ with its coactivator p300. 
Thus proving C/EBPβ as a novel target for WA action. Further 
molecular dynamics simulation and docking studies have 
proved WA as an mammalian proteosome inhibitor (Grover 
et al., 2010a).

Angiogenesis, the growth of new blood vessels from pre-existing 
vasculature, occurs in a variety of unrelated pathological 
conditions, such as the growth of solid tumors (Folkman et al., 
1971). Vascular endothelial growth factor (VEGF) is a key signal 
protein that regulates angiogenesis. But the over expression of 
VEGF can lead to cancer. The available anti-VEGF drugs pose 
severe side effects in humans. Hence there is a need for some 
natural compound that targets VEGF. The docking studies of 
WA with VEGF showed favourable results highly comparable to 
the commercial drug Bevacizumab (Saha et al., 2013). NF-kB is 
a well-known transcription factor that controls gene expression 
of a variety of angiogenesis-related molecules (Klein et al., 
2002) and mediates oxidative stress-dependent endothelial 
cell tube formation in collagen-I gels (Shono et al., 1996). The 
subsequent chloroform enriched fraction obtained from the 
methanolic extracts of Withania was found to pocess NF-kB 
inhibitory activity at an IC 50 value of 12nM. Further the HPLC 
fractionation of the chloroform extract showed the WA peaks 
which are responsible for the inhibitory activity.

WA also showed a dose dependent activity on the expression 
of cyclin D1, a key cell cycle regulator with an IC50 value of 
112nM. In the endothelial cell sprouting assay on HUVEC 
(Human Umbilical Vein Endothelial Cell) cells, WA was found 
to inhibit cell sprouting at doses similar to that of NF-kB 
inhibition. It was also reported that the inhibition of NF-kB in 
HUVEC occurs via interference with the ubiquitin-mediated 
proteosome pathway. Thus WA was found to be an potent 
anti-angiogenic factor at doses 500 fold lower than that of 
its reported anti-tumour activity (Mohan et al., 2004). WA 
also binds to vimentin (intermediary filament protein) thus 
inhibiting capillary growth in corneal neovascularized mouse 
model (Bargagna-mohan et al., 2011).

WA has the capability to upregulate the prosurvival pathway 
thus effectively treating metastatic diseases. It has shown a 
100% reduction in tumor growth in Uveal melanoma malignancy 
(Samadi et al., 2012). WA treatment has shown the suppression 
in growth of mouse melanoma B16F1 cells in vivo (Uma Devi 
et al., 2000) and reduce the growth of Ehrlich ascites tumor in 
swiss albino mice and prolong its survival by inhibiting tumor 
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growth via alteration in the spindle microtubule formation 
(Shohat et al., 1976). WA also caused apoptosis in osteocarcoma 
(OS) cell lines by distruption of mitochondrial membrane 
potential and generation of reactive oxygen species. This 
compound also showed a dose-dependent inhibition of OS cell 
lines by triggering the caspase-3 activation in U2OS cells in a 
time-dependent manner with IC50 ranging from 0.32 to 7.6 μM. 
The western blot analysis revealed that WA induced cytosolic 
cyt-c, and PARP protein expression in addition to caspase 3 in 
a time-dependent manner (Li et al., 2017). The study on the 
effect of pure WA and lyophilized root extracts of W. somnifera 
on the isolated skin melanophores of frog proved its significant 
melanin dispersal effects in a dose dependent manner (Ali & 
Meitei, 2011). 

Administration of WA (2mg/kg body weight) was found 
to inhibit the weight and volume of human colon cancer 
(HCT116) cells xenograft in BALB/c mice at the end of six 
weeks treatment. This suppression in tumour growth was also 
accompanied by reduced expression of Proliferating cell nuclear 
antigen (PCNA) in treated xenograft tumour (Choi & Kim, 
2015). Yu et al. (2011) also reported the inhibition of pancreatic 
cancer (Panc-1) cells xenograft tumor growth by induction of 
intra tumoral cell death by 30% and 58% on administration 
of WA at 3 and 6 mg/kg body weight, respectively. Further 
western blot analysis revealed that WA actually targets the heat 
shock protein Hsp 90 in pancreatic cell lines and inhibited its 
chaperone activity. Studies by Tiruveedi et al. (2018) showed 
around three fold decrease in serum amylase and lipase 
(biomarkers in acute pancreatitis) on WA treatment. The anti-
cancer potential of WA was also found to be associated with the 
cell cycle arrest at the G2/M phase along with the expression 
of apoptotic proteins in human gastric adenocarcinoma (AGS 
cell lines)( Kim et al., 2017).

Oral cancer is another most frequent major health problem 
with high mortality rate in developing countries including 
India. Panjamurthy et al. (2009a) studied the protective role 
of WA towards oral cancer. He evaluated the effect of WA on 
molecular pathogenesis of oral cancer by immune supression 
of p53 and bcl2 proteins. Oral administration of WA also 
prevented the alterations in p53 and bcl-2 protein expressions 
which are normally observed in carcinoma cells. Panjamurthy 
et al. (2009b) in another study on the same model reported the 
detoxication of the carcinogens, thus blocking their interaction 
with the cellular macromolecules. 

The role of WA in DMBA(0.5% 7,12-dimethylbenz(a)anthracene) 
induced oral squamous cell carcinoma in golden Syrian hamsters 
reported the decrease in Na+/K+ ATPase activity and Sodium 
level along with increase in potassium level of tumour bearing 
hamsters which is probably due to increased lipid peroxidation 
and red cell fragility (Manoharan et al., 2009). Whereas, oral 
administration of WA was found to restore Na+/K+-ATPase 
activity , red cell fragility and levels of membrane TBARS thus 
preventing membrane abnormalities in Oral carcinogenesis. 

Breast cancer, the most common form of cancer in women is 
a heterogenous disorder broadly classified into different types 

each with a distinct gene expression signature (Perou et al., 
2000). Though most of the cancer treatments target the primary 
tumour, the major cause of death in all the tumour types is 
metastatic disease. Metastatic cells are difficult to detect, 
highly aggressive, chemoresistant and experimentally difficult 
to model. The QSAR and ADMET studies on withanolides 
have revealed WA and eight other compounds to have a high 
activity against the Sk-Br-3 cells. The molecular docking studies 
also showed higher affinity of WA to β-tubulin with a binding 
score of 5.4153 which is higher than the reference compounds 
5-fluorouracil (5-FU) and camptothecin with a docking score of 
2.5304 and 4.1837 respectively (Yadav et al., 2017). The binding 
of WA covalently to the surface of tubulin at Cys303 and its 
down regulation in MCF cells has also been reported (Antony 
et al., 2014). The normal mammary cell lines did not respond to 
WA, whereas, it decreased the viability of both MCF7(estrogen 
responsive) and MDA-MB-231(estrogen independent)cell lines 
(Stan et al., 2008). This decrease in viability of the cell lines by 
WA was through the induction of ROS mediated paraptosis via 
down regulation of the paraptosis inhibitor Alix/AIP-1 (Hahm 
et al., 2011). WA also decreased the viability of SUM159 cells 
and suppressed ATR(Ataxia telangiectasia and Rad3‐related 
protein) thus causing cell arrest at G2/M phase (Hahm et al., 
2019). Further the apoptosis caused in cultured breast cancer 
cell lines on WA treatment was attenuated by knockdown of 
multi domain proapoptotic protein Bax and Bak. Generally 
the level of Bak protein was found to be higher in WA treated 
rat models. The MNU (N-methyl-N-nitrosourea) induced 
breast cancer rat models showed chemoprevention after WA 
treatment by a gradual decrease in number of tumours per 
animal and tumour weight (Samanta et al., 2017). The presence 
of pharmacological doses of WA was reported to significantly 
inhibit the viability of human breast cancer cells. WA has also 
proved to be an potent inhibitor of breast cancer stem cells 
(bCSC) in vitro (Kim & Singh, 2014) and also lowered the levels 
of Forkhead box Q1 (FoxQ1), one of the protein responsible for 
bCSC maintenance (Kim et al., 2016). 

The recent genome sequencing studies have revealed the 
occurrence of a point mutation in the estrogen receptors 
making it resistant to tamoxifen (breast cancer drug). The 
molecular docking studies of WA proved its effective binding 
to the estrogen receptors both in the presence and absence of 
the mutation thus exhibiting it as an natural anti-cancer drug 
against breast cancer (Ali et al., 2020). 

The proteomic study on mouse mammary tumor virus–
neu(MMTV-neu) transgenic model showed the down regulation 
of various glycolytic proteins on WA treatment (Hahm et al., 
2013). Vimentin is a filament protein that actually is expressed 
in mesenchymal cells and functions in cell motility. Some 
epithelial cancers and tissue sarcomas that exhibit epithelial to 
mesenchymal transition express vimentin (Lahat et al., 2010). 
WA binds directly to vimentin in vitro (Bargagna-mohan et al., 
2011) further in in vivo wounding migration assay, WA treated 
cells lacked vimentin in contrast to the untreated cells that 
showed vimentin extending into a polarized, actin-containing 
lamellipodia. Similarly time lapse imaging of vimentin by 
transfecting vimentin:GFP into MDA-MB 231 breast cancer 
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cells and treating with WA at higher doses over shorter periods of 
time showed perinuclear vimentin bundling at 60 min followed 
by rapid vimentin depolymerisation beginning in the cellular 
periphery and moving inwards towards the nucleus and induce 
apoptosis. Thus proving WA has a vimentin binding region 
and causes depolymerisation of cellular vimentin in migrating 
breast cancer cells. Higher doses of WA at 4 mg/kg inhibited 
both metastasis and tumor growth (Thaiparambil et al., 2011).

The radiosensitizing effect of WA on the erythrocyte anti-
oxidant in carcinoma of uterine cervix has been reported 
(Reshma et al., 2007). WA was reported to inhibit the 
growth of human breast cancer cells. WA also accelerated the 
accumulation of p53 (tumour suppressor protein) (Munagala 
et al., 2011). The WA treatment alone or in combination with 
cisplatin was found to reduce tumour growth and metastasis 
up to 80% compared to untreated mice (Kakar et al., 2014). 
Yang reported that the oral administration of WA caused 
apoptosis in prostrate cancer cells by acting on its target 
proteosome(β5 subunit) (Yang et al., 2007).

BIOSYNTHESIS OF WITHAFERIN A

Withaferin A, being the most actively studied molecule, study of 
its biosynthetic pathway, the genes involved in it and identifying 
a better genotype has always been an ultimate goal of researchers 
to increase its metabolite content (Gupta et al., 2011). 
Withanolides being 30 carbon containing triterpenoids are 
synthesised by the isoprenoid pathway which includes cytosolic 
mevalonate (MVA) and plasticidal non mevalonate pathway or 
methylerythritol phosphate (MEP) pathway (Figure 2) (Sabir 
et al., 2013). Both these pathways participate in the withanolide 
synthesis leading to the synthesis of isopentenyl phosphate 
(IPP) (Chaurasiya et al., 2012). Farnesyl diphosphate (FPP) 
which is formed by the head to tail condensation of IPP is the 
main precursor for all the other triterpenoids (Kuzuyama, 2002). 

Most of the genes encoding various enzymes of withanolide 
pathway have been characterized (Dhar et al., 2015). Further 
the effect of various elicitors on these pathway genes and on 
metabolite production are being worked on by various groups. 
The various enzymes involved in withanolide synthesis are 
tabulated in Table 2. 

The expression analysis of these pathway genes reveal their 
differential expression in different tissues, chemotypes and in 
response to different elicitors (Agarwal et al., 2017). Further 
the differential expression of these genes at different ontogenic 
stages and its positive correlation with the withanolide 
accumulation in in vitro shoot and root cultures of W. somnifera 
has also been reported (Sabir et al., 2013). Among the genes 
characterized, the over expression of the key regulatory gene, 
Squalene synthase(SQS) was found to increase WA content in 
the leaves by 4–4.5 fold (Patel et al., 2015b). Further the virus 
induced silencing of this gene lead to a drop in withanolide 
synthesis thus stating its crucial role in the pathway (Singh et al., 
2015). Similarly the over expression of Cycloartenol synthase 
(CAS) gene increased the WA content by 1.06 to 1.66 fold 
(Mishra et al., 2016). The FPPS gene also plays an important 

role in withanolide synthesis and accumulates in response to 
stress conditions (Gupta et al., 2011). Senthil et al (2015) has 
reported a strong positive correlation of Farnesyl diphosphate 
synthase (FPPS) and Squalene epoxidase(SE) genes towards the 
accumulation of WA in 45 days and 60 days old leaf cultures. 

Among the plant parts, leaves were found to express higher 
quantities of WA. This differential accumulation of the 
secondary metabolites in different organs is attributed to its 
tissue specific regulation of synthetic genes (Pandey et al., 
2017). Further the radiotracer studies using 24-methylene 
cholesterol as a precursor reveals the possible transportation of 
withanolides from leaves to the roots (Sangwan et al., 2008). In 
addition, the transcriptional profiles of five important pathway 
genes (Squalene synthase, squaleneepoxidase, cycloartenol 
synthase, cytochrome P450 reductase 1 and cytochrome P450 
reductase 2) were found to show a significant difference in the 
root and shoot tissues which were also parallel to the metabolite 
accumulation with elevated gene expression and metabolite 
accumulation in the leaves thus indicating the de novo tissue 
specific synthesis of withanolides. The sequencing of the leaf 
and root transcriptome by Gupta et al. (2013) has also paved a 
way towards understanding the tissue specific synthesis of plant 
secondary metabolites. 

This tissue specificity can be altered by altering conditions in 
the environment. One such factor is the presence of endophytes 
which has a greater potential for sustainable agriculture. Among 
the various chitinolytic bacterial endophytes isolated from 
medicinal plants, Bacillus amyloliquefaciens and Pseudomonas 
fluorescens, were found to influence withanolide biosynthesis 
as well as to render tolerance against Alternaria alternate. An 
upregulation of the pathway genes were also observed in the 
endophyte treated plants (Mishra et al., 2018). Pandey et al. 
(2018) isolated a total of 29 bacterial and 11 fungal endophytes 
from the leaves, roots and seeds of W. somnifera and studied for 
its efficiency in increasing biomass and metabolite production 
in vitro. It was observed that the nitrogen fixing endophytes 
associated with the roots actually upregualted the HMGR (MVA 
pathway), DXR and DXS (MEP pathway) genes in the roots. 
Whereas, in the leaves, these endophytes had no major effect on 
the same genes. Thus these endophytes were able to synthesis 
WA in the roots which were actually absent or present in trace 
amounts in the control roots. This might be due to the presence 
of different tissue specific regulatory factors in the leaves and 
roots. Thus the constitutive expression of the pathway genes 
are actually being governed by a set of another regulatory genes 
termed as transcription factors (TF). TF acts as regulators of all 
cellular and metabolic functions. They compromise nearly 7% 
of the coding sequence in the plant genome (Mochida et al., 
2011). Nearly 3532 annotated transcripts of TFs belonging to 
90 different families were obtained from the transcriptomic 
database for W. somnifera leaf and root tissues (Tripathi 
et al., 2017). The comparative analysis of these transcripts 
from W. somnifera revealed the absence of homologous 
representatives for LWD1 and WUSCHEL TF (WDR gene 
family) in any other Solanaceae plants. The expression profiles 
of these two TF were also found to be tissue specific. The LWD1 
factor was highly expressed in the leaves than that of the root 
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whereas WUSCHEL factor was highly expressed in the roots 
than in the leaves. The over expression of these genes in the 
transformed tissues was found to be positively correlated to the 
WA accumulation. Several mi RNA transcriptomes influencing 
the regulation of withanolide biosynthesis has been identified 
from the root and leaf tissues of Withania somnifera. Out of the 
24 and 39 miRNA families identified in the root and leaf tissues, 
the role of 15 and 27 miRNA families in different biological 
functions has been found respectively (Srivastava et al., 2018).

ROLE OF PLANT TISSUE CULTURE IN WA 
PRODUCTION

The complexity in the chemical synthesis of withanolides due 
to the stereo-chemical ring closure, occurrence of chiral centers, 
rigid trans-lactone groups, and high energy epoxy ring makes it 
economically unworkable due to minimal yields at high costs. 
Also the ever increasing demand of bioactive withanolides in 
the pharmaceutical industry is dependent on field grown plants 

where the plants are completely uprooted to meet the demands 
(Mir et al., 2014). Further the longer gestation period of 4-5 years 
between planting and harvesting and the effect on quality and 
quantity of withanolide constituents by fluxes in genotypic and 
environmental conditions limits the usage of field grown plants 
for pharmaceutical industries (Banerjee et al., 1994).

Thus, plant cell or organ culture becomes an attractive 
alternative to enhance the commercial prospects of withanolide 
production. The mass production in terms of both biomass and 
WA accumulation can be achieved using appropriate culture 
conditions when compared to the traditional plant extraction for 
valuable products (Mir et al., 2014). Tissue culture also proves 
to be a best approach for commercial propagation of endangered 
species of medicinal plants using various plant growth regulators 
in different concentrations and combinations (Baskaran et al., 
2013). In vitro cultures are also used as an effective model 
for the study of production and accumulation of secondary 
metabolites due to its active growth and increased rate of 

Figure 2: Withanolide Biosynthetic Pathway
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metabolism in shorter time period (Sivanandhan et al., 2011). 
Further tissue culture technique could also provide a means to 
produce disease free healthy plants for drug preparations. It also 
provides an continuous and controlled homogenous production 
of metabolites throughout the year (Gawde & Paratkar, 2012).

The WA content in in vitro plants was reported to be higher 
than that of field grown plants. Study reported a 1.14 fold 
increase in WA content in the in vitro leaves of W. somnifera 
compared to the field grown leaves (Sharada et al., 1996). The 
withanolide content and biomass in the plant were found to be 
maximum at the exponential phase (7-28 days). The 28 day old 
plants in suspension were recorded with increased amount of 
Withanolides (Sivanandhan et al., 2014a). Senthil et al. (2015) 
has reported an maximum WA accumulation (980 ± 0.97 μg/g 
DW) in 45days old cultured leaves with an gradual decrease 
over extended period of culture. Similar synchronization with 
the age of cultures was found in withanolide A accumulation 
in root cultures.

All the in vitro cultured tissues like callus, root and shoot 
cultures have been investigated for WA production. Ciddi 
(2006) devised a method for production of WA from cell 
cultures of W. somnifera. The presence of WA in cell cultures 
was confirmed by TLC analysis and further by HPLC and 
ES mass spectra. An Withania spp, W. coagulans root culture 
was also reported to produce WA of about 11.65 ± 2.30 μg g-1 
FW (Abouzid et al., 2010). WA was also reported in the in 
vitro flowers (2mg/g DW) and in vitro fruits (0.49 mg/g DW) 
of W. somnifera (Sivanandhan et al., 2015). Various workers 

described various methods for induction of callus tissue of W. 
somnifera and withanolide production from callus tissue. But 
callus tissues failed to synthesis withanolides, whereas multiple 
shoot cultures and transformed roots were able to produce 
withanolides. On the other hand, Chakraborty et al. (2013) 
has stated that the presence or absence of withanolides in any 
tissue type is dependent on the plant growth regulators used. 
In his study on callus induction and withanolide quantification 
using different plant growth regulators, it was surprising that 
callus obtained from culture media containing 2,4 D and 
Kinetin showed the absence of withanolide A and withaferin 
A, whereas the callus from media containing IBA and BAP 
showed the presence of both these compounds. Thus revealing 
the role of plant growth regulators on metabolite accumulation. 
In in vitro system, the production of secondary metabolites is 
dependent upon the media formulations, concentration of 
sucrose, concentration and type of Plant growth regulators 
(Ray & Jha, 2001a).

Plant growth regulators are significant factors that influence the 
growth and metabolite accumulation in plant cell cultures. Any 
alteration in the concentration of auxin or cytokinin or a change 
in their ratio would dramatically alter the growth pattern and 
metabolite accumulation(Rao & Ravishankar, 2002). Among 
the various concentrations and combinations of plant growth 
regulators studied (BAP and Kn), MS medium supplemented 
with 4.44μM BAP was reported with 1.86 fold increase in WA 
content compared to control (Murugesan. et al., 2017). Similar 
studies on the effect of plant growth regulators reported that 
media supplemented with 5.0 μM 6-benzyladenine (BA) 

Table 2: Role of various enzymes involved in the withanolide biosynthetic pathway
S.No: Enzyme Reaction catalysed

1. Acetoacetyl CoA thiolase (ACAT) Condensation of two molecules of acetyl‑CoA into aceto‑acetyl CoA (Wang et al., 2017)
2. HMG‑CoA synthase (HMGCS) Condensation of acetoacetyl CoA to another molecule of Acetyl CoA (Nagegowda et al., 2004)
3. HMG‑CoA reductase (HMGR) Double reduction of HMG CoA to mevalonate (Benveniste, 2002)
4. Mevalonate kinase (MK) Phosphorylation of mevalonate to produce mevalonate 5‑phosphate (Benveniste, 2002)
5. Phosphomevalonate kinase (PVMK) phosphorylation of mevalonate 5‑phosphate to mevalonate 5‑diphosphate (Benveniste, 2002)
6. 1‑deoxy‑D‑ xylulose 5‑phosphatesynthase (DXS), Formation of Dxylulose 5phosphate (DXP) (Cordoba et al., 2011)
7. DXP reductoisomerase (DXPR) Converts DXP into MEP (Kuzuyama, 2002)
8. 2‑C‑methyl‑D‑erythritol 4‑phosphate 

cytidylyltransferase (MEP‑CT)
MEP to 1‑hydroxy‑2‑methyl‑2‑(E)‑ butenyl 4‑diphosphate (Kuzuyama, 2002)

9. 4‑diphosphocytidyl‑2‑C‑methyl‑D‑erythritol 
kinase (CDP‑MEK)

MEP to 1‑hydroxy‑2‑methyl‑2‑(E)‑ butenyl 4‑diphosphate (Kuzuyama, 2002)

10. 2‑C‑ methyl‑D‑erythritol 2,4‑cyclodiphosphate 
synthase (MECDPS)

MEP to 1‑hydroxy‑2‑methyl‑2‑(E)‑ butenyl 4‑diphosphate (Kuzuyama, 2002)

11. (E)‑4‑hydroxy‑3‑methylbut‑2‑enyl diphosphate 
synthase (HMBPPS).

MEP to 1‑hydroxy‑2‑methyl‑2‑(E)‑ butenyl 4‑diphosphate (Kuzuyama, 2002)

12. 4‑hydroxy‑3‑methyl but‑2‑enyl 
diphosphatereductase (HDR)

Branching of HMBPP to IPP and DMAPP (Kuzuyama, 2002)

13. Geranyl diphosphate synthase (GPPS) Conversion of IPP to GPP (Rai et al., 2013)
14. Farnesyl diphosphate synthase (FPPS) Head to tail condensation of isopentenyl phosphate (IPP) to farnesyl diphosphate (FPP) (Kim 

et al., 2018)
15. Squalene synthase (SS) Reductive condensation of two molecules of FPP to squalene (Benveniste, 2002)
16. Squalene epoxidase (SE) Epoxidation of squalene to 2,3‑oxidosqualene (Benveniste, 2002)
17. Cycloartenol synthase (CAS) Cyclization of 2, 3‑epoxysqualene to cycloartenol (Benveniste, 2002)
18. Sterol‑ C24 methyl transferase 1 (SMT1) Adds methyl group at C‑24 position to the sterol cycloartenol (Pal et al., 2019)
19. Sterol C4 methyl oxidase 1 (SMO 1) Removal of methyl groups at C4 (Zhang et al., 2016)
20. Sterol 14alpha‑demethylase (CYP51) Catalyses first cyclization step in sterol biosynthesis (O’Brien et al., 2005)
21. Δ7‑sterol‑C5‑desaturase (STE 1) Catalyses formation of C‑5 double bond in the B ring of Δ7‑sterols to yield 

Δ5,7‑ sterols (Kamthan et al., 2017)
22. Glucosyltransferase (GT) Glycosylation of secondary plant products (Noguchi et al., 2007)
23. Cytochrome P450 reductase (CPR) Redox partner of multiple P450s (Bhat et al., 2014)
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and 1.0 μM Kinetin (Kn) yielded highest amount of WA 
(13.4±1.15 mg/g of DW). This study also proved that in vitro 
and ex vitro shoots contained increased amount of WA in 
comparison to the field grown shoots whereas the root tissues 
which contain only a trace amount of WA did not show much 
variations. Also, a steady increase in WA content was observed 
from first to fifth week of culture (Mir et al., 2015).

The trials on different concentrations of fertilizers on fresh 
twigs of W. somnifera reported a fivefold increase in WA in 
twigs treated with DMSO compared to control (Pal et al., 
2017). Ammonium sulphate treatment was reported to produce 
ninety fold increase in WRKY1 transcription factor and an 8 
fold increase in WRKY3 transcription factor. The addition of 
coconut milk (10% v/v) also favoured the increased WA synthesis 
along with 27 fold increase in the biomass. Supplementation 
of coconut water along with BAP in liquid media also showed 
the accumulation of withanolides including WA in micro 
shoot cultures of W. somnifera (Ray & Jha, 2001b). The effect 
of different carbon sources at different concentrations in 
enhancing biomass and withanolide accumulation in hairy root 
cultures of W. somnifera were analysed. Among various carbon 
sources, Sucrose is the most commonly used source because 
of its capability to translocate easily into the phloem of many 
plants. They reported a gradual enhancement in the levels 
of WA along with increase in glucose concentration with the 
highest accumulation in media containing 5% glucose. Sucrose 
at 4% exhibited highest WA content but sucrose at 3% equally 
enhanced both WA and withanolide A accumulation. Fructose 
at 3% alone showed trace amounts of WA. Thus this work also 
concludes 3% sucrose to be the best carbon source for in vitro 
cultures of W. somnifera (Doma et al., 2012). 

The organic additives like L-glutamine (200mg/l) in combination 
with picloram (1mg/l) and KN (0.5 mg/l)) was reported to 
show positive effect on biomass and withanolides production 
(Sivanandhan et al., 2013a). Further withanolide accumulation 
can be enhanced by the use of elicitors or precursors. Elicitors are 
factors that can typically cause the cells to activate their defense 
system through an incompletely understood signal transduction 
system. Various factors like elicitor concentration, time of 
incubation, specificity of elicitor, culture conditions and growth 
stage of cultures influence the process of elicitation (Vasconsuelo 
& Boland, 2007). Sivanandhan et al. (2012a) examined the use 
of various elicitors (Cadmium chloride, Aluminium chloride and 
chitosan) and precursors of withanolide synthesis (cholesterol, 
mevalonic acid and squalene) in suspension cultures using 
bioreactors and shake flask cultures. Interestingly, a decrease 
in biomass was observed with the use of chitosan (100mg/L) 
elicitors with a 1.87 and 1.36 fold higher withanolide content in 
shake flask culture and bioreactors. Similar decrease in biomass 
and increased metabolite content upon chitosan treatment was 
reported by Baldi and Dixit (2008) in A. annua. The effect of 
biotic fungal elicitor (Piriforma indica) on biomass and WA 
accumulation was investigated (Ahlawat et al., 2016). Various 
concentrations of cell homogenate, culture filterate and culture 
discs were inoculated into the callus suspension cultures of 
W. somnifera and investigated for biomass production and WA 
content. A concentration of 3% for cell homogenate, culture 

filterate and discs were found to enhance WA accumulation at 
2.04, 1.78 and 1.46 fold respectively. This elicitation was also 
reported to produce 11.2, 8.7 and 6.9 fold increased expression 
of HMG-CoA reductase (HMGR) gene among all the genes 
studied.

Ciddi (2006) reported the use of methyl jasmonate (100 μM), 
salacin (750 μM) and arachidonic acid (1 mg/l) as elicitors to 
improve production of WA. Among these salacin was found to 
produce 50 fold higher WA content than control. Sivanandhan 
et al. (2013b) also reported a 1.14-1.18 fold increase in WA 
accumulation in salicylic acid (SA) (100 μM) treated shoots 
when compared to methyl jasmonate (100 μM) treated shoots 
in liquid cultures. Further exposure of 30 days old adventitious 
root cultures for four days with 150 μM SA showed 20 fold 
increase in its WA content (Sivanandhan et al., 2012b). The 
sterol inhibitor chlorocholinechloride was reported to inhibit 
WA production thus proving that precursors enter through 
the acetate mevalonate pathway rather than through the non 
mevalonate pathway. Hairy root cultures of Withania were also 
reported to produce WA (Banerjee et al., 1994). The effect of 
various biotic and abiotic stresses and their combinations on 
WA production from transformed callus cultures of W. somnifera 
has also been reported (Baldi et al., 2008). Amongst the various 
elicitors studied, copper sulphate (100μM) and V. dahaliae 
extract (5% v/v) exhibited 5.4 and 9.7 fold increase in the WA 
production. The combination of an abiotic elicitor Copper 
sulphate (100 μM) and the cell extract of V. dahaliae (5% v/v) as 
a biotic elicitor showed maximum WA production. The presence 
of a few new proteins on copper treatment and an increase in 
the activities of enzymatic antioxidants in the presence of Cu 
up to 50μM followed by a gradual decrease was observed in 
cultures (Rout et al., 2013). The combined effect of these two 
elicitors showed 13.8 fold increases in WA content compared 
to the control thus proving the potential of dual elicitation 
strategy for large scale production of WA. Doma et al. (2012) also 
reported the elicitation activity of Chitosan, jasmonic acid, acetyl 
jasmonic acid and triadimefon on biomass and WA content.

Naturally occurring bioresources such as seaweeds were reported 
to contain amino acids, vitamins, macro and micro nutrients 
required for plant growth and also pocess auxin and cytokinin 
activity. The application of seaweed extracts has been proved 
beneficial in plant cultivation, improved germination and root 
development (Mancuso et al., 2006). Hence they also can act 
as an efficient biotic elicitor. Gracilaria edulis and Sargassum 
wightii were studied for its withanolide elicitation property 
in multiple shoot suspension cultures of W. somnifera and 
reported with 1.45-1.58 fold increase in WA accumulation when 
compared to control (Sivanandhan et al., 2014b). 

A recent study on the effect of Zn-Ag nanoparticles on 
in vitro cultures of W. somnifera has shown increase in activity 
of pathway genes involved in withanolide synthesis and 
carbohydrate metabolism. Among different molar ratios of 
Zn and Ag used for nanoparticle synthesis, the nanoparticle 
synthesised using 19:1 ratio of Zn: Ag showed maximum 
effect on withanolide content especially WA content in in vitro 
cultures of W. somnifera (Singh et al., 2019).
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Besides plant growth regulators and elicitors, the variation 
in physical parameters also affects the plant growth and 
metabolism. Light is one such very important factor that 
influences the metabolite production (Adil et al., 2019). The 
study on the effect of different light sources on WA production 
from callus cultures of W. somnifera showed a significant 
variation in the WA content with different light sources in the 
order of red> green> Violet> yellow> blue> white. Red light 
was found to be more favorable for metabolite accumulation 
with two fold increase in withaferin content compared to tissues 
grown under white light. A reduction in biomass and increase 
in lipid peroxidation activity were observed in both leaf and 
root tissues. Further increased activities of all the enzymatic 
anti-oxidants were reported in both leaf and root tissues in 
response to UV stress with greater antioxidant activity in roots 
(Takshak & Agrawal, 2014).

ISOLATION AND CHARACTERIZATION OF PLANT 
DERIVED WITHAFERIN A

Whole plants or plant parts are the sole components of Indian 
ethanomedicine. The bioactive molecules from the plants serve 
as the basis for synthesis of pharmaceutical drugs. Thus the 
isolation of active principles has become necessary for which 
selection of a suitable extraction procedure is required. Study 
on the effect of ethanol, water and ethanol-water extraction 
using traditional soxhlet extraction, ultrasound assisted and 
microwave assisted methods for different time intervals reported 
a variation in the level of total phenolics and total withanolides 
as well as DPPH and ABTS activity within different extraction 
methods and different solvents used (Dhanani et al., 2017).

In the case of pharmaceutical compounds, not only the 
extraction procedure but also the analysis method should 
be efficient, precise, fast and easy. Though WA is present in 
abundance in roots and leaves of Withania, its amount seems 
to vary with the geographical niche of the plants. Namdeo et al. 
(2011) has metabolically characterized the leaves, root and stem 
samples of W. somnifera from six different regions of India using 
H NMR spectroscopy followed by principal component analysis 
(PCA) and hierarchial clustering analysis (HCA). From the 
study it was revealed that leaf samples showed wide range of 
withanolides and the H NMR studies revealed the presence of 
two groups of withanolides:4-OH and 5,6-epoxy withanolides 
(WA-like steroids) and 5- OH and 6,7-epoxy withanolides 
(withanolide A like steroids). He also stated that the proportion 
of these two withanolides were a key discriminating feature of 
different geographical locations from where the plants were 
collected. 

A simple yet specific and accurate high performance thin layer 
chromatographic (HPTLC) method for the estimation of WA 
using Si 60 F254 plates with Toluene: ethyl acetate: formic acid 
(5:5:1) as mobile phase has been developed and validated for its 
repeatability and accuracy (Sharma et al., 2007). This technique 
is being effectively used in quantification of withanolides. 
Further the standardization of wavelength for the quantitative 
scanning of WA was found to be accurate at 223nm in the 

reflectance- absorbance mode using Scanner III(CAMAG, 
Switzerland) (Senthil et al., 2015). Another new rapid high 
performance liquid chromatography- mass spectrometry has 
been developed and validated for the determination of WA 
from mice plasma (Patil et al., 2013).

WA can be isolated from the root and leaf tissues of W. somnifera 
by various chromatographic techniques. A sensitive, specific, 
robust, validated densitometric High performance thin layer 
chromatographic method for the determination of WA from 
W. somnifera has been developed (Srtvastava et al., 2008). 
Keesara & Jat (2017) extracted WA using methanol from the 
defatted leaf and root powders of W. somnifera. The withaferin 
obtained by this method was tested 90% pure by HPLC analysis. 
The compound was identified as WA by TLC with chloroform 
and methanol (9:1 ratio) as the mobile phase. The WA peak 
obtained was comparable to the standard peak at Rf value 0.65. 
An modified method HPLC-DAD for the quantification of 
withanolides including WA and its fingerprinting analysis has 
been developed and validated (Patil et al., 2010).The presence 
of WA from W. somnifera butanol fractions has been identified 
using Reverse phase preparative HPLC technique (Pramanick 
et al., 2008). An RP-HPLC technique for the isolation and 
quantification of three isomeric withanolides, WA, withanolide 
A and withanone using methanol as the mobile phase was 
developed using Lichrocart Purospher STAR RP-18e column 
(Malik et al., 2017). 

CONCLUSION

Various plant derived metabolites are being consumed as a 
part of our regular diet and others in the form of ayurvedic 
formulations. Aswagandha being one such important and 
metabolite rich herb, is an ingredient of most of the ayurvedic 
preparations for various ailments. Thus, study of its important 
metabolites and the therapeutic role of each individual 
metabolite in various ailments would further support the 
medicinal industry. Further, a study on the measures to improve 
the yield in terms of metabolite content becomes an necessity. 
Attempts should be made to scale up the in vitro culture process 
to give maximum output that would be cost effective as well as 
safe than the traditional methods, thus aiding an improvement 
in the pharmaceutical industry. This review throws a flashlight 
onto the most important secondary metabolite WA and would 
therefore be helpful to the researchers to further explore and 
innovate methods thus paving a way for industrialization of 
W. somnifera.
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