Current Botany 2012, 3(4): 15-17 ISSN: 2220-4822 Available Online: http://currentbotany.org/

Effect of physical factors on hydrolytic enzyme action of seed bone *Alternaria* Species

Sulochana R. Rathod1 and Ashok M. Chavan2

¹Department of Botany, Government Art's and Science College, Aurangabad (M.S.), India

²Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (M.S.), India.

Abstract

Impact of physical factors on hydrolytic enzyme production of *Alternaria* species was studied. Continuous light favored enzyme production in *Alternaria* species. Maximum enzyme activity occurred in 15 – 20 days in all the *Alternaria* species. *Alternaria* species produced hydrolytic enzymes maximum at 20 – 30°C temperature. All the species of *Alternaria* at 5.5 to 6.5 pH value produced maximum enzyme, however pH 3.5 and 8.5 inhibited enzyme activity.

Keywords: Light, pH, enzyme, fungi, seed

INTRODUCTION

The seed borne fungi are known to deteriorate the seeds and its contents [1]. Degradation of these seeds chemical content has been due to production of hydrolytic enzyme like lipase, protease, cellulose etc. and production of hydrolytic enzyme related with physical factors. However the less information is available about the impact of physical factors on hydrolytic enzyme produced by *Alternaria*. Considering the fact attempt were made to study the impact of physical factors on amylase, protease and lipase produced by *Alternaria*.

MATERIALS AND METHODS Production of hydrolytic enzyme

Production of hydrolytic enzyme was studied by growing the fungi in liquid medium containing Starch (in case of amylase)/ gelatin (In case of protease)/ oil (In case of lipase), 1%, KNO₃, 0.25% KH₂PO₄ 0.1% and MgSo₄. 7H₂O 0.05%, pH of the medium was adjusted at 5.5. Twenty five ml of medium was poured in 100 ml conical flask autoclaved and inoculated separately with 01ml spore suspension of the fungi which were grown for 7 days on POA slants. The flasks were incubated for 6 days at 25 \pm 1°c with diurnal periodicity of light. On 7th day of the flasks were harvested filter no.1 the filtrates were collected in presterilized bottle and teemed as crude enzyme preparation.

Assay of hydrolytic enzyme

Assay of hydrolytic enzyme was done by cup-plate method.

Received: July 18, 2012; Revised: Aug 22, 2012; Accepted: Sept 25, 2012.

*Corresponding Author Sulochana R. Rathod Department of Botany, Government Art's and Science College, Aurangabad (M.S.), India.

Email: srrathod@gmail.com

RESULTS AND DISCUSSION

Impact of light, incubation period, temperature and pH on amylase, lipase and protease of *Alternaria* species were studied and results are summarized in table 1, 2, 3 and 4.

Amylase and lipase production was more in continuous light in all the species of *Alternaria*. Whereas continuous dark light inhibited amylase and lipase production. Protease production of *A.crassa* and *A. Alternata* inhibited by dark light and continuous light (Table 1).

Alternaria alternata, A. dianthicola and A. tenuissima do not show lipase activity on 5th days of incubation period. A. crassa and A. dianthicola do not produce protease at 5th day incubation however as the incubation period increase upto 20th day protease production increased. Effect of temperature on the enzyme activity of Alternaria produced enzyme. At 10^oc temperature A. citri, A. crassa, A. dianthicola and A. macrospora do not show any amylase production. However 40^oc temperature for A. citri and A. crassa also inhibited amylase production (Table 2).

Lipase production of *A.citri* and *A. crassa* initiated at 10°c whereas *A. citri*, *A. crassa*, and *A. macrospora* inhibited lipase production at 40°c similarly *A. citri* initiated its protease production at 60°c whereas *A. dianthicola and A. macrospora* inhibited protease production at higher temperature (Table 3).

At pH 3.5 none of the species of *Alternaria* produced hydrolytic enzyme Lipase production of *A. citri and A. dianthicola* was also inhibited at pH 4.0 similarly *A. crassa and A. macrospora* inhibited protease enzyme production at pH 4.0 however the maximum hydrolytic enzyme production was reported at pH 5.5 to 6.5 in all species of *Alternaria* (Table 4).

Growth of the microorganisms is directly related to their metabolic activity, therefore, physical factor which are related to enzyme production were also studied in detailed. It is observed from the results that *Alternaria species* produced maximum amylase, lipase and protease in between 15 to 20 days at 20 to 30°c temperature. It is interesting to note that in case of *Alternaria species* continuous light favored the enzyme production whereas 5.5 to 6.5 pH favored maximum enzyme production, however temperature up to 5 to 10°c and pH below 4.5 inhibited the enzyme activity of *Alternaria* species similar types of work have been reported by

16 Sulochana R. Rathod

earlier workers Adam (1981) [2] reported optimum period for amylase production is more 7 days in *Humicola lanunginora*. Similarly Charya and Reddy (1982) [3] reported optimum period for protease production is more than week. Tarrat et al (1973) [4] reported majority of microorganisms showed their protease activity between 25 to 35°c temperature. Sonwane (2002) [5] observed *A. alternata* favored 20 to 30°c for protease production under *Alternata*

light and dark condition similar type of observation in seed mould of Jowar for amylase production have been reported by Panchal (1984) [6].

The range of pH for enzyme production in fungi was found to be variable. Bhosale (1989) [7] reported pH 5.0 to 6.0 is ideal for amylase production in *Aspergillus flarus*. Jonson (1968) [8] reported that alkaline pH was favored in protease production of *A. tenuisima*.

Table 1. Effect of light on enzyme production in Alternaria species

Species of Alternaria	Illumination of light					
· -	Continuous light	Continuous dark	Alternata dark and light			
	Amyla	se Production				
A.altemata	29	18	19			
A.citri	28	18	20			
A.crassa	30	20	20			
A.dianthicola	32	08	24			
A.macrospora	33	20	20			
A.tenuissima	27	20	26			
	Lipas	e Production				
A.alternata	30	25	27			
A.citri	27	26	30			
A.crassa	20	21	25			
A.dianthicola	29	18	26			
A.macrospora	25	17	20			
A.tenuissima	28	15	20			
	Protea	se Production				
A.alternata	21	26	25			
A.citri	23	23	20			
A.crassa	16	20	12			
A.dianthicola	18	15	20			
A.macrospora	15	15	13			
A.tenuissima	21	15	20			

Activity zone in mm

Table 2. Effect of incubation period on enzyme species in Alternaria species

Species of Alternaria	Incubation period					
•	5 days	10 days	15 days	20 days	25 days	
		Amylase Prod				
A. alternata	80	11	14	18	18	
A. citri	11	18	13	14	14	
A. crassa	05	14	15	14	10	
A. dianthicola	12	15	15	16	15	
A. macrospora	07	14	17	15	17	
A. tenuissima	10	17	14	14	15	
		Lipase Produc	tion			
A. alternata		12	30	14	18	
A. citri	06	06	25	15	20	
A. crassa	08	10	26	18	21	
A. dianthicola		10	18	20	19	
A. macrospora	05	11	25	23	20	
A .tenuissima		08	30	19	19	
		Protease Produ	ction			
A. alternata	07	18	22	21	20	
A. citri	08	16	20	19	20	
A. crassa		12	17	20	21	
A. dianthicola		15	16	19	20	
A. macrospora	07	12	18	20	17	
A. tenuissima	10	17	21	18	18	

Activity zone in mm

Table 3. Effect of temperature on enzyme production in Alternaria species

Species of Alternaria			Temperature (0∘C		
· —	5	10	15	20	30	40
		Amylase P	roduction			
A.alternata		13	12	12	18	17
A.citri			08	10	20	
A.crassa			09	10	15	
A.dianthicola			10	12	17	21
A.macrospora			10	11	14	18
A.tenuissima		12	13	09	20	14

Current Botany 2012, 3(4): 15-17

·	 Lipase Pro	oduction			
A.alternata	 12	17	16	20	13
A.citri	 	15	19	21	
A.crassa	 	10	15	18	
A.dianthicola	 10	20	20	18	12
A.macrospora	 14	16	18	19	
A.tenuissima	 15	15	14	17	15
	Protease P	roduction			
A.alternata	 14	17	20	20	12
A.citri	 	15	18	21	15
A.crassa	 18	19	20	23	18
A.dianthicola	 15	17	19	20	
A.macrospora	 10	12	20	18	
A.tenuissima	 13	18	15	17	15

Activity zone in mm

Table 4. Effect of pH on enzyme production in Alternaria species

Species of Alternaria			pl	1		
	3.5	4.5	5.5	6.5	7.5	8.5
		Amyl	ase Production			
A.alternata		15	19	20	21	
A.citri		17	18	21	18	
A.crassa		16	18	20	21	
A.dianthicola		19	20	19	19	
A.macrospora		15	16	18	20	
A.tenuissima		13	15	20	19	
		Lipa	se Production			
A.alternata		20	25	30	30	
A.citri		18	23	28	20	
A.crassa		20	19	18	21	
A.dianthicola		18	20	21	22	
A.macrospora		19	23	27	20	
A.tenuissima		13	18	26	19	
		Prote	ase Production			
A.alternata		17	18	18	17	
A.citri		16	16	20	20	
A.crassa		16	18	17	16	
A.dianthicola		18	16	18	21	
A.macrospora		15	17	18	21	
A.tenuissima		16	18	19	19	

Activity zone in mm

REFERENCES

- [1] Charya, M.A.S. and S.M. Reddy.1981. Deterioration of Mung (*V. radiata*) Seeds due to certain seed-borne fungi. *Indian J. Bot.* 4(2): 187-90.
- [2] Adam, P.R. 1981. Amylase production by *Mucor penicillus and Humicola Lanunginosa* as related to myeelial growth. *Mycopathologia* 76 (2): 97-102.
- [3] Charya, M.A.S. and Reddy, S.M. 1982. Toxic effect of *Fusarium oxysporum* on seed germination and growth of mung. *Indian Bot. Rept.* 1(2): 169-170.
- [4] Tarrant, P.J.V. Nadine Jenkins, Pearson, A.M. and Duston,

- T.R. 1973. Proteolytic enzyme preparation from pseudomonas *Ap. Mic.* 25 (6): 996-1005.
- [5] Sonwane, V.V. 2002. Studies on seed pathology of pea. Ph.D. Thesis, Dr. B.A.M.U. Aurangabad (M.S.).
- [6] Panchal V.H. 1984. Studies on seed-borne fungi of sorghum. Ph.D. Thesis, Marathwada University (M.S.).
- [7] Bhosale, A.M. 1989. Studies on fungal amylase and toxins in grain deterioration of sorghum, Ph.D. Thesis, Marathwada University, Aurangabad (M.S).
- [8] Jonsson, G.A.1968. Protease production by species of Entomopthora *Appl. Microbial.* 16:450-451.