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Abstract
Outlier detection and robust estimation are an integral part of data mining and has attracted much attention recently. Generally, the
data contain abnormal or extreme values either due to the characteristics of the individual or due to errors in tabulation/data entry.
The presence of outliers will severely affect the data modelling and analysis. A robust nonparametric method is proposed to fit the
spatial/surface regression that is not influenced by the presence of outliers in the data. Robust M-kernel weighted local linear
regression smoother was used to fit the spatial regression function. The proposed method is useful to estimate/eliminate the spatial
effect and identify the high potential trees in an orchard, which is useful for breeding programs. The method is illustrated through
simulated data. The comparison of AMSE corresponding to the optimum bandwidth shows that the non-robust Kernel Weighted
Local Regression Estimator (KWLRE) performs very badly in the presence of outliers. Among the robust estimators, the robust
spatial smoother with biweight robustness weight function performed better than the Huber and Hampel weight functions. Comparison
of AMSE corresponding to the optimum bandwidth showed that there is not much difference between different types of robustness
weight function in the absence of outliers.  In the case of robust spatial smoother with biweight robustness weight function, the
AMSE for 0 per cent, 4 per cent and 8 per cent outliers are almost the same, indicating that the method is robust against the outliers.
The method was also applied to the annual yield data of 225 coconut palms in a field to eliminate spatial effect and to identify the
high potential trees. It was found that by removing spatial effects and outliers, the MSE has reduced more than 50 per cent.
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Introduction
The fundamental objective of statistical data

analysis is to systematically obtain data and make
inferences or appropriate decisions based on the
data. The presence of outliers or extreme values in
the experimental data is a major concern for data
analysis. Outlier is an observation that appears to
be inconsistent with the remainder of the
observations in the data set. Experimental data in
agriculture may contain abnormal or extreme values
due to various reasons such as genetic variations
(super trees/very low yielders), loss of yield due to
pest/disease infestation, errors in tabulation, data
entry etc. These extreme values or outliers will
usually increase the experimental error in data

analysis. Detection of outliers and the possible
remedies are important in data analysis.  These
outliers are a nuisance for the data analysts, but
when the observation is genuine and represents high
potential/super trees, it can be used as mother trees/
palms in breeding programs. Identification of
extreme values/high yielders is very important in
agriculture. In addition to the genetic variations, the
data may also be influenced by the spatial or
environmental effect. To identify the high potential/
super trees, it is important to eliminate the spatial
or environmental effect from the data. In the present
study, we compared the performance of estimating
the spatial function and identifying outliers using
non-robust Kernel Weighted Local Regression
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Estimator (KWLRE) and the robust M-Kernel
Weighted Local Regression Estimator using
biweight, Huber and Hampel weight functions. A
robust method is proposed to estimate the spatial
effect and identify outliers or the high potential trees
from an orchard.

Materials and methods
This paper considers spatially distributed data

(y) with spatial coordinates (u, v).
Model settings and estimators
Let (u1, v1, y1),..., (un, vn, yn) be a set of n spatial

data with (ui, vi) as the ith spatial location and yi is
the corresponding value of the response variable Y.
The nonparametric spatial regression model
considered for the study is of the form

yi=m(ui, vi)+εi (1)

where, Y=[y1 y2...yn]T is the observation vector,
m=[m(u1, v1)...m=[m(un, vn) is the nonparametric
spatial regression function and e is the
independently and identically distributed (iid)
random error vector with mean zero. It is assumed
that m is a smooth function. The regression
estimators considered are based on the local least-
squares fitting of kernel weighted linear regression
function (Ruppert and Wand, 1994). The KWLRE
of m(u,v)is the solution of α0 to the following
weighted least squares problem

Minimize

where KHi (u, v)=K is some

bivariate kernel function with h1 and h2 are the
bandwidths in u and v directions.

0ˆ),(ˆ vum

The estimate of the spatial regression function
m is given by

m̂  SY
Where, S is the smoothing matrix derived using

local linear regression and Suv be the row of the

smoother matrix correspond to the smoother vector
ST

uv evaluated at the observation point (u, v)=(u1,
v1) (u2, v2)..., (un, vn) Then,

 where,

with

and Wuv = dig

The properties of the estimator are provided in
(Ruppert and Wand, 1994; Jose and Ismail, 2001).
The cross-validation (leave-one-out) technique is
generally used to estimate the optimum bandwidths
h1 and h2. The cross-validation score is given by

Where,  is the nonparametric
estimate of  without using the i th

observation  and with bandwidths h1 and h2. The
value of h1 and h2, which minimizes the cross-
validation score CV(h1,h2), will be the optimum
bandwidths. The estimate of the regression function
m(u,v) using the optimum bandwidth is denoted as

),(ˆ vum .
Cleveland and Devlin (1988) and Hastie and

Tibshirani (1990) discussed the estimation of error
variance in linear regression smoothers.  An
approximate estimate of the error variance is given
by

The nonparametric regression estimates and
cross-validation technique can behave very badly
in the presence of outliers in the data or when the

Non-parametric spatial regression
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Where, S(k) is the smoothing matrix derived
from the robust locally weighted linear regression
and S(k)uv be the row of the smoother matrix
correspond to the smoother vector ST

(k)uv evaluated
at the observation point (u,v)=(u1,v1), (u2,v2),…,
(un,vn) in the kth iteration.

Continue the iteration till there is no significant
improvement in the estimated values. Here w(r(k-1)i)
is the robustness weight function corresponding to
yi in the kth iteration. Let w1 be the final robustness
weight assigned to yi and  be the estimated
value of  m(ui, vi) with bandwidth (h1,h2). The mean
squared errors (MSE) of the estimated value with
the true values corresponding to the bandwidth
(h1, h2) is given by

The cross-validation score CV (h1, h2) does not work
well for the robust smoothers because the CV
function itself will be strongly influenced by the
outliers (Wang and Scott, 1994). The cross-
validation score is the sum of squares of the
prediction errors of the smoother at each of the
design points. When there are outliers, the prediction
errors corresponding to the outliers will be
uncharacteristically extreme, and these extreme
prediction errors will affect the performance of CV
(h1, h2). Therefore, the extreme prediction errors
should be discounted in a similar way to the robust

errors are heavy-tailed (Leung D, 2005). One
remedy is to remove the influential observations
from the data. Another approach is to use robust
smoother, which is not as vulnerable as the usual
smoothing technique. A robust M-type estimate 
of the regression function m() can be obtained by
minimizing the objective function

                                                    (2)

where, ρ(.) is an even function with bounded first
derivative and a unique minimum at zero. The

derivative   is called the influence

function and is the corresponding
weight function. Several M-type estimators have
been discussed in the literature using diûerent types
of inûuence functions (Huber, 1981; Rey, 1983;
Hampel et al., 1986; Tukey, 1977). The three most
used M-type estimators, along with their influence
and weight functions, are presented in Table 1.

The iterated reweighted least-squares technique
is used to solve the minimization problem (2) to
obtain the robust estimate of the regression function
m. The estimate of the regression function  in the kth

iteration is denoted by (k)(u,v), which is the solution
of α0(k) to the following least-squares problem.

Minimize

Where,  is the standardized
residual of the ith datum in the (k-1)th iteration.
Median of absolute deviation from the median
(MAD) is used as a robust estimate for the scale
factor s and r (0)i=0 for i=1,…,n.

where,

The estimate of the spatial regression function
m in the kth iteration can be written as

(K) =S(k)Y

where,
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smoothing technique. A robust cross-validation
score RCV (h1, h2) is defined as

Where, Wi is the final robustness weight defined
earlier,  is the robust estimate of m (ui, vi)  with
h1, h2 as band widths and without using the ith

observation yi. The value of h1 and h2, which minimizes
the robust cross-validation score RCV (h1, h2), will be
the optimum bandwidths. The robust estimate of

m(ui, vi) corresponding to the optimum bandwidth
is denoted as . A robust estimate of the error
variance σ2 is given as

Where,  The standardized residuals
sei (i=1,…,n) are obtained by 

The observations with large sei (>4) is
considered as outliers.

Table 1. Robust functions

Non-parametric spatial regression
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Simulation study
A simulation study on the finite sample

performance of the proposed method was
performed. The following spatial regression model
was used in the simulation study

yi = m(ui, vi)+εi, i=1,....n

Where, yi, i=1,…,n are the observations, the
regression function m is taken as m(ui, vi)=3 sin
[π(ui,vi)], the spatial locations (ui,vi), i=1,…,n are
obtained by dividing the region [0,1]x[0,1] equally,
the random error ε follows N(0, σ2) and the outliers
are taken from N(6 σ, σ2). Based on the above, 100
sets of data are simulated with n=225, 400 and
σ=1.0, 2.0. The bivariate kernel function considered
is K(u,v)=0.752(1-u2)(1-v2), which is the product of
two Epanechnikov kernels. The bandwidths in the
u and v directions are taken as the same (h1=h2=h).

Robustness in smoothing was achieved by setting
different ρ functions (Table 1.). One set of simulated
and estimated data (biweight method) along with
the true regression function m for n=400 and σ =2.0
are shown in Figure 1.

The MSE of the estimated values with the true
values of one set of simulated data is obtained by:

Where,  is the estimated value of
corresponding to the ith data set.

The average cross-validation (CV) score in the
case of KWLRE and the average robust cross-
validation (RCV) score in the case of robust
estimates along with the average mean squared
errors (AMSE) of the 100 sets of simulated data with
the true values for different bandwidths are given

Fig. 1 (a). True spatial function of the simulated data; (b). Spatial representation of one set of simulated data; (c). Estimated
spatial function based on robust spatial smoothing technique

a b

c
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Table 2. The average CV/RCV score and the corresponding AMSE of the 100 set of simulated data with n=400 and  =2

Type h 0% outliers 4% outliers 8% outliers
CV/RCV AMSE CV/RCV AMSE CV/RCV AMSE

KWLRE 0.16 4.2361 0.2616 10.2519 0.8585 16.7943 1.8039
0.24 4.1973 0.1753 10.1263 0.5745 16.5387 1.5109
0.32 4.2065 0.1867 10.0495 0.5647 16.8041 1.4385
0.40 4.2922 0.2097 10.2994 0.5582 16.7438 1.3812

Robust Spatial (Huber) 0.16 3.5621 0.2593 5.0669 0.3234 6.7754 0.4309
c=1.345 0.24 3.6230 0.2613 4.9626 0.2245 6.6241 0.3249

0.32 3.5504 0.1931 5.0754 0.2362 6.6759 0.3298
0.40 3.6219 0.2466 5.1067 0.2842 6.7397 0.3790

Robust spatial (Biweight) 0.16 3.4366 0.2518 3.5056 0.2628 3.7295 0.2890
c=4.6851 0.24 3.4733 0.1960 3.4848 0.1979 3.6206 0.2084

0.32 3.3723 0.1938 3.5811 0.2185 3.6292 0.2290
0.40 3.4139 0.2790 3.5065 0.2525 3.7610 0.2829

Robust spatial (Hampel) 0.16 3.6545 0.2628 4.7700 0.3134 5.8691 0.3712
a=1.70, b=3.40 c=8.0 0.24 3.6379 0.1804 4.4993 0.2062 5.6959 0.3049

0.32 3.6985 0.1934 4.5528 0.2280 5.6944 0.2540
0.40 3.7036 0.2226 4.7161 0.2426 5.7606 0.2609

Fig. 2 (a). Spatial representation of annual coconut yield data; (b). Estimated spatial function

in Table 2.  The optimum bandwidth (bandwidth
corresponds to the minimum MSE) will depend on
the curvature of the function.  The optimum bandwidth
for estimating the regression function is obtained based
on the cross-validation technique given in Section 2.
The optimum bandwidth h and corresponding AMSE
of the 100 sets of simulated data with σ=2 and σ=1
are given in Table 3 and Table 4, respectively.

Results and discussion
It can be seen that the AMSE corresponding to

the optimum bandwidth (bandwidth corresponds to

the minimum value of CV or RCV) is the lowest in
the case of zero per cent outliers for all types of
estimators (Table 3 and Table 4). In the presence of
outliers, the AMSE corresponds to the optimum
bandwidth is not the minimum in the case of non-
robust KWLRE. The estimated optimum RCV of the
robust spatial smoothing techniques (Huber,
Biweight or Hampel) provided the minimum AMSE
in the presence or absence of outliers.

The comparison of AMSE corresponding to the
optimum bandwidth shows that the non-robust
spatial technique (KWLRE) performs very badly in

Non-parametric spatial regression
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Table 3.  The optimum bandwidth (h) and corresponding AMSE of the 100 set of simulated data with σ σ σ σ σ = 2
Type n 0% outliers 4% outliers 8% outliers

h AMSE(m) h AMSE(m) h AMSE

KWLRE 225 0.32 0.2600 0.40 0.6595 0.32 1.5606
400 0.24 0.1753 0.32 0.5647 0.24 1.5109

Robust spatial (Huber) 225 0.40 0.2969 0.32 0.3067 0.32 0.3819
400 0.32 0.1931 0.24 0.2245 0.24 0.3249

Robust spatial (Biweight) 225 0.40 0.2844 0.40 0.2857 0.32 0.2851
400 0.32 0.1938 0.24 0.1979 0.24 0.2084

Robust spatial (Hampel) 225 0.32 0.2661 0.32 0.2847 0.40 0.3658
400 0.24 0.1804 0.24 0.2062 0.32 0.2540

Table 4.  The optimum bandwidth (h) and corresponding AMSE of the 100 set of simulated data with σ σ σ σ σ = 1

Type n 0% outliers 4% outliers 8% outliers
h AMSE(m)  h AMSE(m) h AMSE

KWLRE 225 0.24 0.0990 0.24 0.2874 0.32 0.4466
400 0.16 0.0726 0.16 0.1809 0.24 0.3913

Robust spatial (Huber) 225 0.24 0.1068 0.24 0.1278 0.24 0.1516
400 0.16 0.0789 0.16 0.0833 0.16 0.1231

Robust spatial (Biweight) 225 0.24 0.1118 0.16 0.1198 0.24 0.1154
400 0.16 0.0734 0.16 0.0778 0.16 0.0815

Robust spatial (Hampel) 225 0.24 0.0998 0.24 0.1249 0.24 0.1403
400 0.16 0.0733 0.16 0.0783 0.16 0.1121

the presence of outliers. Among the robust
estimators, the robust spatial smoother with
biweight robustness weight function performed
better than the Huber and Hampel weight functions.
Comparison of AMSE corresponding to the optimum
bandwidth showed that there was not much
difference between different types of robustness
weight function in the absence of outliers. In the
case of robust spatial smoother with biweight
robustness weight function, the AMSE for 0 per cent,
4 per cent and 8 per cent outliers are almost the
same, and it indicated that the method was robust
against the outliers.

The method was applied to the annual yield
data of 225 coconut palms (Philipines Ordinary
variety) in a field to estimate/eliminate spatial effect
and to identify the extreme observations or outliers
present in the data.  The coconut palms were planted
with a spacing of 8m x 8m in a plot with 13 rows
and 15 to 20 palms in each row. The spatial
representation of annual yield data of 2013 is given

in Figure 2(a). The robust nonparametric spatial
smoothing technique with the biweight robust
function described in Section 2 was used to estimate
the spatial response function. The estimated spatial
function is shown in Figure 2(b). The outliers were
identified using the standardized residuals with
MAD (from the median)/0.6745 as the scale factor.
Mean was taken as the estimate in the case of
without removing the spatial effect. An observation
was taken as an outlier if the absolute value of its
standardized residual was greater than 4.  The
number of outliers identified and the MSE after
removing the outliers based on spatial, robust spatial
and without removing the spatial effect (mean) are

Table 5. MSE of the observed value with the estimated
value after removing the outliers

Estimate No. of outliers MSE

Mean 0 4482
KWLRE 3 2031
Robust Spatial (biweight) 5 1933

Jose et al.
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given in Table 5. By removing spatial effects and
outliers, the MSE has reduced more than 50 per cent.

Conclusion
In the presence of outliers or extreme

observations in the data, the smoothing technique
or the nonparametric regression technique performs
very badly, particularly estimates near the outliers.
The proposed method based on the robust M-kernel
weighted local linear regression smoother to fit the
spatial regression function performed well in the
presence of outliers. The outliers in the data are
identified by analyzing the residuals. The proposed
method is useful to estimate/eliminate the spatial
effect and identify the high potential trees in an
orchard, which is useful for the breeding programs.
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